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ABSTRACT The HiddenMarkovModel (HMM) is a widely usedmethod for speaker recognition. During its
training, the composite order of the measurement probability matrix and the number of re-evaluations of the
initial model affect the speed and accuracy of a recognition system. However, theoretical analysis and related
quantitative methods are rarely used for adaptively acquiring them. In this paper, a quantitative method
for adaptively selecting the optimal composite order and the optimal number of re-evaluations is proposed
based on theoretical analysis and experimental results. First, the standard deviation (SD) is introduced to
calculate the recognition rate considering its relationship withMel frequency cepstrum coefficients (MFCCs)
dimension, then the composite order is optimized according to its relationship curve with the SD. Second,
the composited measurement probability with different number of re-evaluations is calculated and the
number of re-evaluations is optimized when a convergence condition is satisfied. Experiments show that
the recognition rate with the optimal composite order obtained in this paper is 97.02%, and the recognition
rate with the optimal number of re-evaluations is 98.9%.

INDEX TERMS Speaker recognition, Gaussian composite order, re-evaluation, parameter optimization.

I. INTRODUCTION
Speaker recognition refers to identifying a speaker’s identity
using characteristic parameters extracted from the speaker’s
speech signal [1]. Compared to other biometric authentication
methods, speaker recognition based on speech features has
advantages such as convenience and economy [2]–[7].

The Hidden Markov Model (HMM) is a stochastic model
based on transition probability and output probability [8].
It considers a speech signal as a random process consist-
ing of an observable sequence of symbols. HMM does not
require time regulation, which reduces the judgment time
and storage. However, certain important initial parameters,
including the composite order of the observed probability
density matrix and the number of re-evaluations of the initial
model, still require to be manually set by a user when training
an HMM for speaker recognition. This not only reduces the
adaptive ability of the speaker recognition system, but also
affects the recognition accuracy. In order to address the initial
parameter problem, state-merging and state-splitting were
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implemented in some HMM algorithms. The former itera-
tively merges states until convergence of a model, therefore,
it requires large amount of computation. The latter begins
with a general HMM and successively splits states until con-
vergence. However, it is difficult to define the stopping mech-
anism of splitting. Although some factors, such as maximum
likelihood or minimum description length, have been intro-
duced to stop splitting, it is still difficult to acquire a balance
between accuracy and generality of an HMM model in real
applications. Therefore, this paper proposes a quantization
method for adaptive acquisition of the Gaussian composite
order and the number of re-evaluations through theoretical
analysis and experimental verification to improve the accu-
racy and the training speed of an HMM-based speaker recog-
nition system.

This paper is organized as follows: The basic principles
of the HMM are introduced in the next section. In the third
section, HMM-based speaker recognition system is detailed.
The fourth section presents our adaptive acquisition of the
Gaussian composite order and the number of re-evaluations
through theoretical analysis and experimental verification,
and we draw conclusions in the fifth section.
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II. DEFINITION OF HMM
The problem solved by the HMM has two characteristics:

(1). State-based characteristics, which includes the hidden
state and the observation state.

(2). Two types of data, which consists of the observation-
state sequence and the hidden-state sequence.

First, suppose 2 is the collection of all possible hidden-
states and V is the collection of all possible observed-states
as follows:

2 = {θ1, θ2, . . . . . . , θN } , V = {v1, v2, . . . , vM } (1)

where N andM are the number of possible hidden-states and
observed-states, respectively.

For a sequence of length T , Q and O are the state sequence
and the observation sequence, respectively, and they can be
obtained by the following equation:

Q =
{
q1, q2, · · · · ··, qT

}
, O = {o1, o2, . . . , oT } (2)

where qtε 2 and otεV.
There are two assumptions in HMM:
(1). The homogeneous Markov chain hypothesis. The

Markov chain is described by5 and A, which determine the
shape of Markov chain. The hidden state at any time only
depends on the previous hidden state. If the hidden state at
time t is qt = θ i and the hidden state at time t+1 is qt+1 = θ j ,
then the HMM state transition probability aij from time t to
time t + 1 can be expressed as follows:

aij = P
(
qt+1 = θ j

∣∣qt = θ i ) (3)

Thus, aij composites the state transition matrix A:

A =
(
aij
)
N×N (4)

The hidden probability matrix5 at t = 1 is given by:

5 =
[
π (i)N

]
(5)

where π (i) = P(q1 = θ i).
(2). Independence of observing states. The observation

state at any time only depends on the hidden state of the
current moment. If the hidden state at time t is qt = θ j and the
corresponding observation state is ot = vk, then the measure-
ment probability bj(k) of observation state vk, generated from
hidden state qj , at that time satisfies the following equation:

bj (k) = P
(
ot = vk

∣∣qt = θ j ) (6)

where 1≤ j ≤ N , 1 ≤ k ≤ M , M denotes the number of
observation states.

