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ABSTRACT Autonomous driving is one of the most innovative applications nowadays. However,
autonomous driving is still suffering from heavy calculation, high energy consumption and strict real-time
execution constraints. Different from cloud computing, edge computing deploys calculation, storage and
service on the edge of network. It is a better platform to serve efficiency and privacy oriented autonomous
driving service offloading. To this end, we proposed a container-based edge offloading framework for
autonomous driving. This framework builds an Offloading Decision Module, an Offloading Scheduler Mod-
ule and an Edge Offloading Middleware on top of the lightweight virtualization. It provides the abstraction
and management of the execution environment in the granularity of containers on edge. Therefore, it enables
the privacy preserve and resource isolation for autonomous driving execution constraints. Its utility preferable
offloading schedule strategy formalized the multi-application multi-edge nodes mapping problem into a
multiple multidimensional knapsack problem (MMKP) and gave a utility oriented greedy algorithm (GA)
for real-time solving. The experimental results show that the proposed framework has high feasibility and
isolation meanwhile can guarantee millisecond-level autonomous driving offloading on edge.

INDEX TERMS Edge computing, offloading, energy efficient, container, autonomous driving.

I. INTRODUCTION
As a new way of transportation, autonomous driving tech-
nology develops rapidly. Based on the huge volume of sen-
sor data, continuous operations of sensing, perception and
decision making all demand a large amount of calculation.
Such intensive computing brings serious energy consumption
and heat dissipation problem and leads to short battery life.
Meanwhile, most of the autonomous driving applications
are delay sensitive, which require results returned in a very
short time. Therefore, Autonomous Vehicles (AVs) are urgent
for some solutions for both energy and execution efficiency.
In traditional vehicle-cloud network, the tremendous network
delay makes it difficult for autonomous tasks to be completed
in time. As an extension of cloud, Edge Computing extends
computing, storage and sharing capabilities from cloud to
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network edges. Such amore compact end-to-end accessmode
is very suitable for deploying computing migration for those
autonomous driving services with high update frequency, low
service delay and wide service coverage. Edge computing
now turns to be the hope of low-latencywhile energy-efficient
autonomous driving service[1].

Edge computing can provide service offloading and data
provision for autonomous vehicles. Through effective service
scheduling, it can reduce the computation cost of autonomous
vehicles and improve the user experience in driving. But
we must recognize that it is necessary to deal with the
offloading requests in terms of performance independence,
privacy independence and experience independence when
multiple offloading services bursts simultaneously. At the
same time, it must meet the requirements that these indepen-
dences will not hurt the effectiveness of computing offload-
ing. Therefore, it needs a more lightweight solutions rather
than the current virtual machine (VM)-based virtualization
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technology for service offloading. Furthermore, as another
challenge, the orchestration of lightweight virtualized run-
times is needed.

To this end, in this paper, we study the demand of
autonomous driving driven edge computing and propose
a container-based offloading framework on edge. Here,
we apply containers, which are a lightweight virtualization
concept, i.e., less resource and time consuming and look like a
better solution for more interoperable application scheduling
in edge computing. The proposed container-based framework
aims at providing privacy and safety precaution meanwhile
takes application finish time as a constraint condition. The
main contributions of this article are as follows:
• We analyzed the execution pipeline of autonomous driv-
ing and checked its features for computation offload-
ing architectures. With the observation, we proposed a
container-based offloading framework for autonomous
driving on edge. It includes a offloading decision mod-
ule, a offloading scheduler module and a offloadingmid-
dleware to manage the offloading pipeline and resource
allocation for all containers in their entire life cycle. The
use of such framework can construct a dynamic isolated
operating environment for utility maximized but secured
autonomous driving application offloading on edge.

• We model the problem of offloading multiple
applications into edge nodes as a Multiple Multidimen-
sional Knapsack Problem (MMKP) and gave a resource-
constrained offloading utility preferable strategy. It was
implemented into a greedy algorithm forMMKP tomeet
the strict requirement of response delay for autonomous
driving applications.

• We evaluate the performance of proposed framework.
The simulation results demonstrate that: the container
is really a lightweight and secured offloading carrier
on edge for autonomous driving. And the container-
based framework is with less overhead and can realize
autonomous driving computing offloading at millisec-
ond level.

The rest of this paper is organized as follows. In Section II,
the scene of application offloading fromAVs toMEC (Mobile
Edge Computing) nodes is presented. In Section III we stated
the container-based offloading framework. In Section IV
and V, we review the fundamental reason of choosing
Docker for offloading and give the architecture of container-
based offloading. In section VI, we describe the mul-
tiple edge node offloading scheduling. In Sections VII,
we share the detailed experimental methodologies and results
to demonstrate the effectiveness of container-based offload-
ing. Finally, we summarize the related work and concluded
in Section VIII.

II. VISION OF APPLICATION OFFLOADING
FOR AUTONOMOUS DRIVING
The working process of AVs is mainly composed of three
stages: Sensing, Perception and Decision.

(1). In the Sensing stage, AVs collect data through GPS,
IMU, camera and other vehicular sensors, and perform sensor
data pre-processing and sensor fusion.

(2). In the Perception stage, three parts of work need to
be accomplished: localization, object recognition and object
tracking. AVs complete meter-level localization by integrat-
ing GPS and IMU data, and further complete centimeter-level
localization by comparing laser point cloud, camera frame
data and high precision map (HDMap). In object recognition
and tracking, deep learning is used to quickly acquire the
semantics and moving direction of objects in the perceptual
range.

(3). In the Decision stage, AVs combine prediction, path
planning and obstacle avoidance to determine the next action.
Prediction mainly uses a stochastic model to predict the cor-
relation probability of other vehicles’ accessible location set.
In this process, AVs detect obstacles and predict obstacles’
behavior to plan trajectory and complete control operations
like acceleration, deceleration and orientation.

