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ABSTRACT A dual-purpose algorithm is capable of estimating the principal component and minor
component from input signals by simply switching the sign of some terms in the same learning rule.
Compared with single-purpose algorithms, a dual-purpose algorithm has many advantages. In this paper,
a novel dual-purpose algorithm is proposed based on the study of some existing algorithms. The dynamic
behavior of this dual-purpose algorithm is investigated by the deterministic discrete time method. Some
constraint conditions, which provide a way to choose the initial weight vector and learning factor, are also
derived to guarantee its convergence. Numerical simulation results not only demonstrate the fast convergence
of the proposed algorithm but also demonstrate the correctness of the convergence conditions.

INDEX TERMS Dual-purpose algorithm, principal component analysis, minor component analysis,
dynamic behavior analysis.

I. INTRODUCTION
In the field of signal processing, principal component analysis
(PCA) is a technique that can be performed to estimate the
eigenvector that corresponds to the maximum eigenvalue of
the signal autocorrelation matrix. Minor component analysis
(MCA) can be used to extract the eigenvector that corre-
sponds to the minimum eigenvalue of the signal autocor-
relation matrix [1]. PCA and MCA have been applied in
many areas of signal processing [2]–[4]. Currently, neu-
ral network-based PCA and MCA algorithms are research
hotspots, and many outstanding algorithms have been pro-
posed [5]–[8]. However, these algorithms can perform only
PCA or only MCA. Is it possible to use the same algorithm
to simultaneously implement PCA and MCA by changing
only the plus-minus sign of some terms in one learning rule?
Some investigators have studied this problem and designated
algorithms that can achieve these functions as dual-purpose
algorithms [9].

Relative to the PCA or MCA algorithm with a single
function, the study of a dual-purpose algorithm is signifi-
cant in three aspects [10]: (1) the dual-purpose algorithm
can be applied to both PCA fields and MCA fields, with
a wider range of applications; (2) because the dual-purpose
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algorithm uses different signs on only some terms in its rules
of operation when implementing PCA or MCA, the hardware
cost for algorithms can be reduced; and (3) the study of
the dual-purpose algorithm can interpret the intrinsic link
between PCA and MCA algorithms and thus is of theoretical
importance. Minimal attention has been paid to dual pur-
pose algorithms, and few researchers have examined the con-
vergence speed of existing algorithms [11]–[15]. Therefore,
developing a fast dual purpose algorithm is the aim of this
paper.

Dynamic property analysis, which can describe the move-
ment trajectory of the weight vector of a neural network
during the whole iteration procedure and can help us under-
stand why algorithms can converge to the desired component
after iterations, has become an important aspect of studying
neural network algorithms. In recent years, the determin-
istic discrete time (DDT) analysis method has become the
mainstream method for analyzing the dynamic properties
of algorithms [13], [16], [17]. When the DDT method is
employed, the dynamic property of a weight vector can be
obtained by projecting the weight vector onto all of the
eigenvectors of the autocorrelation matrix and analyzing the
changing laws of these projections. Compared with other
methods, the DDT analysis method can retain the discrete
nature and the dynamic properties of the algorithm [18] and
thus has been favored by many investigators and extensively
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applied in many PCA or MCA algorithms [18]–[20]. Com-
pared with PCA or MCA algorithms, the structure of dual-
purpose algorithms is more complicated, and the difficulty in
analysis increases correspondingly. Therefore, it is necessary
to investigate how to use the DDT method to examine the
dynamic properties of dual-purpose algorithms.

In this study, based on some existing algorithms, we pro-
pose a fast dual-purpose algorithm and analyze its dynamic
properties using the DDT method. This paper is organized as
follows: in the second section, we introduce the symbol usage
rule and describe important symbols; in the third section,
we propose the dual-purpose algorithm; in the fourth section,
we perform a dynamic property analysis of the dual-purpose
algorithm; in the fifth section, we present the experimental
simulation results; and in the sixth section, we summarize our
findings.

