
Received December 23, 2019, accepted February 6, 2020, date of publication February 12, 2020, date of current version February 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973433

T -Center: A Novel Feature Extraction Approach
Towards Large-Scale Iris Recognition
YIFENG CHEN , CHENG WU , (Member, IEEE), AND YIMING WANG , (Member, IEEE)
School of Rail Transportation, Soochow University, Suzhou 215137, China

Corresponding author: Cheng Wu (cwu@suda.edu.cn)

This work was supported by the scientific research project funding of Suzhou Rail Transit Group Company, Ltd., under Grand
SZZG06YJ6000017.

ABSTRACT For large-scale iris recognition tasks, the determination of classification thresholds remains
a challenging task, especially in practical applications where sample space is growing rapidly. Due to
the complexity of iris samples, the classification threshold is difficult to determine with the increase of
samples. The key issue to solving such threshold determination problems is to obtain iris feature vectors
with more obvious discrimination. Therefore, we train deep convolutional neural networks based on a
large number of iris samples to extract iris features. More importantly, an optimized center loss function
referred to Tight Center (T -Center) Loss is used to solve the problem of insufficient discrimination caused
by the traditional Softmax loss function. In order to evaluate the effectiveness of our proposed method,
cosine similarity is used to estimate the similarity between the features on the published iris recognition
datasets ND-IRIS-0405, CASIA-Thousand and IITD. Our experiment results prove that the T -Center loss
can minimize intra-class variance and maximize inter-class variance, which achieve significant performance
on the benchmark experiments.

INDEX TERMS Biometric, iris recognition, large-scale dataset, softmax loss, T -center loss.

I. INTRODUCTION
Iris recognition is one of the most promising fields in
biometrics. The first complete and automated iris recog-
nition system was presented by Daugman [1]. Over the
past few years, conventional iris recognition under homoge-
neous and controlled conditions has been extensively stud-
ied. The general procedures for iris recognition include
four parts: iris location, iris segmentation, feature encod-
ing and feature matching. Recently, more attention has
been paid on the realization of large-scale iris recognition
tasks with massive sample space. For massive iris samples,
the ratio of non-ideal captured images and the probability
of coming from different acquisition devices have increased
significantly. Unfortunately, the non-ideal captured images
increase the difficulty of iris segmentation and extraction
and cross-device picture sources lead to adaptive trapping of
parameters. In addition, the large-scale image dataset itself
also brings about the problem of classification threshold
determination, which has inevitably become a difficulty in
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pattern classification. Therefore, it is still a challenging task
to design robust feature extraction methods to cope with
the complex intra-class changes of iris images in non-ideal
uncontrollable acquisition environments and cross-system
acquisitions.

As we know, the construction of features vectors used to
code the iris pattern definitely influence the complexity of
the learning methods and their performance. Unfortunately,
iris patterns require relatively complex feature vectors, even
if their size can be optimized [2]. More feature extraction
functions have been proposed to solve the problem of iris
coding [3], [4] since Daugman proposed 2D-Gabor filters
for iris feature coding. Most of the early works are based
on hand-crafted features. Some other researchers propose
the corresponding optimization algorithms such as Particle
Swarm Optimization [5] and Ant Colony Optimization [6]
in order to estimate adaptive filter parameters, which are
expected to achieve great performance on the public dataset.
However, it is still hard to characterize complex iris texture
features in practical applications due to the limitation on
feature representation using shallow architectures. Moreover,
it is more difficult to reproduce techniques and experiments
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due to the lack of either sufficient implementation details or
reliable shared codes.