According to the completion time limit, [2] further
divides autonomous driving applications into three cate-
gories: Real-time application, interactive application and aux-
iliary application. For real-time applications, there has a
strict limitation on completion time. Taking SLAM [3] as
an example, in low-speed AVs position updates are usually
carried out every 5 ms. Serious accidents may occur if SLAM
fails to return results within 5 ms. For interactive applica-
tions, its time tolerance is relatively loose. For example,
the tolerable delay time of speech recognition and feature
recognition in low-speed AVs is 100 ms. If its offloading
can be completed in a relatively short time less than 100ms,
the interactive application can be offloaded to edge nodes.
For auxiliary applications, it generally does not have real-
time response requirements and system diagnostics for error
prediction is one case of them. However, such applications
are usually computationally expensive and greatly threaten
battery life. For the purpose of energy saving and battery life
prolonging, it is better to offload this kind of applications to
edge nodes.

With the development of 5G technology, the data transmis-
sion rate between edge nodes and AVs will be much higher.
Lower network latency gives more tolerance to the comple-
tion of offloaded applications. More and more autonomous
driving applications can achieve both execution and energy
efficiency through vehicle-edge collaborative computing.
When multiple applications from multiple autonomous driv-
ing vehicles are offloaded in the same edge node, security
and privacy must be carefully considered. If the offloaded
application is disturbed by other applications or hackers on
the edge node, the wrong results may affect vehicle decision-
making and cause serious accidents. In order to ensure the
safety of AVs, on the one hand, it is necessary to isolate the
operating environment of offloaded applications and improve
its ability to suppress malicious acts. On the other hand, data
isolation should be guaranteed to prevent a large amount of
users’ privacy information from being illegally acquired.
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FIGURE 1. Edge-AVs coworking scene.

Thus, we can get an envision in Figure 1 that multiple edge
nodes are located on the RAN (Radio Access Network) side
and there are a lot of applications from nearby AVs that can be
offloaded to them. An edge node can serve multiple vehicles
at one time and a vehicle can offload multiple applications to
different edge nodes. Such application offloading can effec-
tively alleviate the energy consumption and heat dissipation
problems of AVs. To this end, on one hand, the resource
utilization efficiency of multiple edge nodes should be max-
imized to meet the requirements of low latency and high
security of autonomous driving. On the other hand, during
offloading, multiple offloaded applications should be oper-
ating environment isolated and service data isolated to meet
the high security and privacy requirements of autonomous
driving.

III. CONTAINER BASED EDGE OFFLOADING
FRAMEWORK
Edge computing is pushing computing applications, data,
and services away from centralized cloud data center archi-
tectures to the edges of the underlying network. It is very
suitable to deploy computation and data provision related
services close to users so as to improve the user experience in
dedicated scenarios.

The challenge of computing offloading for autonomous
driving in Edge is to meet its requirements in security, pri-
vacy and efficiency at the same time. Virtualization is an
answer to the need for scheduling offloading services as
manageable but independent units. The evolution of virtual-
ization has improved multi-tenancy capabilities and resulted
container techniques leads to more lightweight solutions.
To this end, we proposed a container-based edge offloading
framework for autonomous driving. Through container-based

light-weight virtualization in edge nodes, the application run-
ning environment can be isolated to provide safer offloading
service for AVs. An offloading scheduling strategy for mul-
tiple edge nodes under resource constraints is proposed to
meet the strict requirement of response delay for autonomous
driving applications.

As shown in Figure 2, there are three agents in the proposed
framework: AVs, Edge Servers and a Node Coordinator.
Offloading Decision Module locates in AVs, which

are used to decide whether to offload services or not.
Autonomous driving applications can be divided into three
types: real-time applications, interactive applications and
auxiliary applications. Offloading decision is made based
on the application type and other concerns like data trans-
mission, calculation load, network speed, etc. Detail of the
offloading decision algorithm is not discussed in this paper.
The existing decision theory [4]–[6] is mature enough that
it can be directly applied in the decision of offloadable
autonomous driving applications. We just need to guarantee
that the offloading decision module will follow three condi-
tions below to do the computing offloading:

(1). The residual computing power of edge servers can
support the offloaded application return the results within the
limited time.

(2). The energy consumption for computing offloading is
less than that for vehicular execution.

(3). The remaining memory capacity of edge servers can
meet the memory requirement of the offloaded application.
Node Coordinator manages multiple edge servers within

a valid scope. It monitors the status of multiple edge servers
through a service management module, updates the health
status and residual resources of edge servers in real-time,
schedules multiple target offload edge nodes under resource
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FIGURE 2. Container-based autonomous driving computing offloading framework.

constraints. Through the offloading scheduler module by
using the utility maximized scheduling strategy, the opti-
mal offloading targets are selected out and the connections
between Edge servers and AVs are established.
Offloading Service Middleware is deployed in edge

servers, which can quickly respond to service offloading
dispatch. The middleware uses containers to isolate the run-
ning environment, application data and hardware resources
to realize the security of offloaded applications. The middle-
ware also can flexibly change containers’ resources provision
according to the requirements of offloaded applications to
ensure the execution efficiency.

In order to speed up response time and lower transmission
cost, it is preferable to offload applications to the nearest
edge server. AVs first obtain the status of such the nearest
edge server to check whether its offloading requirements
can be satisfied. If so, the nearest edge server is directly
selected as an offloading target. There is no need to initiate a
request to Node Coordinator to schedule multiple candidate
edge nodes. If not, the AVs send an offloading schedule
request to Node Coordinator and wait to be dispatched to
another appropriate edge server. The selected edge server
uses a Docker container to visualize the environment for
each offloaded application and returns the result to AVs after
offloading completes. So, it can realize the isolation between
applications.

IV. USING DOCKER FOR OFFLOADING
Existing computing offloading frameworks can be divided
into two categories. One kind framework provides fine-
grained computing offloading services based on remote code

execution, which can achieve method-level offloading, such
asMAUI, a system based on.NET execution environment [7].
Another kind of offloading framework builds VM (Virtual
Machine) on the server-side. Each VM has its own virtual-
ized hardware and OS. It is applicable for most program-
ming languages and execution environments and can support
application-level coarse-grained offloading. The cloudlet sys-
tem [8] on edge is its typical implementation.