II. NOTATIONS AND ACRONYMS
In this paper, unless otherwise noted, symbol naming adheres
to the following rules: matrices are represented by capital
bold-italic letters (e.g., R), vectors are represented by lower-
case bold-italic letters (e.g., ν), and scalars are represented
by lowercase italic letters (e.g., k). The notations of some
important symbols are as follows:
R : autocorrelation matrix of signal
x : input signal vector
w : weight vector of neural network
v : eigenvector of autocorrelation matrix
η : learning factor

III. NOVEL DUAL-PURPOSE ALGORITHM
Assume that the input signal sequence {x(k)| x(k) ∈ Rn×1

}

is a stationary random input signal of dimension n. We then
consider the neural network model with the following form:

y(k) = wT (k)x(k), (k = 0, 1, 2 · · · ) (1)

where y(k) is the output and w(k) is the weight vector of the
neural network. The core step in developing the neural net-
work algorithm is to construct an appropriate weight vector
update rule, which enables the weight vector to converge to
the principal component (PC) or minor component (MC) of
the signal after several iterations.

Among neural network-based algorithms, the Oja algo-
rithm is famous; its updating rule is given by

w(k + 1) = w(k)+ η
[
y(k)x(k)− y2(k)w(k)

]
(2)

where η is the learning factor of the algorithm, which satisfies
0 < η < 1. However, this algorithm can be utilized only
for PCA. By adding a penalty term to (2) and changing the
sign of the learning factor, we propose a novel dual-purpose
algorithm as follows:

w(k + 1) = w(k)± η
[
y(k)x(k)− y2(k)w(k)

+ w(k)
(
wT (k)w(k)

)2
− w(k)

]
(3)

When ‘‘+’’ is used, Eq. (3) is a PCA algorithm; conversely,
when ‘‘− ’’ is used, it is an MCA algorithm. By applying the
conditional expectation factor to Eq. (3) and substituting the
obtained conditional expectation value in the next iteration,
we can obtain the DDT system of Eq. (3) as

w(k + 1) = w(k)± η
[
Rw(k)− wT (k)Rw(k)w(k)

+ w(k)
(
wT (k)w(k)

)2
− w(k)

]
(4)

where R = E[x(k)xT (k)] is the autocorrelation matrix.
Assuming λi(i = 1, 2, · · · , n) and vi are the eigenvalues of
the autocorrelation matrix R and its corresponding eigenvec-
tors, respectively, then vi(i = 1, 2, · · · , n) constitutes a set
of orthogonal bases of the space of Rn×n. For convenience,
we sort the eigenvalues in descending order; i.e.,

λ1 > λ2 > · · · > λn > 0 (5)

Similarly, the eigenvectors are also sorted. According to
matrix theory, any vector in the space of Rn×n can be
expressed as a linear combination of bases. Therefore, w(k)
and Rw(k) can be expressed as

w(k) =
n∑
i=1

zi(k)vi, Rw(k) =
n∑
i=1

λizi(k)vi (6)

where zi(i = 1, 2, · · · , n) represent some constants, the
projection lengths of w(k) on vi(i = 1, 2, · · · , n). Based on
Eqs. (4) and (6), if k ≥ 0, we have

zi(k + 1)=
{
1± η

[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]}
zi(k)

(7)

Based on the nature of the Rayleigh quotient [21],
if w(k) 6= 0, then

0 < λnwT (k)w(k) < wT (k)Rw(k) < λ1wT (k)w(k) (8)

This equation will be extensively applied in the following
proofs.

IV. DYNAMIC PROPERTIES ANALYSIS
Since Algorithm (4) must address the valuation of the learn-
ing factor for the plus-minus sign, we must discuss the
dynamic properties separately for each sign.

A. DYNAMIC PROPERTIES OF PCA ALGORITHM
When (3) takes the ‘‘+’’ sign, it is a PCA algorithm.

w(k + 1) = w(k)+ η
[
Rw(k)− wT (k)Rw(k)w(k)

+ w(k)
(
wT (k)w(k)

)2
− w(k)

]
(9)

Eq. (7) can be expressed as follows:

zi(k + 1) =
{
1+ η

[
λi−wT (k)Rw(k)+ ‖w(k)‖4−1

]}
zi(k)

(10)
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The dynamic property analysis of Algorithm (9) is per-
formed based on the following theorems.
Theorem 1: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)v1 6= 0 and ‖w(0)‖ ≤ 1,
then if k ≥ 0, ‖w(k + 1)‖ < 1+ ηλ1 is always true.