Recent progress in deep learning, in particular, deep
Convolutional Neural Networks (CNNs) have significantly
improved the state-of-the-art performance for a wide variety
of computer vision tasks, which makes deep CNNs a domi-
nant machine learning approach for computer vision [7], [8].
Deep learning based approaches in iris biometrics, have been
explored in recent works. Liu proposed a deep framework for
iris verification, which learns relational features to measure
the similarity between pairs of iris images [9]. Gangwar [10]
proposed a deep learning based method for iris learning and
various optimal tricks were used to avoid overfitting. Raja
proposed multi-patch deep features using deep sparse filters
to obtain robust features [11]. Zhao et al. [12] proposed a
deep learning method based on the capsule network archi-
tecture in iris recognition. These typical researches have an
interesting common point. That is, all deepmodels are trained
under the supervision of the Softmax loss. The advantage of
Softmax loss is to make the learned features highly separable,
but it does not guarantee the features’ high discrimination.
Unfortunately, higher discrimination is the key to robustly
identify new unseen classes without label prediction. Further,
some more recent studies found that traditional Softmax is
insufficient to maximize the discrimination power for clas-
sification for large-scale iris samples [13], [14]. Not only
that, our experimental evaluation in Section IV also proved
the Equal Error Rate of deep learning model supervised by
Softmax loss [9] is similar to traditional methods.

In order to address this issue, Zhao et al. [15] proposed
a well-designed model referred as UniNet and a specially
designed Extended Triplet Loss (ETL) function is used to
incorporate the bit-shifting and non-iris masking. Wang and
Kumar [16] proposed a residual network with dilated con-
volutional kernels to optimize the training process based on
ETL. However, the proposed loss fucntion is time-consuming
and require carefully designed triplet mining procedure.
Thus, we propose a novel T -Center loss in order to reduce
computing expenses and enhance the discriminative power of
the deeply learned features. The original center loss function
fuse the Euclidean distance between the features and fea-
tures centers into loss function to maximize the inter-class
variance and minimize the intra-class variance [17], which is
essentially a kind of distance metric learning. However for
iris recognition task, we care more about the angular metric
rather than distance metric since cosine distance between two
features is used to compute the similarity score. Therefore,
we redefine the loss function using L2-norm. To demon-
strate the applicability of the deep features based T -Center
loss, we present the results by ploting Cumulative Match
Characteristic (CMC) and Receiver Operating Characteris-
tic (ROC) curves. Through the set of extensive experiments
on ND-IRIS-0405, CASIA-IrisV4 and IITD2.0, we assert the
intuition of robust feature representation, which gets high
True Accept Rate (TAR > 97%) with low Equal Error Rate
(EER < 1%). Especially in a large-scale system, the proposed

method is more suitable for iris recognition which encourages
the minimum intra-class variance and maximum inter-class
variance.

Our main contributions are summarized as follows:

• We propose a novel loss function called T -Center loss to
enhance the discriminate ability of deep models, which
shows significant improvements compared to previous
work on the ND-IRIS-0405, CASIA-Iris-Thousand and
IITD cross sensor datasets. Meanwhile, it can be shown
on the iris feature histogram that the inter-class variance
is greatly reduced and the loss function pulls the features
of the same class to their centers.

• To avoid the gradient explosions and identify the appro-
priate hyperparameter, our approach simultaneously
normalizes the feature vectors and feature center vectors,
which optimize the original loss function.

In the rest of paper, Section II describes the whole iris ver-
ification framework. Section III proposes our novel method
with the T -Center loss function and Section IV gives the
implementation details and experimental results. Finally,
we concludes our work in Section V.

II. SYSTEM
The whole iris verification process is shown in Figure 1.
Different from most of computer vision tasks using deep
CNNs, the input samples of iris recognition undergo sev-
eral image processing steps instead of using original images
as input samples. It is known to all that the effect of iris
segmentation has a greater impact on the accuracy of iris
recognition. The original iris images contain much interfer-
ence information, including eyelashes, pupils, and eyelid,
which cannot clearly represent iris feature information with-
out segmentation. In previous work, the normalization of
the iris region is done using Daugman’s rubber-sheet model
to reduce the impact of pupil contraction. We acknowledge
the effectiveness of iris normalization. In order to effectively
evaluate the performance of themodel, we take three different
methods to perform image segementation during preprocess-
ing and final images are resized as 128 × 128 after prepro-
cessing. More details about image processing can be found
in Section III.
In order to decrease the computational complexity and