In order to meet both the safety and response time require-
ments of autonomous driving applications at the same time,
the container-based solution turns to be the optimal choice
for offloading. As shown in Figure 3., Containers are much
lighterweight than VMs. Container images can be built sim-
ply by packaging application code, task dependencies, and
environment profiles in an image copy. The startup of a con-
tainer is also faster than VM. Recent Linux distributions–part
of the Linux container project LXC–provide kernel mecha-
nisms named namespaces and cgroups to isolate processes
on a shared operating system [10]:

Namespace isolation enables the isolations of groups of
processes. This ensures that they cannot sense the resources
in other groups. Different isolating kernel and version iden-
tifiers own their dedicated namespaces for process isolation,
network interfaces, access to inter-process communication,
mount-points.

cgroups(control groups) use limit enforcement, account-
ing and isolation manage to limit the resource access for
process groups, e.g., limiting the memory available to a spe-
cific container. This allows better isolation between isolated
applications on a host. This also restricts the containers in
multi-tenant host environments.
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FIGURE 3. Comparisons between containers and VMs.

FIGURE 4. Total energy saving made by three scheduling.

With this observation, in this paper, we use Docker [9] as
the container engine for offloading isolation. Docker builds
on top of Linux LXC techniques and now is the most popular
container solution for illustrating containerization. Therefore,
Docker is no doubt the optimal one to build a light-weight
offloading service and it can better meet the requirements in
autonomous driving offloading scenarios.

V. CONTAINER-BASED EDGE OFFLOADING
MIDDLEWARE
As shown in Figure 4, the container-based Edge Offloading
Middleware includes a Message Processing Layer, an Image
Manager, a Container Manager and a Resource Manager.
These modules are built on top of the Docker Engine,
which provides interfaces for the inter-operations between
modules. Message Processing Layer takes care of offload-
ing requests receive, signaling interaction, data transmission
and so on. Image Manager focuses on management and
update of local Docker images. Container Manager is used
to create and destroy Docker containers, meanwhile man-
ages the running status of containers. Resource Manager is
used to manage the available resources in the server and
configure resource limitation parameters for each container.

FIGURE 5. Image manager module.

After receiving an offloading request, Message Processing
Layer goes through identification and authentication for vehi-
cles requesting offloading by signaling interactions between
AVs and target edge nodes. After that, the category of to-be-
offloaded applications and their execution data will be sent
out from AVs. Image Manager and Container Manager set
up corresponding containers by container initialization and
image loading. Meanwhile, Resource Manager will allocate
some amount of hardware resources to the created contain-
ers according to corresponding resource limits. After these
operations, the container-based edge node starts to serve
computing offloading. The result will be sent back to AVs
after execution on edge is completed.

A. IMAGE MANAGER
As shown in Figure 5, the central cloud maintains a Docker
image repository to store audited images written by develop-
ers. The layered nature of Docker images allows developers
to create new images based on existing ones. When multiple
containers are created based on the same image, each con-
tainer only needs to add a writable container layer on top of
the basis image, and multiple containers can share all layers
within the image. Thus, newly created containers do not have
to copy the contents in the image. this feature reduces the cost
of container creation and saves the image storage space on the
local edge node.

Image Manager manages local images and periodically
pulling images update from the central cloud image reposi-
tory. Image Manager selects the appropriate image from the
local list according to the category of to-be-offloaded appli-
cation, and then moves to container initialization. Container
Manager initializes the container and loads the program and
all required dependencies. AVs do not need to upload its
executable files and related dependencies, but only needs
to provide application category and execution data, thus the
amount of data transmission can be greatly cut down.
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FIGURE 6. Pre-run containers strategy.

B. CONTAINER MANAGER
The main work of the Container Manager is to create
and destroy containers, meanwhile manage the status of
containers in operation. The Docker Engine already provides
corresponding interfaces for these operations. It is known that
container creation speed and boot speed is faster than VM and
can be as fast as second or even millisecond level. How-
ever, in the scenario of computing offloading for autonomous
driving, some interactive applications require much shorter
response time. The delay effect of container creation is really
a concern. In order to meet the real-time offloading require-
ments of interactive applications, we proposed a Pre-Run
container strategy.

As shown in Figure 6, according to the proposed Pre-Run
container strategy, Container Manager Pre-Runs some con-
tainers for selected to-be-offloaded applications and main-
tain them just with a very small amount of computing and
memory share.When an offloading request arrives, Container
Manager selects a Pre-Run container according to the appli-
cation category, and calls Resource Manager to adjust its
resource allocation to start offloading calculation. Containers
implements light-weight isolation therefore there wastes little
computing and memory capacity to maintain such dormant
containers. Besides, multiple containers built with the same
image share all read-only layers that their creation will not
take up additional storage space on edge servers. It can be
concluded that this Pre-Run strategy can create containers in a
quite short time just with a very small cost and it’s suitable for
time-limited application offloading in autonomous driving
scenarios.

C. RESOURCE MANAGER
In autonomous driving scenario, it is very important to
isolate environment and resources for offloaded services.
Resource Manager based on Docker manages kinds of hard-
ware resources including computing units, memory and disk.
If an application in a container requests memory exception-
ally or maliciously, it may occupy a large amount of memory,
leading to memory exhaustion in the edge server. In the

FIGURE 7. Maintenance of computing resource slices.

worst case, it may cause OOM (Out of Memory Exception).
Resource Manager records the amount of memory remaining
in the edge server and then sets up the memory use limits
for each container. Based on such settings, when creating
containers, deleting and adjusting containers, the amount of
remaining memory can be adjusted in time. It can limit the
malicious memory consumption into an isolated container
environment, that misbehavior in using the memory resource
will not impact other offloaded services.

Offloaded applications of AVs need to be completed within
a limited time. When multiple applications compete for com-
puting resources, the finish time of applications running in
the container turns to be unpredictable. It is possible that
applications cannot be completed in a to-be-guaranteed lim-
ited time. In order to realize computing resource management
by the granularity of container, Resource Manager divides
all available computing resources into Ntotal slices and con-
figures quotes for each container. A container’s computa-
tional resource slice Nshare is derived from the following
formula:

Nshare = d
Vcontainer
Vtotal

e
∗Ntotal (1)

Vcontainer is the computing power allocated to the container
and Vtotal is the total computing power of edge server that
can provide for offloading service, which can be obtained
by benchmark profiling. As long as the sum of Nshare values
of all containers is less than Ntotal , the computing power
each container is guaranteed will be no less than Vcontainer ,
even when there is server computing resources contention.
As shown in Figure 7, the Resource Manager maintains the
computing power slices during the entire process and ensures
that each container can have sufficient computing resources
to undertake offloaded service.
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VI. MULTIPLE EDGE NODE OFFLOADING
SCHEDULING
The proposed framework also introduces a Node Coordinator
to deal with the offloading schedule in multiple edge node
scenario. Node Coordinator deploys an offloading scheduler
and a service management module. The service manage-
ment module manages the service status of multiple edge
nodes, including their health status and amount of remain-
ing resources. When an AVs fails to offload to its nearest
edge node, it can request Node Coordinator for larger-wide
offloading target selection. The offloading scheduler will
pick up an appropriate edge node from candidates within
coordination scope and service offloading redirects.