Proof: Please refer to Appendix A.
Lemma 1: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)v1 6= 0 and ‖w(0)‖ ≤ 1;
then, if k ≥ 0, β > 0 is always true, in which

β = 1+ η[λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1] (11)

Proof: Please refer to Appendix B.
Premultiplying Eq. (6) simultaneously with vTi , we have

zi(k) = vTi w(k)(i = 1, 2, · · · , n); i.e., zi(k) can be regarded
as the projection length of wT (k) on vi at the k th iteration.
Given β > 0, zi will not change its sign in the iteration
process. Because wT (0)v1 6= 0, if k ≥ 0, z1(k) 6= 0 is always
true. Thus, Eq. (6) can be decomposed into

w(k) =
n∑
i=1

zi(k)vi = z1(k)v1 +
n∑
i=2

zi(k)vi (12)

The dynamic properties of w(k) are clearly determined by
z1(k)(i = 1, 2, · · · , n). Therefore, we focus on analyzing the
dynamic properties of z1(k)(i = 1, 2, · · · , n) in iterations.
Lemma 2: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)v1 6= 0 and ‖w(0)‖ ≤ 1,
and if k →∞, then lim

k→∞
zi(k) = 0, (i = 2, 3, · · · , n).

Proof: Please see Appendix C.
Lemma 3: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)v1 6= 0 and ‖w(0)‖ ≤ 1,
then if k →∞, lim

k→∞
z1(k) = ±1.

Proof: Please refer to Appendix D.
Theorem 2: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)v1 6= 0 and ‖w(0)‖ ≤ 1,
when k →∞, lim

k→∞
w(k) = ±v1.

Proof: According to Lemma 2, we have

lim
k→∞

zi(k) = 0, (i = 2, 3, · · · , n) (13)

According to Lemma 3, we have

lim
k→∞

z1(k) = ±1 (14)

According to Eq. (6), we have

lim
k→∞

w(k)= lim
k→∞

z1(k)v1+ lim
k→∞

n∑
i=2

zi(k)vi=±v1 (15)

We have accomplished the dynamic property analysis of
the algorithm for the case in which the ‘‘+’’ sign is chosen for
Eq. (3). Next, we will analyze the case in which the ‘‘−’’ sign
is chosen. Since the proof process is similar, we will simplify
the proof process and present only the conclusion.

B. DYNAMIC PROPERTIES OF THE MCA ALGORITHM
When the ‘‘-’’ sign is utilized, (3) is an MCA algorithm.

w(k + 1) = w(k)− η
[
Rw(k)− wT (k)Rw(k)w(k)

+w(k)
(
wT (k)w(k)

)2
− w(k)] (16)

Accordingly, Eq. (7) can be expressed as follows:

zi(k + 1) =
{
1− η

[
λi − wT (k)Rw(k)

+ ‖w(k)‖4 − 1
]}
zi(k) (17)

The dynamic property analysis of Algorithm (16) will be
conducted through two theorems and three lemmas.
Theorem 3: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)vn 6= 0 and ‖w(0)‖ ≤ 1,
then if k ≥ 0, ‖w(k + 1)‖ < 1+ η + ηλ1 is always true.

Proof: Please refer to Appendix E.
Lemma 4: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)vn 6= 0 and ‖w(0)‖ ≤ 1,
then if k ≥ 0, β ′ > 0 is always true, where

β ′ = 1− η
[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
(18)

Proof: Please see Appendix F.
Eq. (6) can be broken down into another form:

w(k) =
n∑
i=1

zi(k)vi =
n−1∑
i=1

zi(k)vi + zn(k)vn (19)

Lemma 5: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the initial-
ization condition satisfies wT (0)vn 6= 0 and ‖w(0)‖ ≤ 1, then
when k →∞, lim

k→∞
zi(k) = 0, (i = 1, 2, 3, · · · , n− 1).

Proof: Please see Appendix G.
Lemma 6: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)vn 6= 0 and ‖w(0)‖ ≤ 1,
then when k →∞, lim

k→∞
zn(k) = ±1.