A Gaussian function is mostly used to describe bj(k)
according to the distance between ot and θ j:

bj (k) =
1

2πσ
e−
(ot−θ j)

2

2σ2 (7)

Then, the measurement probability of observation states
generated from hidden state qj can be calculated with a linear

summation of multiple Gaussian functions as shown by the
following equation:

bj =
M∑
m=1

cjmG
(
j, µjm, 6jm

)
(8)

where G(·) denotes the Gaussian function; cjm, µjm and 6jm
denote the weight, the mean and the variance of the mth
Gaussian function, respectively.

The measurement probability matrix B, composed by bj,
is then given by:

B = bj (k)N×M (9)

Finally, the HMM can be determined by 5,A, and B as
follows:

λ = (5,A,B) (10)

From (10), we can see that the number of possible hidden-
states and the observed-states determines the size of HMM.

III. HMM-BASED SPEAKER RECOGNITION SYSTEM
A. PREPROCESSING
The preprocessing of a speaker recognition system mainly
includes: sample quantization, pre-emphasis, frame window-
ing, and endpoint detection.

Sampling converts an analog signal into a discrete analog
signal, and quantization divides the continuous amplitude
into several levels. As researched, the speech signal is atten-
uated at a rate of 6 dB/octave when the frequency is greater
than 800 Hz. Therefore, sampling and quantization require
a pre-emphasis process to raise the high frequency compo-
nents and flatten the spectrum of the signal. The general pre-
emphasis filter H is expressed as follows:

H (f ) = 1− αf −1 (11)

where f is the frequency; α is the coefficient of the pre-
emphasis process and it is normally between 0.90 and 0.97.

For the short-time stationarity analysis, a speech signal
must be framed andwindowed. The commonly usedwindows
are Hamming window and Hanning window. In addition,
to remove noise and mute portions in a speech signal, it is
necessary to remove some valid speech parts using endpoint
detection.

B. SPEECH FEATURE EXTRACTION
One of common speech features is the Mel frequency cep-
stral coefficients (MFCCs), which combines the auditory
perception characteristics of human ears on the mechanism
of speech generation and uses the Mel filter bank to mimic
functions of the human cochlea. The frequency scale is close
to that of the human auditory characteristics [9]. The MFCCs
can be calculated as follows:

(1). Convert the actual frequency to the Mel nonlinear
frequency as follows:

Mel (f ) = 2595× log
(
1+ f

/
700

)
(12)
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(2). Triangular filters of L channels are arranged on the
Mel frequency axis, and the number of L is determined by
the cutoff frequency of the signal. The center frequency e(l)
of each triangular filter is allocated to equal intervals on
the Mel frequency axis. s(l), e(l), and h(l) are the lower
frequency, the center frequency and the upper frequency of
the l th triangular filter, respectively.

(3). Determine the output of each triangle filter based
on the amplitude spectrum |Xn(r)| of the speech signal as
follows:

u (l) =
∑h(l)

r=s(l)
Wl (r) |Xn (r)| , l = 1, 2, . . . ,L (13)

where,

Wl (r) =


r − s(l)
e(l)− s(l)

s(l) ≤ r ≤ e(l)

r − s(l)
h(l)− e(l)

e(l) ≤ r ≤ h(l)
(14)

(4). The logarithm operation is performed on all filter
output, and discrete cosine transform (DCT) is performed to
obtain the MFCCs:

MFCC (i) =

√
2
N

∑L

l=1
log u (l) cos

[(
l −

1
2

)
iπ
L

]
(15)

where MFCC(i) is the MFCC of the ith channel or dimension
and normally it is considered to reflect the static properties of
a signal. To present the dynamic properties of a signal, mostly
1MFCC is introduced, which is obtained through calculating
the first order difference of the MFCCs.