training cost, we do not use the very deep CNN models
such as InceptionV4 and Resnet. Motivated by VGG [20],
we propose a tiny deep model referred as TinyVGG. We ran-
domly adjust the image contrast, brightness, and increase
distortion for data augmentation instead of using dropout
due to using a tiny model. This step aims to simulate real
recognition environments and avoid overfitting. Meanwhile,
we have noticed that some tiny deep models maintain high
performance metrics while reducing computing expenses in
recent work, such as MobileNet [18] and ShuffleNet [19].
Thus, we also use the above three models to evalute the
performance of proposed algorithm. The structure of models
can be found in Figure 2.
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FIGURE 1. An overview of the proposed iris verification framework. At training phase, the discriminative T -Center-based iris features are
learned with large margin between different classes. At testing phase, the testing data feed into framework to extract deep features which
are later used to compute cosine similarity to perform iris verification.

FIGURE 2. The CNN architercture used for iris recognition experiments. Each layer gives the filter size and the number of output channels. Note
that Conv represents the convolution layer, Pool represents the pooling layer, FC represents the fully connected layer and DW represents the
depthwise convolution layer respectively. The number of output channels in softmax layer corresponds to the number of categories. Specially,
we select the last layer of FC in order to calculate the T -Center loss, which correspnds to the FC3 in TinyVGG, FC1 in MobileNet [18] and Global
Pooling in ShuffleNet [19] respectively.

III. METHOD
A. PREPROCESSING
During image preprocessing, the segmentation is done fol-
lowed by three different methods, including Hough, Viterbi
and Viterb+Norm algorithm as the figure shown in Figure 3.
In Figure 3(a), we firstly remove the reflection points in iris
image by using Fast Matching Algorithm [21]. The seg-
mentation is done in 2 steps: (i) a rough localization of iris
contours is performed by using Circular Hough Transform,
(ii) these two circles are then used to detect pupils and eyelid
following the method proposed by He et al. [22] in order
to refine iris contours; In Figure 3(b), we closely follow the
preprocessing method in OSIRISv4.0 [23]. The contours of
the iris under this method correspond to an optimal path
retrieved by the Viterbi algorithm for joining in an optimal

FIGURE 3. The final iris samples after preprocessing.

way so that segmentation part has been greatly improved;
Notice that Daugman’s rubber sheet model can reduce the
impact of pupil contraction, so that we perform normalization
on upper and lower halves respectively. The result is shown
in Figure 3(c).
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FIGURE 4. Sample images from CASIA dataset with high, medium and
low L2-norm.

B. METHOD MOTIVATION
Deep learning uses the loss function to measure the degree
of optimization. It is clear that designing an appropriate loss
function can enhance the ability of discrimination. The most
commonly used loss function is Softmax loss. Assuming that
the input learned feature vectors xi and its label yi, the original
Softmax loss function is as Equation (1):

Ls = −
m∑
i=1

log pi = −
m∑
i=1

log
efyi∑n
j=1 e

fj
(1)

where pi denotes the posterior probability of xi being cor-
rectly classified, m is the size of a mini-batch, n the number
of classes and fj the j-th element of the class score vector f .
fj is usually denoted as activation of a fully-connected layer
with weight vector Wj and bias bj. We fix the bias bj = 0 for
simplicity and as a result fj is given by:

fj = W T
j x =

∥∥Wj
∥∥ ‖x‖ cos θj (2)

where θj is the angle betweenWj and x. This formula suggests
that both norm and angle of vectors contribute to the posterior
probability. At test time, feature descriptors xi and xj are
extracted for the pair of test face images i, j respectively
using the trained deep model, and normalized to unit length.
Then, a similarity score is computed on the feature vectors
which provides how close the features lie in the embedded
space. If the similarity score is greater than a set threshold,
the iris pairs referred as positive pairs are decided to be of
the same person and the same eye. Usually, the similarity
score is computed by using cosine similarity, as given by
Equation (3):

cos
〈
xi, xj

〉
=

xTi · xj∥∥xi ‖‖ xj∥∥ (3)