Proof: Please see Appendix H.
Theorem 4: Assuming η ≤ 0.2 and ηλ1 ≤ 0.2, if the ini-

tialization condition satisfies wT (0)vn 6= 0 and ‖w(0)‖ ≤ 1,
then when k →∞, lim

k→∞
w(k) = ±vn.

Proof: By substituting the conclusions of Lemmas 5 and
6, we have

lim
k→∞

w(k)= lim
k→∞

n−1∑
i=1

zi(k)vi+ lim
k→∞

zn(k)vn=±vn (20)

Therefore, we complete the dynamic property analysis of
the MCA algorithm.
Remark: The DDT system of the proposed algorithm has a

computation complexity of n2 + 4n flops per update, which
is the same as n2 + 4n of the Chen algorithm’s DDT system
[14], and is cheaper than n2 + 8n of the Hasan algorithm’s
DDT system in [15] and n2+5n the projection approximation
subspace tracking with deflation (PASTd) algorithm’s DDT
system in [16]. In addition, the operations involved in (4) are
simple matrix addition and multiplication, which are easy for
the systolic array implementation.
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V. SIMULATION EXPERIMENT
In this section, we verify the performance of the proposed
algorithm through two experiments. In the first, we verify the
algorithm’s ability to extract PC and MC and compare the
results with those of some existing algorithms. In the second
experiment, we examine the dynamic properties of the algo-
rithm in the iterative process. Assume that the autocorrelation
matrix of the input signal is a symmetric positive definite
matrix [22]:

R1

=


7.8465 −1.0608 −0.2722 −0.3463 0.5346
−1.0608 3.2566 0.5156 1.2748 −0.9590
−0.2722 0.5156 4.4051 1.0389 −0.3293
−0.3463 1.2748 1.0389 6.1511 −1.4831
0.5346 −0.9590 −0.3293 −1.4831 3.7119


(21)

The maximum eigenvalue and minimum eigenvalue of the
matrix can be calculated, using MATLAB, as λ1 = 8.8423
and λ5 = 2.4187, respectively, with the following corre-
sponding eigenvectors:

v1 = [−0.7259, 0.3195, 0.2177, 0.4890,−0.2907]T (22)

v5 = [0.1093, 0.8532,−0.0940,−0.0573, 0.4979]T (23)

According to the signal processing theory [23], v1 consti-
tutes the PC of the input signal, and v5 constitutes the MC of
the input signal.

A. ALGORITHM PERFORMANCE COMPARISON
EXPERIMENT
To verify the performance and advantages of the proposed
algorithm, we compare the proposed algorithm with some
existing algorithms, namely, the PASTd dual-purpose algo-
rithm [13], modified novel information criterion (MIC) PCA
algorithm [24] and Feng MCA algorithm [25]. The direction
cosine (DC) values of the weight vector and the PC or MC
in the iterative process are calculated using the following
equation [26]:

DC(k) =
∣∣∣wT (k)vi∣∣∣/‖w(k)‖ · ‖vi‖ (24)

where i = 1, 5. Clearly, when and only when the weight vec-
tor converges to be in line with the direction of the PC or MC,
the DC curve converges to 1.

Fig. 1 shows that after several iterations, the DC curve of
the proposed algorithm converges to unit 1; i.e., the proposed
algorithm can extract the PC of the signal; similarly, Fig. 2
also shows that the proposed algorithm can extract the MC of
the signal. The comparison of the proposed algorithmwith the
existing algorithms indicates that the proposed algorithm out-
performs these existing algorithms in terms of convergence
speed.

B. HIGH-DIMENSIONAL VECTOR EXPERIMENT
This experiment is designed to examine the ability of the
proposed algorithm to address the high-dimensional matrix.

FIGURE 1. Direction cosine curve of PC.

FIGURE 2. Direction cosine curve of MC.

FIGURE 3. DC curve of PCA with high-dimensional matrix.

Consider the 30 × 30 positive symmetric matrix, which
is randomly generated; its largest eigenvalue and small-
est eigenvalue are given by λ′1 = 9.8327 and λ′30 =

1.0795, respectively. The proposed algorithm is also com-
pared with the MIC algorithm, Feng algorithm and PASTd
algorithm.