The discussion in this chapter is based on the following
assumptions:

1) It is assumed that the energy consumption generated
by the operations on the on-board computing platform is
known, the amount of memory required for the normal opera-
tion of the application is known, and the computing resources
on the MEC server we are talking about only include
the CPU.

2) It is assumed that the amount of data to be transmitted
of offloading is known, and the data uploading speed and
downloading speed between the vehicle and the MEC server
are known. The network transmission between the vehicle
and the MEC server is relatively stable, and serious network
fluctuation is not considered.

3) It is assumed that the speed of application completion is
directly proportional to the computing power provided by the
MEC server. The overhead of the MEC server system itself
is ignored when switching between multiple cores is ignored.
The container is assumed to have been pre-created, so the cost
of starting the container is not considered.

4) The calculation unloading mode of unmanned vehicles
is coarse-grained unloading, which is divided according to the
application, and the application cannot be divided again.

Symbols used in this section and their meanings are stated
in Table I.

A. SINGLE APPLICATION SCHEDULING
When the nearest edge node fails to take care of AVoffloading
requirement due to insufficient resources, it can ask help from
Node Coordinator. Node Coordinator will choose another
capable edge node by scheduling policy and build the direct
connection for avs and the selected edge node.

Node Coordinator uses six-tuple to organize the infor-
mation necessary for offloading. Such six-tuple is <Tlimit ,
Wtransmit , Wcompute, Ptransform, Elocal , M >. Tlimit refers to
the application completion time limit. Wtransmit refers to the
execution data that needs to be transmitted.Wcompute refers to
the calculation workload in the application. Ptransform refers
to energy consumption in data transmission. Elocal refers to
energy consumption when the application runs in local mode.
M refers to the memory requirements of the application.
A successful computing offloading need to guarantee the

TABLE 1. Symbol for offloading.

following rules and they are also the criterions for offloadable
service selection:

1). The remaining computing resources of the edge node
can make sure application results returned within a time limit.

T
Limit≤Wtransmit

B +
Wtransmit

B
(2)

2). The energy consumed in computing offloading is less
than that for local execution.

Elocal ≤ Ptransform ∗
Wtransmit

B
(3)

3). The remaining memory of the edge node can meet the
execution requirements in terms of memory.

M ≤ RM (4)

Here, RV refers to the remaining computing resources in
the edge server, RM refers to the remaining memory resource
in the edge server, B refers to the bandwidth.

The faster data transmission between vehicle and server,
the less energy vehicle consumes in computing offloading
data in-and-out. Therefore, AVs tend to choose an edge node
with the shortest data transmission time to save more energy.
When the Node Coordinator receives an offloading request,
it filters out q available edge nodes nearby and the set of these
selected servers is J . The selected servers must satisfy the
requirement that energy consumed in offloading is less than
that in local execution and data transmission time is less than
the finish time limit of offloaded application.

∀j ∈ J, Eoffload (j) < Elocal and Ttransmit (j) ≤ Tlimit (5)
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Here, Eoffload (j) refers to the offloading energy cost when
edge node j targeted. Ttransmit (j) refers to the time required
to transmit data to edge node j. Let Uj be the AVs’ utility of
offloading application to edge node j.Uj can be expressed as:

Uj = Elocal − Eoffload (j) (6)

The coordinator needs to select an edge node with the
largest Uj from set J to provide offloading service. The
process is as follows:
a). Order set J according to the ascending order of offload-

ing energy consumption and generate a q-length list:
Eoffload (1)≤ Eoffload (2)≤ . . .≤ Eoffload (q).

b). Traverse the list and check whether the remaining
resources of traversed server j can meet the offload-
ing requirement T

limit≤Wtransmit
Bj

+
Wtransmit

RV j

&&Mmin ≤ RMj,

Mmin is theminimalmemory share. If there exists, jump to
(c. Otherwise, continue traversing. If traversal completes,
jump to (d.

c). Edge node j is selected for service offloading.
d). No edge node was selected. The application will run in

local mode.

B. MULTIPLE APPLICATIONS SCHEDULING
In the previous section, the strategy is made for a single
application schedule. In several cases, there may exist mul-
tiple offloading requests in a very short period of time. For
example, more than one offloading request might be sent out
from several AVs simultaneously, especially in morning and
evening rush hour. In these scenarios, the single application
schedule strategy works quite bad since it does not take the
resources competition between different applicants into con-
sideration. Therefore, it leans to give preference to a specific
application and the efficiency of the other offloading will be
severely hurt. In this section, we will discuss how to schedule
fairly in terms of utility when multiple applications coexist.

Here, we assume the Node Coordinator receives p offload-
ing requests in a very short time. The set of applications
to be offloaded is I and there are q available edge nodes
and J available node servers. Due to the different network
transmission states between AVs and edge nodes, the energy
consumption for AVs offload application into edge server will
be different too.Uij is utility can be obtained if application i
offloaded is to server j, which can be expressed by formula
(7). When Elocal(i) ≤ Eoffload (i, j), we will get a negative uij,
uij ≤0, which indicates offloading application i to server j is
not a profitable solution.

uij = Elocal(i)− Eoffload (i, j) (7)

xij is the indication of whether to offload the application
i to the server j. The value of xij can only be 0 or 1 since
here we already set all offloaded applications are inseparable.
As shown in Formula (8), the total utility U of offloading is
equal to the sum of offloading utility of all applications.