There are twomajor issues with this pipeline. On one hand,
the training and testing steps for iris verification task are
decoupled. Training with Softmax loss doesn’t necessarily
ensure the positive pairs to be closer and the negative pairs to
be far separated in the embedded angular space.We revisit the

softmax loss by looking into its decision criteria. In binary-
case, the posterior probabilities obtained by softmax loss are:

p1 =
‖W1‖ ‖x‖ cos θ1

‖W1‖ ‖x‖ cos θ1 + ‖W2‖ ‖x‖ cos θ2

p2 =
‖W2‖ ‖x‖ cos θ2

‖W1‖ ‖x‖ cos θ1 + ‖W2‖ ‖x‖ cos θ2
(4)

The predicted label will be assigned to class 1 if p1 > p2
and class 2 else if p1 < p2. Note that p1 and p2 share the
same x, the decision boundary is defined by:

‖W1‖ cos θ1 = ‖W2‖ cos θ2 (5)

Thus, its boundary depends on both magnitudes of weight
vectors and cosine of angles, which results in an overlapping
decision area in the embedded cosine space. As noted in our
article, in the testing stage it is a common strategy to only
consider cosine similarity between testing feature vectors of
irises. Consequently, the trained classify testing samples. To
encourage better discriminating performance, many research
studies have been carried out. For example:
• N-Softmax [24] normalizes both weight W1 and W2 so
that they have constant magnitude-one, which results in
a decision boundary by:

cos θ1 = cos θ2 (6)

However, it is not quite robust to noise because there is
no decision margin: any small perturbation around the
decision boundary can change the decision.

• A-Softmax [13] improves the softmax loss by perform-
ing an extra margin, so that its decision boundary is
given by:

C1 : cosmθ1 ≥ cos θ2
C2 : cos θ1 ≤ cosmθ2 (7)

Thus, for C2 is requires θ1 ≤ θ2/m, and similarly for C2.
The comparison of decision margin under different loss
functions are illustrated in Figure 5.

On the other hand, the Softmax classifier is weak in
modeling difficult or extreme samples. In a typical training
batch with data quality imbalance, the Softmax loss gets
minimized by increasing the L2-norm of the features for
easy samples, and ignoring the hard samples. In order to
solve the problem, recent approach such as Center loss Lc =
1
2

∑m
i=1

∥∥xi − cyi∥∥2, where cyi denotes the yith class center
of deep features,tries to constrain the hard samples, which
is one of the metric learning. This enforces to pull the fea-
ture descriptors to their feature center. However in the pre-
experiment, we found that the Center loss is not as effective as
expected, and somehow even not outperform than Softmax.
Thus, we infer that it may respond to the quality of the iris
samples.We found some low-quality images in the iris dataset
as shown in Figure 4, which are blurred and occluded. These
low-quality images appear even more frequently in the actual
environment. We get the feature descriptors under the CNNs
supervised by Center loss and then evaluate the distribution of
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FIGURE 5. The comparison of decision margins for different loss
functions the binary-classes scenarios. Gray areas are decision margins.

TABLE 1. Performance on CASIA under Center loss.

deep features. We found an intersting point: The low-quality
iris samples usually have smaller L2-norm values. It can be
explained that we regard the CNNs as muti-filters. If the edge
of low-quality image is fuzzy, the value of corresponding
pixel gradient will be small which leads to the small value
of feature descriptors obtained by muti-filters.

To further validate this phenomenon, we perform a simple
experiment on CASIA dataset which we divide the testing
samples into three different sets based on the L2-norm value
of feature descriptors. Samples with L2-norm ≤ 10 are
assigned to set 1. Samples with L2-norm > 10 but ≤ 20
are assigned to set 2, while others with L2-norm > 20 are
assigned to set 3. Then we calcute the accuracy of different
sets to evalute the binary classification performance based
on cosine similarity. Meanwhile, we use an angular Fisher
score for evaluating the feature discriminativeness in angular
margin feature learning. The angular Fisher score (AFS) is
defined by:

AFS =
Sw
Sb

(8)

where the inter-class scatter value is defined as Sw =∑
i
∑

xj∈Xi (1 − cos
〈
xj,mi

〉
) and the intra-class scatter value

is defined as Sb =
∑

i ni(1− cos 〈mi,m〉). Xi is the i-th class
samples, mi is the mean vector of features from class i, m is
the mean vector of the whole dataset, and ni is the sample
number of class i. What’s more, the lower the AFS values is,
the more discriminative the feature are.