Fig. 3 and Fig. 4 provide the DC curves of these algo-
rithms for PCA and MCA, respectively. We note that the
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FIGURE 4. DC curve of MCA with high-dimensional matrix.

FIGURE 5. Weight vector dynamic behavior of PCA.

proposed algorithm exhibits excellent performance with the
high-dimensional matrix. For high-dimensional data, how-
ever, the proposed algorithm achieves a faster convergence
speed than the other three PCA or MCA algorithms.

C. DYNAMIC PROPERTIES OF THE ALGORITHM
This experiment was mainly designed to examine the
dynamic behavior of the proposed algorithm in the iterative
process, in which the matrix was employed as the subject,
with the following initialization condition: the learning factor
was set to η = 0.02. The following conditions were satisfied:
η ≤ 0.2 and ηλ1 ≤ 0.2, The initialization weight vector was
randomized with a normalized modulus value of 0.1. In the
experiment, the weight vector w(k) was projected onto the
feature vector vi(i = 1, 2, · · · , 5), i.e.,

zi(k) = wT (k)vi, (i = 1, 2, · · · , 5) (25)

Fig. 5 shows the weight vector component curve obtained
by the PCA algorithm when the initial weight vector
was w0 = [−0.0316, 0.0141, 0.0308, 0.0047, 0.0885]T .
Fig. 6 shows the weight vector component curve obtained
by the MCA algorithm when the initial weight vector was
w(0) = [0.0487, 0.0327,−0.0630, 0.0238,−0.0450]T .

FIGURE 6. Weight vector dynamic behavior of MCA.

As shown in Fig. 5, after numerous iterations, z1
approaches 1, while zi(i = 2, 3, 4, 5) approaches 0, which
is consistent with the results of Lemmas 2 and 3. Similarly,
the dynamic properties of the curve shown in Fig. 6 are
consistent with the conclusions of Lemmas 5 and 6, which
verifies the correctness of the dynamic behavior analysis of
the algorithm.

VI. CONCLUSION
Compared with conventional PCA and MCA algorithms,
the proposed dual-purpose algorithm demonstrates certain
theoretical and application advantages. By studying some
PCA and MCA algorithms, we propose a novel dual-purpose
algorithm and analyze its dynamic properties using the DDT
method. We obtained the initialization condition for ensur-
ing the convergence of the algorithm and verified the per-
formance and correctness of the analysis process via some
numerical experiments, which lays the foundation for the
subsequent application of the algorithm.

APPENDIXES
APPENDIX A
PROOF OF THEOREM 1
Proof: From (9) and (10), we have

‖w(k + 1)‖2

=

n∑
i=1

z2i (k + 1)

=

n∑
i=1

{
1+ η

[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]}2
z2i (k)

≤

n∑
i=1

{
1+ η

[
λ1 − λn ‖w(k)‖2 + ‖w(k)‖4 − 1

]}2
z2i (k)

≤

{
1+ η

[
λ1 − λn ‖w(k)‖2 + ‖w(k)‖4 − 1

]}2
‖w(k)‖2
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≤

{
1+ η

[
‖w(k)‖4 + λ1 − 1

]}2
‖w(k)‖2 (26)

We define a continuous derivable function in the interval
[0, 1] as follows:

f (s) =
{
1+ η

[
s2 + λ1 − 1

]}2
s (27)

The first-order subdivision of this function is

ḟ (s)=
{
1+ (λ1 − 1) η+ηs2

} {
1+ (λ1−1) η + 5ηs2

}
(28)

Based on η ≤ 0.45 and ηλ1 ≤ 0.3, if 0 < s < 1, ḟ (s) > 0
is always true, that is f (s) monotonically increases within the
interval of (0, 1). Therefore, if 0 < s < 1, the following
equation is always true:

f (s) < f (1) = (1+ ηλ1)2 (29)

Thus, if k ≥ 0, then ‖w(k + 1)‖ < 1+ ηλ1 is always true.

APPENDIX B
PROOF OF LEMMA 1
According to Theorem 1, we have ‖w(k)‖ < 1 + ηλ1.
To prove this lemma, we must consider two scenarios.