C. MODEL TRAINING AND IMPORTANT PARAMETERS IN
SPEAKER RECOGNITION
Training parameters of an HMM is to estimate the optimal
parameters of λ assuring P(O|λ) is maximal based on the
observation state sequence O. In fact, this is the most com-
plicated problem solved by the HMM because it is difficult
to obtain the optimal λ due to the limit size of a given data set
in practice. Therefore, the Baum-Welch algorithm is adopted
to locally maximize P(O|λ) and obtain the estimated model
λ = (5, A, B) with the concept of iterations.
First, the parameters of the initial model λ0 must be defined

before the re-evaluation using the Baum-Welch algorithm.
As known, B, compared to 5 and A in λ0, is closely related
to the training quality of an HMM. To calculate component
bj in matrix B, it is generally to cluster all the MFCCs of a
speech signal into M clusters and obtain the mean, the vari-
ance and the weight of a Gaussian function in each cluster.
Then, the Gaussian functions of each hidden state are linearly
summed together to obtain component bj in matrix B. Here,
M has a significant influence on the recognition accuracy of a
system because it is closely related to the distance between B
and the true distribution of MFCC features. Some researchers
tried to capture an appropriate M with a serial of practical
experiments during setting parameters for the initial model,
however, the result highly depends on the data sets and there
is rare theorical and quantified foundation to calculate it.

Therefore, it is necessary to research an adaptive acquisition
method to obtain an appropriate value for M .

Second, the Baum-Welch algorithm is used to re-evaluate
the initial model, and the revaluation formula is expressed as
follows:

π̄ i =

L∑
l=1

α
(l)
t (i) β(l)l (i)

/
P (O |λ ) (16)

āij =

L∑
l=1

Tl−1∑
t=1

α
(l)
t (i)aijbj

(
o(l)t+1

)
β
(l)
t+1(j)/P

(
O(l)
|λ
)

L∑
l=1

Tl−1∑
t=1

α
(l)
t (i)β(l)t (j)/P

(
O(l)|λ

) (17)

b̄jk =

L∑
l=1

Tl∑
o=1
o=lk

α
(l)
t (i)β(l)t (j)/P

(
O(l)
|λ
)

L∑
l=1

Tl∑
t=1

α
(l)
t (i)β(l)t (j)/P

(
O(l)|λ

) (18)

where 1≤ i ≤ N , 1≤ k ≤ M .
The re-evaluation terminates until P(O|λe) with estimated

model λe converges. Therefore, more algorithms must be
enrolled, such as expectation maximization (EM), to calcu-
late P(O|λe) of evaluation step i and judge whether P(O|λi)
converges. In theory, only when the number of re-evaluations
is infinite, P(O|λ) can reach the optimal convergence value.
This is not feasible in practice; therefore, the number of re-
evaluations is generally set according to experimental results
when different data sets are used. However, if the number
of re-evaluations is too small, the model will deviate too
much far from the ideal value. Too many re-evaluations will
increase the complexity and the time burden of the algorithm.
Therefore, setting the number of re-evaluations of an initial
HMM is an important research topic.

IV. SPEAKER RECOGNITION BASED ON IMPROVED HMM
A. ADAPTIVE ACQUISITION FOR COMPOSITE ORDER
In this section, a mathematical relationship between the com-
posite order and recognition accuracy based on HMM is
established based on experiments and theoretical analysis.
Then, an adaptive acquisition method for the composite order
is proposed.

First, we select a total of 168 speakers based on the TIMIT
dataset and test the relationship between the speaker recog-
nition accuracy and the composite order. The pre-processing
and MFCCs extraction feature methods used in the training
and identification phases are the same as Reference [9]. Our
experiment is conducted on a 3.40 GHz machine with 8GB
random access memory (RAM) using Matlab implementa-
tion. The specification of our experiment is shown in Table 1.
In our experiment, the number of hidden states is set to one
and the composite order isM . The speaker recognition accu-
racy of the system based on HMM is calculated by increas-
ing M , and the result is shown in Fig.1, where we can see
that when the composite orderM is gradually increased from
2 to 32, the recognition rate of the system rapidly increases
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TABLE 1. The specification of our experiment.

FIGURE 1. Speaker recognition rates of the system with different M.

from 80.36% to 100%; however, as M continues to increase
to 128, the recognition rate gradually decreases to 97%.