U =
∑

i∈I

∑
j∈J

xijuij (8)

Each edge node has a limited amount of resources for com-
puting andmemory data caching. It is necessary to ensure that
the amount of resources allocated to all offloaded applications
will not greater than the amount of remaining resources of the
server these offloading residents. Thememory requirement of
the application i isMi. The remaining resource of the service
j is RMj. The slice of computing resources required for the
application i to be offloaded on the j server is Nij. Server’s
remaining slice of computing resources is RNj. To fulfill the
limitations above, it must ensure that

∑
i∈I, xijMi ≤RMj and∑

i∈I, xijNij ≤RNj. And Nij can be derived from equation (9).

Nij = d
Vij

Vtotal(j)
e
∗Ntotal(j) (9)

Vij represents the computing power required to offload
application i into server j. Tlimit (i) represents the finish time
limit of application i. Ttransmit (i, j) represents the data trans-
mission time between application i and target offloading
server j. Wcompute(i) represents the calculation workload of
application i. Vtotal(j) represents the total amount of comput-
ing resources of server j. Ntotal(j) represents the total slices of
computing resources of server j.

max U =
∑
i∈I

∑
j∈J

xijuij (10)

s.t. xij ∈ {0, 1} , i ∈ I , j ∈ J (11)∑
j∈J

xij ≤ 1, i ∈ I (12)

∑
i∈I

xijNij ≤ RNj, j ∈ J (13)∑
i∈I

xijMi ≤ RMj, j ∈ J (14)

In summary, the model of multiple applications offloading
by multiple edge servers can be described above. Formula
(10) represents the optimization objective, i.e. Maximizing
the entire offloading utility of all to-be-offloaded applica-
tions. Formula (11) represents that to-be-offloaded appli-
cation is indivisible, either be offloaded completely or run
locally. Formula (12) represents the limits that the to-be-
offloaded application can only be offloaded to one specific
edge node. Formula (13) is a computational resource con-
straint, which means the total slices of computing resource
allocated by the server for offloading cannot be greater than
the remaining computing slices. Formula (14) is memory
constraint, which means the total memory allocated by the
server for offloading should not be greater than the remaining
memory volume.

Each edge server can be considered as a knapsack with dis-
tinct computing resources and memory; each application can
be considered as an itemwith two weights. We can model this
problem as an MMKP (multiple dimensional knapsack prob-
lem). In this problem, if all edge servers have sufficient mem-
ory resources, the problem will be transformed into MKP
(multiple knapsack problem). MKP is the reduction from
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MMKP and MKP is NPC(NP-Complete) problem, so we can
conclude the problem of multiple application offloading on
multiple edge servers is also an NPC problem, which cannot
get an optimal solution in polynomial time.

C. MMKP SOLUTION FOR AUTONOMOUS DRIVING
In the above section, we construct a model for multiple
applications multiple edge servers scheduling, which has
been proved as MMKP. MMKP is essentially a combination
of MDKP (multi-dimensional knapsack problem) and MKP
(multiple knapsack problem), and it is also an NPC problem
that no optimal solution in polynomial time [11].

In the scenario of autonomous driving, the finish time
of application offloading is relatively strict. Even though
the branch-and-bound method can find the global optimal
solution, but its problem solving is too slow [12]. When the
number of offloaded tasks reaches 30, the branch-and-bound
method needs more than 100 seconds to solver. Existing
heuristic algorithms cannot guarantee a feasible solution time
for this problem as well. If the solution of MMKP takes too
much time, offloaded applications will complete overtime
and it is unacceptable especially for autonomous driving
applications. Here, we propose a Greedy Algorithm (GA).
Utility in formula (8) is used as the greedy selection target,
and the global maximum utility value is selected at each
step to try to allocate. GA cannot ensure the global optimal
solution, but it ensures the solution search will finish in time
and the quality of offloading service will not be affected.
GA is designed as follows:

Input: p∗q matrix u, p∗q matrix N , array M , array RN,
array RM
Output: matrix x
1 create p∗q matrix x
2 create list u_list
3 for i← 1 to p do
4 for j← 1 to q do
5 if u[i, j] > 0 do
6 u_list.push([u[i, j], i, j])
7 sort u_list by descending order
8 for elem in u_list do
9 i← elem[1]
10 if app i is solved do
11 continue
12 j← elem[2]
13 // server j lack resources
14 if N [i, j] > RN[j] or M [i] > RM[j] do
15 continue
16 x[i][j]← 1
17 RN[j]← RN[j] - N [i, j]
18 RM[j]← RM[j] - M [i]
19 if all the apps are allocated do
20 break
21 return x

TABLE 2. Resources configure method.

VII. IMPLEMENTATION ON DOCKER
We have implemented a simple version of the proposed
offloading framework by Python. In our design, we use
Docker as a container engine. It uses a predefined Docker
file to construct a Docker image. The way to make different
resource isolation listed in Table 1.We use –memory parame-
ter to limit the memory usage of containers. For CPU shares,
one way is to use –cpus parameters to limit the maximum
number of CPU that can be used by the container. It represents
the CPU usage per unit time. The other is using –cpu-shares
parameter to limit the CPU time ratio that container processes
can access. For GPU shares, we use nvidia-docker to specify
how many GPU block will be dispatched for a container.

In our implementation, the server builds kinds of Docker
images and creates a certain number of Pre-Run containers.
Each Pre-Run container is mounted in different directories
for the purpose of data isolation. With such implementation,
a more isolated envieroment can be created and will be more
adopted for the offloading services dedicated for autonomous
driving applications.

The server provides an HTTP interface to receive service
offloading requests and return corresponding results. The
server chooses a Pre-Run container by application category
then reconfigures its CPU and memory quantum with –
docker-update. All required execution data are stored in
container mount directory, and –docker-exec is called to
perform the actual calculation, and the result is sent back
when the calculation is completed.

VIII. EXPERIMENTS
A. FEASIBILITY OF OFFLOADING FRAMEWORK
In this subsection, we will discuss the feasibility of the
offloading framework in terms of data transmission, container
initialization and workload computing. Their sum-up must be
less than the finish time limit of offloaded application. The
details of edge servers we used are listed in Table 3.

1) DATA TRANSMISSION
With the development of 5G technology, the data transmis-
sion rate will reach more than 10Gbps in the future. Thus,
network delay can be limited in 1ms and data transmission
of MB data will only take a few milliseconds or less [13].
Since we are using containers as offloading runtime, there
already packed a large volume of code/setup data in image
and data transmitted will be further reduced. Network delay
is no longer the bottleneck for computing offloading.
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TABLE 3. Edge server information.