Scenario 1: 0 < ‖w(k)‖ ≤ 1
In this case, according to Eq. (11), we have

β = 1+ η
[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
> 1− ηλ1 ‖w(k)‖2 + η

(
‖w(k)‖4 − 1

)
> 1− ηλ1 − η > 0.6 > 0 (30)

Scenario 2: 1 < ‖w(k)‖ < 1+ ηλ1 in document
In this case, according to Eq. (11), we have

β = 1+ η
[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
> 1− ηλ1 ‖w(k)‖2 + η

(
‖w(k)‖4 − 1

)
> 1− ηλ1(1+ ηλ1)4

> 0.5853 > 0 (31)

Combining these two scenarios, Lemma 1 is proved.

APPENDIX C
PROOF OF LEMMA 2
If k ≥ 0, the following equation is always true:

1+ η
[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
1+ η

[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
= 1−

η(λ1 − λi)

1+ η
[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

] (32)

The constant θ1 is defined as

θ1 =
η(λ1 − λi)

1+ η
[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

] (33)

Based on Lemma 1 and λ1 > λi, we have θ1 > 0.
Next, we will prove that when the initialization condition is
satisfied, θ1 < 1 is true.

θ1 =
η(λ1 − λi)

1+ η
[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]

<
ηλ1

1+ η
[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
<

ηλ1

1+ ηλ1
(
1− ‖w(k)‖2

)
+ η

(
‖w(k)‖4 − 1

) (34)

If 0 < ‖w(k)‖2 ≤ 1, we have

θ1 <
ηλ1

1+ ηλ1
(
1− ‖w(k)‖2

)
+ η

(
‖w(k)‖4 − 1

)
<

ηλ1

1− η
<

0.2
1− 0.2

= 0.25 < 1 (35)

If 1 < ‖w(k)‖2 < 1+ ηλ1, we have

θ1 <
ηλ1

1+ ηλ1
(
1− ‖w(k)‖2

)
+ η

(
‖w(k)‖4 − 1

)
<

ηλ1

1+ ηλ1
(
1− (1+ ηλ1)2

)
<

0.2

1+ 0.2×
(
1− (1+ 0.2)2

)
= 0.2193 < 1 (36)

Taking Eq. (35)-(36) together, we have 0 < θ1 < 1. Let
θ = 1 − θ1; then, θ is a constant, and 0 < θ < 1 is true.
Based on Eq. (10) and (33), if k ≥ 0, the following is always
true:[
zi(k + 1)
z1(k + 1)

]2
=

{
1+ η

[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
1+ η

[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]}2 [
zi(k)
z1(k)

]2
≤ θ

[
zi(k)
z1(k)

]2
≤ θk+1

[
zi(0)
z1(k)

]2
(37)

where i = 2, 3, · · · , n. Because 0 < θ < 1, if k → ∞,
we have

lim
k→∞

zi(k)
z1(k)

= 0 (38)

where i = 2, 3, · · · , n. According to Theorem 1, z1(k) is
vertically bounded, and z1(k) 6= 0, lim

k→∞
zi(k) = 0, (i =

2, 3, · · · , n) must be true.

APPENDIX D
PROOF OF LEMMA 3
Based on Lemma 2, if k →∞, the weight vector w(k) must
converge towards the direction of the PC v1. Thus, w(k) =
z1(k)v1 is true.
Based on Eq. (9), we have

z1(k + 1)

=

{
1+ η

[
λ1 − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]}
z1(k)

=

{
1+ η

[
λ1 − z21(k)λ1 + z

4
1(k)− 1

]}
z1(k)

=

{
1+ η (z1(k)− 1) (z1(k)+ 1)

(
1+ z21(k)− λ1

)}
z1(k)

(39)
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Based on Eq. (39), if k ≥ k0, the following expression is
always true:

z1(k + 1)− 1

=

{
1+ η (z1(k)−1) (z1(k)+ 1)

(
1+z21(k)−λ1

)}
z1(k)−1

= z1(k)−1+ η (z1(k)− 1) (z1(k)+ 1)
(
1+z21(k)−λ1

)
z1(k)

= [z1(k)− 1]
[
1+ η (z1(k)+ 1)

(
1+ z21(k)− λ1

)
z1(k)