The experimental result is consistent with the theoretical
analysis, because when the composite order is small, it means
that the measurement probability of each hidden state is
calculated by the linear summation of a small number of
Gaussian functions. Although the total number of variables
in these Gaussian functions is small, the gap between the
summated measurement probability and the true distribution
of features is also large, resulting in low recognition accuracy.
As the number of Gaussian functions is increased, the gap
between them is gradually reduced, and the recognition rate
of the recognition system is also improved. On the other
hand, when the number of Gaussian functions is too large,
the number of variables required for parameter identification
of Gaussian functions is also significantly increased. As the
size of the training data-set is not increased, the limited
training data-set limits the accuracy of parameter identifica-
tion of Gaussian functions, resulting in a gradual increase in
the gap between the measurement probability and the true
feature distribution. Thus, the recognition rate then begins to
decline. Therefore, in practical applications, the magnitude
of M affects the recognition rate of the system, the training
complexity, and the computation time. The recognition rate
is also limited by the size of the data-set. Theoretically, when
training an HMM, the composite order represents the number
of clusters based on theMFCCs of speeches and the Gaussian
functions describe the feature distribution within each cluster
ofMFCCs. Therefore,M is related to the clustering quality of
MFCCs. In clustering evaluation, the standard deviation (SD)

is often used as a quality evaluation factor [10-11], therefore,
in this paper, SD is introduced to evaluate the appropriateM .
The basic principle of application of SD is based on the

concept of average scattering and total separation for clusters.
The SD can be obtained by the following equation,

SD(M ) = aScat(M )+ Dis(M ) (19)

where Scat denotes the average scattering for clusters to
evaluate the compactness andDis denotes the distance among
all cluster centers to evaluate the separation. They are defined
as follows,

Scat(M ) =
1
M

M∑
i=1

‖σ (di)‖
/
‖σ (X)‖ (20)

Dis(M ) =
Dmax

Dmin

M∑
c=1

(
M∑
z=1

‖dc − dz‖

)−1
(21)

whereDmax = max(||di−dj||) ∀i, jε{1, 2, . . . ,M} is themax-
imum distance between cluster centers. Dmin = min(||di −
dj||) ∀i, jε{1, 2, . . . ,M} is the minimum distance between
cluster centers and a is a weighting factor equal toDis(Mmax),
where Mmax is the maximum number of input clusters.

The variance of the pth dimension in a data set X is defined
as follows,

σ px =
1
n

n∑
c=1

(
xpc − x̄

p)2 (22)

where x̄p is the pth dimension of

x̄ =
1
n

n∑
c=1

xc, ∀xc ∈ X.

The variance of cluster i is called σ (di) and its pth dimen-
sion is given as follows,

σ
p
di =

ni∑
c=1

(
xpc − d

p
i

)2/ni (23)

We calculate the SD relationship of different dimension of
MFCCs, different M and SD. The result is shown in Fig. 2,
where we can observe that for each dimension of theMFCCs,
as M increases, the SD value has two peaks, one at M =
10 and the other M = 32 and has a distinct trough near
M = 20. WhenM is greater than 40, the SD value decreases.
When the M value is fixed, the SD value corresponding
to the low dimensional MFCCs is comparatively smaller,
and the high dimension is reversed. That is, with a fixed M ,
the SD value increases as the dimension number of MFCCs
increases. Here, the distinction position between high and low
dimensions is probably around the 9th dimension.

SD is theoretically minimal with an infinite M ; however,
for a fixed-size dataset, selecting an M value between the
two peaks of SD shown in Fig. 2 is a practical and efficient
solution. To select the most distinctive dimension among
the 24 dimensions of MFCCs, we divide the speech signal
of a speaker into 24 frames. Then we calculate their corre-
sponding MFCCs and intercept multiple sections of different
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FIGURE 2. SD value with different dimension of MFCCs and different M.

FIGURE 3. MFCC value of different dimension MFCCs in different frames
and it’s cross-section along the axis of dimension.

speech frames along the axis of dimension. The calculation
result is shown in Fig. 3, where Fig.3 (a) is the MFCCs in dif-
ferent frames and Fig.3 (b) is the cross-section along the axis
of dimension. It can be seen from Fig. 3 that the MFCC value
of all speech frames has a significant step edge near the 9th

dimension. Specifically, the MFCC value clearly increases
at this dimension. Although the MFCC values of different
speech frames are not equal in magnitude, their variation
curve along the dimension axis is the same. Therefore, we can
easily locate the step edge position of the MFCC value using
the cross-sectional view. Then, this dimension of MFCCs is
selected to calculate the SD value. In this paper, we select the
9th dimension MFCCs.