As it shown in Table 1, the difference in performace
between each set is quite significant, which confirms that the
L2-norm of the feature descriptor is informative of its quality.

C. T -CENTER LOSS
To solve these issuesmentioned in Section III-B, we proposed
a novel loss function referred as T -Center loss. We enforce
the L2-norm of the features for each iris samples. Specially,
we add an L2-constraint to the features and feature centers in
order to fix them on the unit embedded sphere. Thus, we have

the Equation (9) as:

Ltc =
1
2

m∑
i=1

∥∥∥x∗i − c∗yi∥∥∥2
x∗i =

xi
‖xi‖

c∗yi =
cyi∥∥cyi∥∥ (9)

where c∗yi and x
∗
i denote the feature center and feature vector

after L2-norm respectively. For each feature xi we can get
the value of T -Center loss Li, which is given by Li =
1
2

∥∥x∗i − cyi∥∥2. At training phase, we backpropagte the gradi-
ents according to the computation of Li as the Equation (10)
given below.

∂Li
∂xi
=
∂Ltc
∂x∗i
·
∂x∗i
∂xi

=
(
xi − cyi

)
·
∂x∗i
∂xi

=
(
xi − cyi

)
·
‖x‖ − ∂‖xi‖

∂xi

‖xi‖2

=
(
xi − cyi

)
·
‖x‖2 − x2i
‖xi‖3

(10)

Instead of updating the feature centers by back propagation
algorithm, the centers are computed by averaging the features
of the corresponding classes in each iteration. The update
equation of cyi is computed using Equation (11):

1c∗j =

∑m
i=1 δ(yi = j) · (c∗j − x

∗
i )

1+
∑m

i=1 δ(yi = j)

c∗
t+1

j = c∗
t

j − α ·1c
∗
t

j (11)

where t is the number of iteration. The feature centers update
only if yi and j share the same class, where δ(condition) = 1.
A scalar α is used to control the learning rate of the centers to
avoid large perturbations caused by image noise. Note that
these learned features and centers would degrade to zeros
when the T -Center loss is used separately for deep networks.
It also would lead to an overfitting model. So it is necessary
to adopt the joint supervision of Softmax loss and T -Center
loss to train. The discrimination cannot be achieved by using
any of the loss functions alone. The final loss function formu-
lation is given in Equation (12).

L = Ls + λLtc

= −

m∑
i=1

log
eW

T
yi
x∗i +byi∑n

j=1 e
W T
j x
∗
i +bj
+
λ

2

m∑
i=1

∥∥∥x∗i − c∗yi∥∥∥2 (12)

where λ is a scalar used for balancing the significance of two
loss functions.

D. SUBSET EXAMPLE
We study the effect of T -Center loss function on the sub-
set of dataset CASIA-IrisV4 using the DCNN mentioned in
Section II where the last fully connection layer output is
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FIGURE 6. Geometry Interpretation of Euclidean margin loss(e.g. center loss and T -center loss.) Note that C and C ′ represent the category feature
centers of the last and present iteration respectively.

FIGURE 7. Toy example about 2-dimensional iris features under different
loss functions.

restricted to 2-dimension for easy visualization. Due to the
limitation of dataset, we could not get enough original testing
samples so that we perform data augmentation. We train
an end-to-end network and the feature results are shown
in Figure 7. Each point shown in the figure represents 2-D
features of the iris sample and we compute the iris center of
each class. Specially, the iris features shown in figure were
obtained before performing normalization.