]
(40)

Given that

1+ η (z1(k)+ 1)
(
1+ z21(k)− λ1

)
z1(k)

= 1+ η
(
z21(k)+ z1(k)

) (
1+ z21(k)− λ1

)
> 1− ηλ1

(
z21(k)+ z1(k)

)
� 1− ηλ1

(
1+ ηλ1 + (1+ ηλ1)2

)
> 1− 0.2× (1+ 0.2+ (1+ 0.2)2)

= 0.4720 > 0 (41)

Let α = 1 − η(λ1 − 1) (1+ z1(k)) z1(k); then 0 < α < 1
is true. Based on Eqs. (40)-(41), if k ≥ k0, then we have

|z1(k + 1)− 1| = α |z1(k)− 1| (42)

and

|z1(k + 1)− 1|=αk+1|z1(0)−1| ≤ (k + 1)81e−σ (k+1) (43)

where σ = − lnα and 81 = |z1(0)− 1|.
For any given arbitrary small number ε, if K ≥ 1, the

following equation is always true:

82Ke−σK

(1− e−σK )2
≤ ε (44)

where82 =
∣∣η(1+ ηλ1)(2+ ηλ1)(1+ (1+ ηλ1)2 − λ1)

∣∣81.
When k1 > k2 > K , the following is always true:

|z1(k1)− z1(k2)|

=

∣∣∣∣∣∣
k1∑

r=k2

[z1(r + 1)− z1(r)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k1∑

r=k2

{
η (z1(k)− 1) (z1(k)+ 1)

(
1+ z21(k)− λ1

)
z1(r)

}∣∣∣∣∣∣
≤

∣∣∣ηz1(r) (1+ z1(r)) (1+ z21(k)− λ1)∣∣∣ k1∑
r=k2

|z1(r)− 1|

≤

∣∣∣η(1+ ηλ1)(2+ ηλ1)(1+ (1+ ηλ1)2 − λ1)
∣∣∣

(
k1∑

r=k2

|z1(r)− 1|

≤ 82

k1∑
r=k2

re−σ r ≤ 82

+∞∑
r=K

re−σ r

≤ 82Ke−σK
+∞∑
r=0

re−σ (r−1)

≤
82Ke−σK

(1− e−σK )2
≤ ε (45)

Based on Eq. (45), we conclude that z1(k) is a Cauchy
sequence and must converge to a constant value. Let
lim
k→∞

z1(k) = a; then, based on Eq. (39), we have

a =
{
1+ η

[
λ1 − a2λ1 + a4 − 1

]}
a (46)

By solving the above equation, we have a = ±1; i.e.,

lim
k→∞

z1(k) = ±1 (47)

APPENDIX E
PROOF OF THEOREM 3
According to Eqs. (16)-(17), we have

‖w(k + 1)‖2

≤

n∑
i=1

{
1− η

[
λn − λ1 ‖w(k)‖2 + ‖w(k)‖4 − 1

]}2
z2i (k)

≤

{
1+ η

[
λ1 ‖w(k)‖2 + 1

]}2
‖w(k)‖2 (48)

We define a continuous derivable function f (s) ={
1+ η

[
s2 + 1

]}2
swithin the interval of [0, 1] and can deter-

mine that f (s) is monotonically increasing within that interval
through derivation; i.e.,

f (s) < f (1) = (1+ ηλ1 + η)2 (49)

Thus, we conclude that if k ≥ 0, ‖w(k+1)‖ < 1+η+ηλ1
is always true.

APPENDIX F
PROOF OF LEMMA 4
From Theorem 3, we have ‖w(k + 1)‖ < 1 + η + ηλ1.
According to Eq. (18), we have

β ′ = 1− η
[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
> 1− ηλ1 − η ‖w(k)‖4

> 1− ηλ1 − η (1+ η + ηλ1)4

> 1− 0.2− 0.2× (1+ 0.2+ 0.2)4

= 0.0317 > 0 (50)

APPENDIX G
PROOF OF LEMMA 5
If k ≥ 0, the following equation is always true:[
zi(k + 1)
zn(k + 1)