To observe the relationship between SD and M with one-
dimensionalMFCCs, we use the 4th, 9th, 18th and 23rd dimen-
sion MFCCs of nine speakers to calculate the SD value asM
varied. The result is shown in Fig. 4. As seen in Fig. 4, where
Fig. 4(a)-(d) is the experimental result of the 4th, 9th, 18th and
23rd dimension MFCCs. From Fig. 4, we can see that when
using the 4th and 9th dimension MFCCs, the minimum SD
value mostly appears at M = 16 or M = 32. In comparison,
the SD value calculated using the 9th dimension MFCCs
changes more gradually withM . TheM -SD curves calculated
using the 18th and 23rd MFCCs are too complicated to find the
position where the minimum SD value appears. Therefore,
if the MFCCs of the 9th dimension is used as the evaluation
factor of the clustering quality, theM value with the smallest
SD value could be selected as the optimal composite order of

FIGURE 4. SD value variation with different M and different dimension
MFCCs.

TABLE 2. Recognition rate with different dimension MFCCs.

the system, and this result is consistent with the case where
the recognition rate is the highest in Fig. 1.

Therefore, we propose an adaptive acquisition method for
the composite order based on HMM in a speaker recognition
system. First, the MFCCs is selected with a step edge, the SD
value is then calculated, and the value of Gaussian composite
number, M , is selected, when the SD value is the smallest,
as the optimal composite order of the speaker system. Then,
the recognition rate of the speaker system is calculated. For
comparison, we also calculate the M value that is adaptively
selected using the 4th, 18th, and 23rd MFCCs, and apply
them for modeling and identification. The experimental result
is shown in Table 2, where we can see that when the M
value corresponding to the minimum SD value is chosen as
the system composite order with the 9th dimension MFCCs,
the speaker system has the highest recognition rate. The
number of correctly identified speakers is 163, and the recog-
nition rate is 97.02%. The recognition rate using the 4th and
18th dimension MFCCs is slightly lower at approximately
95%, and the difference between them is small. The 23rd

dimensionMFCCs yield the lowest recognition rate, however,
the recognition rate is still above 90%. Therefore, we select
the 9th dimension MFCCs as the representative feature for
calculating the SD value and the adaptive M value.

B. RE-EVALUATION ADAPTIVE OPTIMIZATION
In this section, the optimal number of re-evaluations of the
initial model in HMM training is discussed. First, suppose the
number of observation states in the HMMmodel isM =3 and
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FIGURE 5. Relationship between the number of re-evaluations and
speaker recognition rate.

the number of hidden states is N . The initial model uses the
segmentation k-means algorithm [12].
In this study, we calculated the system identification for

different number of re-evaluations of the initial model with
respect to the number of hidden states N =1, 2, 3, and
4, respectively. The results are shown in Fig. 5, where the
horizontal axis represents the number of re-evaluations, and
the vertical axis represents the recognition rate of the system.

From Fig. 5, the following conclusions can be made:
(1).When the number of hidden states is one, as the number

of revaluation initial models increases, the recognition rate of
the system decreases.

(2). When N = 2 and N = 3, the two curves vary in a
similar pattern: As the number of re-evaluations increases,
the recognition rate of the system gradually increases from
approximately 70%, and finally stabilizes between 95%
and 97%.

(3). When the number of hidden states is N = 4, the recog-
nition rate of the system is rapidly increased from 76%
to 97% when the number of re-evaluations increases from
one to five. After that, the recognition rate stabilized at
approximately 98%.

In a word, compared to the number of re-evaluations, the
number of hidden states does not influence the recognition
rate very much, especially when N is greater than 2. The
recognition rate when N is equal to 2 to 4 is becoming stable
with increasing of the number of re-evaluations. Theoreti-
cally, the recognition rate could be improved if we increase
the number of re-evaluations, however, it will result in a
large computational load. Therefore, an adaptive method to
obtain an appropriate number of re-evaluations is proposed
as follows.