We find two clear differences between the features learned
using the two different loss functions discussed above. First,
the intra-class variance is large when using the original Cen-
ter loss, which can be estimated by the average width of
the cluster for each class. On the other hand, the features
obtained with T -Center loss have lower intra-class variabil-
ity, represented by narrower class radius. Second, the magni-
tudes of the features are much higher with the Center loss
(ranging up to 100), since larger feature norms result in a
higher probability for a correctly classified class. In contrast,
the feature norm has minimal effect on the T -Center loss
since every feature is normalized to the unit circle before
computing the loss. Hence, the network focuses on bringing
the features from the same class closer to their corresponding
centers and separating the features from different classes in
the embedding space. Table 2 lists the accuracy obtained
with the T -Center loss. By comparing Table 1 with Table 2,
T -Center loss achieves the better performance reducing the
classification error by more than 40%. Note that the accuracy
is lower compared to the following experimental results since
we are using only 2-dimensional features for classification.

E. NORMALIZATION ON FEATURES
In the proposed T -Center loss, our approach simultaneously
normalizes both the feature vectors and feature center vectors.

TABLE 2. Performance on CASIA under T -Center loss.

The necessity of feature normalization can be explained in
two ways. From the perspective of optimization, the original
Center loss actually forces the hard sample features to be
pulled to the corresponding feature center, which leads to
updating the feature centers with large margin through the
training phase. This approach makes the feature centers more
inclined to extreme samples. As shown in the Figure 6(a)
above in the 2-dimensional feature space, the Center loss
essentially corresponds to a larger distance margin under the
same range of angles. In this case, the loss value is not conver-
gent for a long time. Althoughwe can use amore conservative
hyperparameters λ to balance the effects of Center loss, this
approach substantially reduces the effect of center loss, and
the learned feature centers could not represent the true cen-
ters. For extreme samples(with lowL2-norm), the performace
of Center loss is poor. In order to solve the issues, we have
a L2-norm constraint on the feature descriptors and theirs
feature centers. Minimizing the T -Center loss is equivalent
to maximizing the cosine similarity for the positive pairs and
minimizing it for the negative pairs, which strengthens the
verification signal of the features. Moreover, the T -Center
loss is able to model the extreme and difficult irises bet-
ter, since all the iris features have same L2-norm. Besides,
as for the distribution of features, we project its features onto
a two-dimensional space in order to simplify the analysis
in Figure 6(c)&6(d). Specially we fix the center of feature
descriptors and the corresponding angle α. For T -Center,
the deep features are located at the intersection of the circle
(center Ci and radius 2 sin 1

2α) and the unit circle. As for
Center loss, the features are on the line with an angle of α
from the center Ci. In other words, any feature that located at
the line satisfies the specified angle requirement, so that there
is no effect on improving the distribution of the inter-class
samples. Finally, the experimental results in Table 2 prove
our theoretical analysis.

32370 VOLUME 8, 2020



Y. Chen et al.: T -Center: Novel Feature Extraction Approach Towards Large-Scale Iris Recognition

FIGURE 8. Toy example about features extraction. The figure shows the cosine similarity distributions of both positive pairs and negative pairs.
Blue area indicates positive pairs while red indicates negative pairs.

IV. EXPERIMENTS
In order to evaluate the effectiveness of the proposed
method in this section, three public datasets (ND-Iris,
CAISA and IITD) are selected for cross-database verifica-
tion. The deep learning method and the traditional feature
extraction operator are selected as the experimental compar-
isons. We plot the CMC and ROC curves for the methods
used, calculate the EER rates and analyze the model perfor-
mance under large sample sizes.

A. DATASETS AND PROTOCALS
• ND-IRIS-0405 Iris Image Dataset The ND
2004-2005 iris image dataset [25] contains 64980
images corresponding to 356 subjects and 712 unique
irises, which is the most popular iris datasets in lit-
erature. After removing some incorrectly segmented
samples, we ended up with 63290 image samples. Then,
we divided samples into a training set, a validation set,
and a test set in a ratio of 8:1:1 by using stratified
sampling (i.e. For each class, 80% of samples are used
for training, 10% for validating and 10% for testing).
In testing phase, we randomly generated positive pairs
(same class) and negative pairs (different classes) for
verification, which totally contained 28234 positive
pairs and 89279 negative pairs.