FIGURE 8. Comparisons of computing speed.

TABLE 4. Longest running time by CPU slices.

2) COMPUTING
To prove the feasibility of using Docker container, we com-
pare the performance of tool Sysbench executed in Docker
container mode and physical machine mode. Sysbench is a
cross-platform multi-threaded benchmark testing tool. It can
test the computing power of servers under different workloads
and different thread numbers. As shown in Figure 8, compar-
isons are made when 8 threads are used, and the results data
is an average of 500 times run. It can be seen that containers
can provide computing power very close to that of physical
machines. The overhead container introduced is tolerable for
offloading.

Here, we also give the execution time data, one by using
the cpu-shares parameter and the other using cpus parameter.
Three offloaded applications are with the workload of 50,
100 and 200. We recorded the longest running time of each
application in 20 repeated experiments for both restriction
modes, as shown in Table 4. It can be seen that all the

TABLE 5. Resource usage in pre-run.

TABLE 6. Offloading time comparison.

TABLE 7. Rules of data generation.

applications can return within 60ms and both cpu slices meth-
ods can effectively guarantee the execution speed of offloaded
application. However, using the cpu-shares parameter makes
a shorter finish time due to its flexibility.

3) CONTAINER INITIALIZATION
In order to reduce the delay of container initialization,
the Container Manager Pre-Runs some containers with very
few resources and simply adjust its resources quote when
requests arrive.

Here, we compared Pre-Run strategy with Full-load strate-
gies. Full load is to create and start a new Docker container
from images each time requests arrive. In our test, the Full-
load strategy takes an average of 1.2 seconds to initialize a
container. It is far more exceeds the finish time limit of most
autonomous driving applications. Pre-Run strategy only takes
about 10 ms to initialize the container.

Table 5 shows the CPU and memory usage as the number
of Pre-Run containers increases. It can be seen that a single
Pre-Run container occupies very little resources. When the
number of Pre-Run containers reaches 1000, the CPU occu-
pancy is still less than 1%, the memory occupancy exceeds
1.4G. Maintaining hundreds of Pre-Run containers is not too
stressful for the server.

B. EFFICIENCY OF OFFLOADING FRAMEWORK
We have already implemented a simple version Offload-
ing framework by Python. In this section, we test its
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FIGURE 9. Total energy saving made by three scheduling.

offloading efficiency by using three common applications
in autonomous drivings: data encryption, path planning and
object recognition. Data encryption is implemented by AES,
which is an encryption standardwidely used in theworld [14].
Path planning is implemented by A-star algorithm, which is
a heuristic path planning algorithm with fast solving speed
[15]. Object Recognition is implemented by YOLOv3 [16]
and it uses COCO, an image data set provided by Microsoft
team [17].

In our implementation, the server builds corresponding
Docker images and creates Pre-Run containers for the above
three applications. Each Pre-Run container is mounted in dif-
ferent directories for the purpose of data isolation. The server
provides an HTTP interface to receive service offloading
requests and return corresponding results. Another machine
in LAN is used as a client to send offloading requests to
the server. The transmission rate between client and server
is about 100 Mbps. Through 50 groups of repeated experi-
ments, the average offloading time is shown in table 5. The
data transmission time includes delay for data upload and
download, and the calculation time includes the container
initialization time and actual calculation time.

For data encryption and path planning, its offloading effi-
ciency is very high. It can complete calculation and return
results in 100ms. This response time is short enough to
meet the efficiency requirements of computing offloading in

autonomous driving. But in object recognition, the offload-
ing is inefficient. That because the computing unit in the
server is not powerful enough to run matrix and convolution
operations. If we can well tune the hardware setup in the
server, Yolov3 can be completed in about 20 ms if GPU
introduced [16].

C. OFFLOADING SCHEDULE FOR
MULTIPLE EDGE NODE
Here, we use First Come First Server (FCFS) and Ran-
dom Algorithms (RA) to compare with the Greedy Algo-
rithms (GA). We also use branch and bound (B&B) method
[12] to find out the optimal solution in some combination.
Somemissing of B&B data is due to the long time for solution
search in some large-scale scenarios and not suitable for
performance comparison.

At present, there is no data set for autonomous driv-
ing computing offloading. Therefore, under the background
of 5G transmission, we manually generate data for compar-
ison and the rules for data generation are shown in Table 6.
Utility and computing resource requirements of applications
allocated tomultiple edge servers are calculated based on ran-
domly generated data. Figure 9 shows the total energy saving
made by three scheduling strategies when there deployed 4,
8, 16 and 32 edge servers. In order to ensure the stability
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FIGURE 10. Solution time of three scheduling.

of those results, 200 experiments were repeated and average
data for each combination are obtained. Shown in Figure 8,
it can be seen that when the number of offloading requests is
relatively small, GA is similar to the FCFS in performance,
very close to the optimal results B&B gives. This is because
when there is ample resource each request can be offloaded to
its most ideal edge server with a great chance. However, as the
number of offloading requests increases and the resources of
edge servers reduces, GA still can make better scheduling
decisions due to its consideration of greediness. FCFS and
RA underperform for its blindness.

Figure 10 shows the curve of solution time as the number of
offloading requests increases. 200 experiments were carried
out on different combinations of the number of applications
and edge servers. The maximum finish time of 200 experi-
ments was selected for display.When the scale of the problem
is medium, such as 32 applications and 20 edge servers, GA
can return results within 1ms or millisecond level. But when
the scale of the problem is too large, such as 40 applications
and 128 edge servers, the solution time is close to 10 ms.
10 ms scheduling delay indeed can give a neglect-able impact
on offloading. When the number of edge servers and offload-
ing requests are extremely large, GA is no more an option for
offloading.

IX. RELATED WORK
Autonomous driving research is still in its infancy. There exist
only a few works on discussing how AVs cooperate with
Edge nodes.

OpenVDAP[18]. is a real-world edge computing sys-
tem that is a full-stack edge-based platform including vehi-
cle computing unit, an isolation-supported and security &
privacy-preserved vehicle operation system, an edge-aware
application library, as well as task offloading and schedul-
ing strategy. Reference [19] proposed an infrastructure-based
vehicle control system that shares internal states between
edge and cloud servers, dynamically allocates computational
resources and switches necessary computation on collected
sensors according to network conditions in order to achieve
safe driving. Reference [20] proposed a two-level edge com-
puting architecture for automated driving services in order
to make full use of the intelligence at the wireless edge for
coordinated content delivery.