In theory, stabilization of the recognition rate indicates that
the training model has converged. To quantify the relation-
ship between the system recognition rate and the number of
re-evaluations, we set N = 4 and calculate the measurement
probability bj for different number of re-evaluations. Con-
sider b1 as an example. The calculation results are shown
in Fig. 6, where b1 obtained by the linear summation of M
Gaussian functions is nearly stable after ten re-evaluations.

FIGURE 6. Measurement probability under different number of
re-evaluations.

FIGURE 7. Difference of b1 between two consecutive numbers of
re-evaluations.

We can draw the conclusion that the measurement probability
bj is consistent with the law that the system recognition
rate varies with the number of re-evaluations. In this paper,
we adaptively optimize the number of re-evaluations based
on the variation of the curve of the measurement probability
as a quantization criterion.

Theoretically, the optimal number of re-evaluations is
obtained when the curve of the measurement probabil-
ity becomes smooth with increasing of the number of
re-evaluations. Therefore, the optimal number of
re-evaluations is calculated with the following equation,

NREop = argmin
1≤r≤∞

∣∣∣∣∣
N∑
i=1

π ri b
r
i −

N∑
i=1

π r1i b
r−1
i

∣∣∣∣∣ (24)

where NREop is the optimal number of re-evaluations.
In practices, it is not necessary to increase r to an infinite

value due to the result in Fig. 7. In this paper we choose
a threshold ε to evaluate the optimal r with the following
equation.

1b (r) =

∣∣∣∣∣
N∑
i=1

π ri b
r
i −

N∑
i=1

π r1i b
r−1
i

∣∣∣∣∣ (25)
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TABLE 3. Number of re-evaluation and its occurrence number in the
adaptive acquisition process with 168 trained speakers.

where 1b is the distance between two consecutive
re-evaluations.

When 1b is less than ε, the training model is approaching
to converge, and the number of re-evaluations is approxi-
mately equal to the optimal value. Therefore,

NREop ≈ r, if 1b (r) ≤ ε (26)

To verify the proposed acquisition method of adaptive
number of re-evaluations, we calculated the number of
re-evaluations with speech data in the database. First, let
the number of observation states be three, and the number
of hidden states be four. Then, we calculate the number
of re-evaluations and the number of speakers adaptively
re-evaluating their models for corresponding number when
the consecutive measurement probability difference is min-
imum. The experimental result is shown in Table 3, where
135 (37 + 42 + 32 + 24 = 135) of 168 speakers have adap-
tively set the number of re-evaluations to three to six. After
adaptively setting the number of re-evaluations, the number
of speakers correctly identified by the system reaches 166,
and the recognition rate reaches 98.9%.

V. CONCLUSION
In this paper, a quantitative method for adaptively selecting
the optimal composite order and the number of re- evaluations
is proposed based on the detailed theoretical and experimen-
tal analysis of the HMM. For training of the HMM-based
speaker recognition system, the number of observation states
is closely related to the recognition rate, which depends on the
user’s practical experience. Herein, the clustering evaluation
factor SD is introduced, and the relationship between the SD
value, the MFCC dimension, and the system recognition rate
is compared. Then, an acquisition method for the optimal
composite order based on single-dimension MFCC feature
is proposed. Given that the number of re-evaluations of the
initial model directly affect the training speed and recog-
nition accuracy of a speaker recognition system, this paper
compares the impact of the number of re-evaluations on the
system recognition rate by varying the number of hidden
states. According to the theoretical analysis, the mathemat-
ical relationship between the measurement probability and
the number of re-evaluations, as well as number of hidden
states, is established, and an adaptive acquisition method
for the number of re-evaluations of the initial model is pro-
posed. Finally, a series of text-independent speaker recogni-
tion experiments are performed.

The results from these experiments show that the recog-
nition rate with the optimal composite order obtained in this

paper is 97.02%, and the recognition rate with the optimal
number of re-evaluations is 98.9%.

In this paper, in order to validate our proposed method,
series of text-independent speaker recognition experiments
with English speeches are conducted. However, the charac-
teristics of different language speeches may be different, even
though they are from the same speaker. Therefore, different
language speeches should be researched in the future to
improve the robustness of our method. The other possible
research direction is the influence of noises in a practical
environment, especially there are different noises existing in
the training data set and the recognition data set.
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