]2
=

{
1− η

[
λi − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]
1− η

[
λn − wT (k)Rw(k)+ ‖w(k)‖4 − 1

]}2 [
zi(k)
zn(k)

]2
=
{
1− θ ′1

}2 [ zi(k)
zn(k)

]2
(51)
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where

θ ′1 =
η(λi − λn)

1− η
[
λn − wT (k)Rw(k)+ ‖w(k)‖4 − 1

] (52)

Based on the initialization condition and Theorem 3,
we have

θ ′1 <
ηλ1

1+ η
(
1− ‖w(k)‖4

)
− ηλn

(
1− ‖w(k)‖2

) (53)

When 0 < ‖w(k)‖2 ≤ 1, we have θ1 < ηλ1/(1− ηλ1) <
1; when 1 < ‖w(k)‖2 < 1+ η + ηλ1, we have

θ1 <
ηλ1

1− η
(
‖w(k)‖4 − 1

) < 0.4633 < 1 (54)

that is, 0 < θ ′1 < 1. Assuming θ ′ = 1− θ ′1, then 0 < θ ′ <

1. Thus, if k ≥ 0, the following expression is always true:[
zi(k + 1)
zn(k + 1)

]2
≤ θ ′

[
zi(k)
zn(k)

]2
≤ · · · ≤ (θ ′)k+1

[
zi(0)
zn(k)

]2
(55)

where i = 1, 2, · · · , n − 1. Given that 0 < θ ′ < 1 and zn(k)
are vertically bounded and zn(k) 6= 0, lim

k→∞
zi(k) = 0 (i =

1, 2, · · · , n− 1) must be true.

APPENDIX H
PROOF OF LEMMA 6
Based on Lemma 5, when k →∞, we have w(k) = zn(k)vn.
According to Eq. (17), we have

zn(k + 1) = {1− η (zn(k)− 1) (zn(k)+ 1)

×

(
1+ z2n(k)− λn

)}
zn(k) (56)

Based on Eq. (56), if k ≥ k0, the following equation is
always true:

zn(k + 1)− 1 = (zn(k)− 1)

×

[
1− ηzn(k) (zn(k)+ 1)

(
1+ z2n(k)− λn

)]
(57)

Given

ηzn(k) (zn(k)+ 1)
(
1+ z2n(k)− λn

)
< η ‖w(k)‖ (‖w(k)‖ + 1)

(
1+ ‖w(k)‖2

)
< 1.9891 < 2 (58)

Assuming α′ = 1 − ηzn(k) (zn(k)+ 1)
(
1+ z2n(k)− λn

)
,

then 0 <
∣∣α′∣∣ < 1. According to Eqs. (57)-(58), if k ≥ k0,

the following expression is always true:

|zn(k + 1)− 1| < |α| |zn(k)− 1|

< αk+1|zn(0)−1|≤ (k + 1)81e−σ (k+1) (59)

where σ ′ = − lnα′ and 8′1 = |zn(0)− 1|.
For any given arbitrary small number ε′, K ≥ 1 is always

true, which renders the following expression true:

8′2Ke
−σ ′K

(1− e−σ ′K )2
≤ ε′ (60)

where 8′2 =
∣∣ηzn(r) (1+ zn(r)) (1+ z2n(k)− λn)∣∣8′1. If

k1 > k2 > K , the following equation is always true:

|zn(k1)− zn(k2)|

=

∣∣∣∣∣∣
k1∑

r=k2

[zn(r + 1)− zn(r)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k1∑

r=k2

{
η (zn(r)− 1) (zn(r)+ 1)

(
λn − 1− z2n(r)

)
zn(r)

}∣∣∣∣∣∣
≤

∣∣∣ηzn(r) (1+ zn(r)) (1+ z2n(k)− λn)∣∣∣ k1∑
r=k2

|zn(r)− 1|

≤ 8′2

k1∑
r=k2

re−σ
′r
≤

8′2Ke
−σ ′K

(1− e−σ ′K )2

≤ ε′ (61)

This equation indicates that zn(k) must converge to a con-
stant (a′). By solving the equation a′ = [1+ η(λ1 − a′2λ1 +
a′4 − 1)]a′, we have a′ = ±1. Thus, lim

k→∞
zn(k) = ±1.
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