• CASIA Iris ImageDataset V4-ThousandCASIA-Iris-
Thousand ontains 20000 iris images from 1000 subjects.
It is a challenging task that the main source of intra-class
variations in dataset are eyeglasses and specular reflec-
tion. The testing set generates 38753 positive pairs and
107589 negative pairs after removing incorrectly seg-
mented samples.

• IITD Iris Image Dataset IITD [26] contains 2240
images samples from 224 subjects. Similar to the pervi-
ous work, we got 9234 positive pairs and 23902 negative
pairs. Secially, we trained the deep model under the
ND-IRIS dataset and then directly applied on CASIA
and IITD without any further tuning during testing.

Note that the deep CNNmodel was developed based on the
Tensorflow. We use Leaky Rectified Linear Units (LReLU)
activation function in all hidden layers [27] to maintain the
variance of input data and output data consistent. Each class
of sample center is initialized to zero. The deep models were

FIGURE 9. Examples of the learned 128-dimensional DeepID. The left
column shows test pairs in CASIA. The first two pairs are of the same
identity, the third one is of different identities. The corresponding
features extracted from each patch are shown in the right. The features
are in 128 dimensions. We rearrange them as 4× 32 for convenience of
illustration. The brighter areas indicate higher values.

trained on GTX1080 with SGD algorithm, with the batch size
of 64 (i.e.m = 64). We fix α = 0.5, λ = 0.1 and weight
decay is set to 0.0005. Each model is trained with 60 epochs.
For the case of training on the small dataset, the learning rate
is started from 0.1 and divided by 10 at every 6K iterations.
The training process stops at 20K iterations. After feature
extraction using DCNN model, we got the final DeepID with
128-dimensions as it shown in Figure 9.

B. EFFECT OF LOSS FUNCTIONS
In order to visually demonstrate the ability of the pro-
posed method to distinguish iris feature vectors in Figure 9,
we compute the cosine similarity distributions of both pos-
itive pairs and negative pairs and the histogram results are
shown in Figure 8 & Table 3. The results show that compared
with Model A (supervised by Softmax only) and Model B
(supervised jointly by Softmax and center loss), Model C
(supervised jointly by Softmax and T -Center loss) has 43.8%
and 30.2% decrease on the intra-class variance respectively.
It indicates that using the T -Center loss results in a more
discriminative distribution in the feature space and a larger
angular margin which has lower AFS. Therefore, it is proven
that the proposed method can obtain the iris feature vectors
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FIGURE 10. Visualization of performance of deep models under different structures and loss functions. The first column shows the CMC curves under
different preprocessing methods. Specailly, we bolded the T -Center CMC curves in order to facilitate visualization. The second column shows the
Rank-1 accuracy, which blue,green and orange represent supervised by T -Center, Center and Softmax respectively.

TABLE 3. Variance of positive and negative pairs under different models.

with more distinct discrimination, which is very suitable for
large-scale iris recognition tasks.

C. OVERALL BENCHMARK COMPARISON
1) EXPERIMENTS ON IRIS IDENTIFICATION
Iris identification aims to match a given probe image to the
ones with the same person in gallery. For iris identification
experiments, we present the results by CMC curves. It reveals
the probability that a correct gallery image is ranked on top-K.
The experiment is performed on CASIA dataset, including
1924 images from 1000 subjects. The results are shown
in Table 4 & Figure 10.

We have the following conclusions from these results.
Firstly, in constrast to other deep models, employing
TinyVGG architectures achieve the better performance due to
their sophisticated network design. The parameters of three
models are 78M, 16M, 4.7M respectively. However, using
ShuffleNet takes the least computational cost. Secondly, for
better evalution, we trained CNN architectures under differ-
ent preprocessing method and loss functions. T -Center also
shows significant and consistent improvements, which has
24.7% and 32.9% decrease on the ERR in average com-
pared with Center and Softmax respectively. These results

TABLE 4. Comparison of our proposed method with others on
CASIA-IrisV4 under different preprocessing and models. ‘‘Rank 1’’ refers
to rank-1 iris identification error rate and ‘‘Rank 5’’ refers to rank-5 error
rate.

convincingly demonstrate that the proposed method is well
designed for open-set iris identificaiton.