Edge Computing moves the focus from heavy-weight
data center clouds to more lightweight virtualized resources,
distributed to bring services to the users. Researchers have
identified lightweight virtualization and deploy container
technology to meet the needs. A container is essentially
a packaged self-contained, ready-to-deploy set of parts of
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applications, thatmight be in the form of binaries and libraries
to run the applications [21]. Container tools like Docker are
frameworks built around container engines [22]. Docker has
started to develop its own orchestration solution and Kuber-
netes [23] is another relevant project, but a more comprehen-
sive solution that would address the orchestration of complex
application stacks.

Code and computation offloading techniques formulated
for cloud technologies are now commonly introduced in edge
computing paradigms [24]. CloneCloud [25] and ThinkAir
[26] are two examples application and system virtualization-
based code offloading frameworks. Researchers [27] also
proposed an architecture-aware compiled code offloading
framework by offloading native code. However, such frame-
work is only used for smartphone applications. It made use
of LLVM compiler to generate intermediate code to sup-
port kinds of mobile applications running on heterogeneous
mobile and sever ends. All offloading are compiled by LLVM
back-end compilers into intermediate code binaries for dif-
ferent native hardware at runtime. Researchers [28] present
another framework for pre-compiled vector instruction trans-
lation and offloading in heterogeneous computing architec-
tures. It can get the chance of avoid the execution overhead
of compiled code offloading. It maps and translates ARM
vector intrinsic to x86 vector intrinsic such that an application
programmed for ARM architecture can be executed on the
x86 architecture without any modification. Such mapping
leads to considerate execution efficiency.

We can witness the progress of autonomous driving,
edge computing and computing offloading in their own
fields. We also can validate the truth that applications on
autonomous driving vehicles need a isolated meanwhile
secured environment for real-time workload offloading. Edge
computing shows up as the best solutions. That is the reason
why we look at the insides of container-based offloading by
edge for autonomous driving. That is also the big difference
we can tell from those previous works.

X. CONCLUSION
In order to meet the requirements of efficiency, security
and privacy of autonomous driving., A container-based edge
offloading framework is proposed in this paper. Using this
framework, AVs can offload applications to edge serves with
high isolation and without performance harms. The Edge
Offloading Middleware uses a container Pre-Run strategy
for fast container bootup and dynamic resource management
in category of memory and computing source. Offloading
Scheduler describes the multiple applications multiple edge
nodes schedule as an MMKP problem and proposed a greedy
algorithm for polynomial-time solution search. Experiments
show that the proposed offloading framework can support
millisecond-level computing offloading while guaranteeing
the safety and privacy of AVs. The greedy-based strategy has
less scheduling overhead and can effectively increase the total
utility of edge servers.

REFERENCES
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and

challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
[2] Y. Wang, S. Liu, X. Wu, and W. Shi, ‘‘CAVBench: A benchmark suite

for connected and autonomous vehicles,’’ in Proc. IEEE/ACM Symp. Edge
Comput. (SEC), Oct. 2018, pp. 30–42.

[3] J. Van Brummelen,M. O’Brien, D. Gruyer, and H. Najjaran, ‘‘Autonomous
vehicle perception: The technology of today and tomorrow,’’ Transp.
Res. C, Emerg. Technol., vol. 89, pp. 384–406, Apr. 2018.

[4] M. Kamoun, W. Labidi, and M. Sarkiss, ‘‘Joint resource allocation and
offloading strategies in cloud enabled cellular networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), Jun. 2015, pp. 5529–5534.

[5] W. Labidi, M. Sarkiss, and M. Kamoun, ‘‘Energy-optimal resource
scheduling and computation offloading in small cell networks,’’ in Proc.
22nd Int. Conf. Telecommun. (ICT), Apr. 2015, pp. 313–318.

[6] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

[7] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, ‘‘MAUI: Making smartphones last longer with
code offload,’’ in Proc. 8th Int. Conf. Mobile Syst., Appl., Services
(MobiSys), 2010, pp. 49–62.

[8] Z. Pang, L. Sun, Z.Wang, E. Tian, and S. Yang, ‘‘A survey of cloudlet based
mobile computing,’’ in Proc. Int. Conf. Cloud Comput. Big Data (CCBD),
Nov. 2015, pp. 268–275.

[9] C. Anderson, ‘‘Docker [software engineering],’’ IEEE Softw., vol. 32, no. 3,
p. 102-c3, May 2015.

[10] R. Rosen. Resource Management: Linux Kernel Namespaces and
Cgroups. Accessed: May 2013. [Online]. Available: http://www.haifux.
org/lectures/299/netLec7.pdf

[11] H. Kellerer, U. Pferschy, and D. Pisinger, ‘‘Multidimensional knapsack
problems,’’ in Knapsack Problems. Berlin, Germany: Springer, 2004,
pp. 235–283.

[12] J. Wang, T. Liu, K. Liu, B. Kim, J. Xie, and Z. Han, ‘‘Computation
offloading over fog and cloud using multi-dimensional multiple knap-
sack problem,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–7.

[13] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
‘‘A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,’’ IEEE Access, vol. 6, pp. 3619–3647, 2018.

[14] G. Singh and S. Supriya, ‘‘A study of encryption algorithms (RSA, DES,
3DES andAES) for information security,’’ Int. J. Control Automat., vol. 67,
no. 19, pp. 33–38, Apr. 2013.

[15] F. Duchon̆, A. Babinec, M. Kajan, P. Ben̆o, M. Florek, T. Fico, and
L. Juris̆ica, ‘‘Path planning with modified a star algorithm for a mobile
robot,’’ Procedia Eng., vol. 96, pp. 59–69, Jan. 2014.

[16] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improve-
ment,’’ 2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/abs/
1804.02767

[17] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, Sep. 2014,
pp. 740–755.

[18] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
‘‘OpenVDAP: An open vehicular data analytics platform for CAVs,’’ in
Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 1310–1320.