2) EXPERIMENTS ON IRIS VERIFICATION
As for iris verification, it is a two-choice decision task
(i.e. same versus different). The comparison experiments
are conducted on three public datasets (i.e. ND-IRIS-0405,
CASIAv4-Thousand and IITDv2) and the division of testing
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FIGURE 11. ROCs for comparsion with other state-of-the-art methods on employed databases.

TABLE 5. Summary of performance for the comparsion on public datasets.

samples have been given in pervious Section III. In the
comparison methods, we first compared with the mainstream
classic iris algorithm IrisCode based [28] on 2D-Gabor filter.
As we know, the majority of recent works on iris recog-
nition focus on improving segmentation or normalization
models, applying multi-score fusion or feature bits selection.
In other words, in the context of iris feature representations,
IrisCode is definitely a fair benchmark for the performance
evaluation and we select OSIRISv4.0 [23] system, which
is an open source tool for iris recognition. What’s more,
we also compare with the latest SOTA algorithm based
on deep learning, including DeepIrisNet [10], UniNet [15]
and CapsuleNet [16]. It should be noted that we use the
ND-IRIS-0405 as the training set and the trained model
is directly applied on CASIAv4-Thounsand and IITDv2.

On one hand, we are more concerned about the generalization
capability of the proposed framework under challenging prac-
tical application to predict unseen labels. On the other hand,
considering that the sample quantity of ND-Iris-0405 dataset
is quite suitable as the training set, the other datasets may
not achieve similar results. Finally, hyperparameters of the
training processes for above architectures have been carefully
investigated to achieve best performance in validation sets.

Note that all benchmark experiments are based on the same
preprocessing method as shown in Section III-A. We choose
TAR (at 0.1%FAR), EER andAUC as the performance evalu-
ation indicators and the specific comparison results are shown
in Figure 11 & Table 5. Consistent improvements from our
method over others can be observed on all of three databases.
For ND-IRIS, we trained deep model based on training set
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and evaluated performance on testing set. As the results
shown in Table 5, we achieve 0.75% and 2.85% increase on
TAR compared with CapsuleNet and IrisCode.

For CASIA and IITD,we directly evaluate the performance
on testing sets without any further tuning which is kind of
cross database testing. This evaluation aims to validate gen-
eralization capability of the frameworkwhen there are limited
or no training samples accessible from the target iris database.
Specifically, for the IITD database, the image samples are
of high quality, with clear edges and few eyelashes so that
all methods have achieved good performance on the testing
dataset. For the CASIA dataset, it is a challenging task that the
main source of intra-class variations in dataset are eyeglasses
and specular reflection, which is similar to the application in
the real environment. Thus the TAR rate is lower than the
ND-IRIS and IITD. In order to solve the issue, we analyzed
the iris images which failed from our approach.We found that
these failed cases can be largely attributed to degradation in
the iris image quality (i.e. fuzzy or light reflection), which
was a large noise interference for the fine-grained feature
extraction of iris recognition. However, the proposed method
still shows the significant and encouraging improvements
with 1.50% TAR increase on CASIA. These results convinc-
ingly demonstrate that the proposed loss function is well
designed for iris recognition and has greatly improved the
robust performance of iris recognition across the datasets and
over various devices.

V. CONCLUSION
Large-scale iris recognition tasks remains a challenging task
in practical applications due to the difficulty of classifica-
tion threshold determination. The paper proposes a novel
feature extraction approach for iris recognition, which can
obtain iris feature vectors with more obvious discrimina-
tion. We refer the novel loss function to T -Center loss.
Jointly supervised by the linear combination of T -Center loss
and softmax, the discriminative power of the deep features
based on CNNs can be highly enhanced. Extensive experi-
ments on cross-database and large-scale iris samples show
that the performance improvement for iris verification task,
which proves the effectiveness of the T -Center loss func-
tion. We wish that our substantial explorations on learning
discriminative features via T -Center loss will benefit the iris
recognition community.
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