[19] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, ‘‘Vehicle control sys-
tem coordinated between cloud and mobile edge computing,’’ in Proc.
55th Annu. Conf. Soc. Instrum. Control Eng. Jpn. (SICE), Sep. 2016,
pp. 1122–1127.

[20] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, ‘‘Toward effi-
cient content delivery for automated driving services: An edge computing
solution,’’ IEEE Netw., vol. 32, no. 1, pp. 80–86, Jan. 2018.

[21] S. Soltesz, H. Po’tzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
‘‘Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,’’ ACM SIGOPS Oper. Syst. Rev.,
vol. 41, no. 3, pp. 275–287, 2007.

[22] J. Turnbull. (2014). The Docker Book. [Online]. Available: http://www.
dockerbook.com/

[23] Production-Grade Container Orchestration—Kubernetes. Accessed:
Jul. 4, 2019. [Online]. Available: https://kubernetes.io/

VOLUME 8, 2020 33725



J. Tang et al.: Container Based Edge Offloading Framework for Autonomous Driving

[24] Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,’’ IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[25] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, ‘‘CloneCloud:
Elastic execution between mobile device and cloud,’’ in Proc. 6th Conf.
Comput. Syst., 2011, pp. 301–314.

[26] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 945–953.

[27] G. Lee, H. Park, S. Heo, K.-A. Chang, H. Lee, and H. Kim, ‘‘Architecture-
aware automatic computation offload for native applications,’’ in Proc.
48th Int. Symp. Microarchitecture (MICRO), 2015, pp. 521–532.

[28] J. Shuja, S.Mustafa, R.W.Ahmad, S. A.Madani, A. Gani, andM.K.Khan,
‘‘Analysis of vector code offloading framework in heterogeneous cloud and
edge architectures,’’ IEEE Access, vol. 5, pp. 24542–24554, 2017.

JIE TANG (Member, IEEE) received the B.E.
degree from the University of Defense Tech-
nology, in 2006, and the Ph.D. degree from
the Beijing Institute of Technology, in 2012,
both in computer science. She was a Visiting
Researcher with the Embedded Systems Center,
University of California at Irvine, Irvine, CA,
USA, and a Research Scientist with the Intel
China Runtime Technology Laboratory. She is
currently an Associate Professor with the School

of Computer Science and Engineering, South China University of Tech-
nology, Guangzhou, China. She is mainly doing research on com-
puter architecture, autonomous driving, cloud, and run-time systems.
She is also a Founding Member and the Secretary of the IEEE Com-
puter Society Special Technical Community on Autonomous Driving
Technologies.

RAO YU received the master’s degree in computer
science from the South China University of Tech-
nology, Guangzhou, China. He also received two
Chinese patents in autonomous driving and edge
computing. He is currently a SystemEngineer with
Pony AI., Ltd. His research interests include big
data, cloud computing, and system software stack.

SHAOSHAN LIU (Senior Member, IEEE)
received the Ph.D. degree in computer engineering
from the University of California at Irvine, Irvine,
CA, USA. He is currently a Founder and the CEO
of PerceptIn, a company focusing on providing
visual perception solutions for autonomous robots
and vehicles. Before founding PerceptIn, he was
a Founding Member of Baidu USA, as well as
the Baidu Autonomous Driving Unit, in charge of
system integration of autonomous driving systems.

His researches focus on computer architecture, deep learning infrastructure,
robotics, and autonomous driving. He has published more than 40 high-
quality research articles. He holds more than 150 U.S. international patents
on robotics and autonomous driving, he is also the lead author of the best-
selling textbook Creating Autonomous Vehicle Systems, which is the first
technical overview of autonomous vehicles written for a general computing
and engineering audience. In addition, to bridge communications between
global autonomous driving researchers and practitioners, he co-founded the
IEEE Special Technical Community on Autonomous Driving Technologies
and serves as the Founding Vice President. He is a Senior Member of an
ACM Distinguished Speak and the IEEE Computer Society Distinguished
Speaker.

JEAN-LUC GAUDIOT (Life Fellow, IEEE)
received the Diplôme d’Ingénieur from the École
Supérieure d’Ingénieurs en Electronique et Elec-
trotechnique, Paris, France, in 1976, and the M.S.
and Ph.D. degrees in computer science from the
University of California at Los Angeles, Los
Angeles, CA, USA, in 1977 and 1982, respec-
tively. He was the Chair of the Department, from
2003 to 2009. During his tenure, the department
underwent significant changes. These include the

hiring of 12 new faculty members (three senior professors) and the remark-
able rise in the U.S. News and World Report R©rankings of the Computer
Engineering program from 42 to 28 (46 to 36 for the Electrical Engineering
program). He is currently a Professor of the Electrical Engineering and
Computer Science Department, University of California at Irvine, Irvine,
CA, USA. In 1999, he became a Fellow of the IEEE, For Contributions to the
Programmability and Reliability of Dataflow Architectures. He was elevated
to the rank of AAAS Fellow in 2007, For Distinguished Contributions to the
Design andAnalysis of Highly EfficientMultiprocessor andMemory System
Architectures.

33726 VOLUME 8, 2020


	INTRODUCTION
	VISION OF APPLICATION OFFLOADING FOR AUTONOMOUS DRIVING
	CONTAINER BASED EDGE OFFLOADING FRAMEWORK
	USING DOCKER FOR OFFLOADING
	CONTAINER-BASED EDGE OFFLOADING MIDDLEWARE
	IMAGE MANAGER
	CONTAINER MANAGER
	RESOURCE MANAGER

	MULTIPLE EDGE NODE OFFLOADING SCHEDULING
	SINGLE APPLICATION SCHEDULING
	MULTIPLE APPLICATIONS SCHEDULING
	MMKP SOLUTION FOR AUTONOMOUS DRIVING

	IMPLEMENTATION ON DOCKER
	EXPERIMENTS
	FEASIBILITY OF OFFLOADING FRAMEWORK
	DATA TRANSMISSION
	COMPUTING
	CONTAINER INITIALIZATION

	EFFICIENCY OF OFFLOADING FRAMEWORK
	OFFLOADING SCHEDULE FOR MULTIPLE EDGE NODE

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	JIE TANG
	RAO YU
	SHAOSHAN LIU
	JEAN-LUC GAUDIOT


