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ABSTRACT The discontinuous dynamical behavior of a modified Duffing-Rayleigh system with a piece-
wise quadratic function is studied. The necessary and sufficient conditions for motion switchability at the
velocity boundary are investigated through the theory of discontinuous dynamical systems. Various motions
through the boundary are demonstrated by the parameter maps and coexisting bifurcation diagrams. The
coexistence of an example system under different initial conditions is illustrated by attraction basins, and the
trajectories in phase plane. The periodic and chaotic motions with different mapping structures are analyzed
for a better understanding of the motion switching mechanism. Through Multisim, the circuit experiment
proves the effectiveness of the theoretical analysis.

INDEX TERMS Duffing-Rayleigh oscillator, switching boundary, multistability, coexisting attractors.

I. INTRODUCTION
The Duffing oscillator is a typical nonautonomous system,
which has beenmodeled in various fields of physics, mechan-
ics and engineering. It can exhibit different periodic motions
and chaotic phenomena due to the periodically excitation
[1]–[4]. For instance, the strange attractors of Duffing oscilla-
tor with negative linear stiffness and damping were discussed
through Poincaré map and the positive maximal Lyapunov
exponent [5]. Chaotic attractors of the Duffing parametric
equation under the quasi-periodic perturbation through the
Melnikov method were studied via the homoclinic or het-
eroclinic bifurcation surfaces and phase portraits [6]. The
study on the property of the dynamical Duffing system has
been well served to the applications in engineering. The
new method for state identification of the Duffing oscillator
based on extreme learning machine was proposed to solve
the problem in heavy computation cost and slow convergence
rate [7]. The motion of the Duffing oscillator in different
input states was carried out to obtain better ways of detecting
weak signals in the background of strong noise [8]. The
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damped Duffing oscillator was investigated and used in the
impact load identification method with deep Recurrent Neu-
ral Network [9]. Moreover, the combination of the Duffing
system and other nonlinear systems have attracted increasing
attention due to its rich dynamical behaviors, such as Van Der
Pol-Duffing system [10], Rayleigh-Duffing system [11] and
the memristive Duffing oscillator [12].

The Duffing-related oscillators in the above literatures
belong to smooth dynamical systems, which can exhibit
abundant nonlinear motions. However, non-smooth systems,
more widespread than smooth systems in everyday life, can
describe the actual systems more accurately. For example,
the function in the Duffing-like system as the chaos gener-
ator was studied in detail and the bifurcation analysis was
carried out to illustrate the underlying dynamics [13]. The
Rayleigh-Duffing system, based on the generalized Rayleigh
oscillator [14], was investigated through the fractal basin
boundaries with varying the damping coefficient [15]. The
chaotic dynamical behavior of fractional Duffing-Rayleigh-
like system with an absolute function was discussed through
bifurcation diagrams and phase portraits [16]. The parameter
regions of the modified Duffing-Rayleigh system with an
absolute function under the periodically driven were studied
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through the Melnikov function method [17]. In the non-
smooth systems mentioned above, the dynamics of such
nonlinear systems were often analyzed via Melnikov func-
tion method [18], which provides the necessary conditions
for chaotic motions. However, such studies as the switch-
ing motions of the non-smooth systems have been rarely
reported. The switching theory of flow focusing on the
motion through the boundary was first proposed to present
the necessary and sufficient conditions of the general dis-
continuous boundary, which has been gradually accepted and
improved in recent years [19], [20]. For example, Luo and
Gegg discussed the conditions of stick and non-stick motions
for an oscillator controlled with periodic forcing, and they
presented the analysis of the eigenvalue and periodic motions
[21]. Luo and Thapa investigated the onset and vanishing of
periodic motions on the discontinuity in a simplified brake
system with a periodical excitation [22]. Luo and Huang
analyzed the conditions for switching, grazing and sliding
on the boundary and investigated the periodic and chaotic
motion in the friction-induced, periodically-forced oscillator
[23]. Luo and Connor discussed the dynamical behaviors
of a gear transmission system with possible stick between
two gears, and presented the chaotic and periodic responses
with numerical simulation [24]. Min and Luo discussed the
parameter characteristics for the partial and full chaotic syn-
chronizations of two nonlinear gyroscope systems [25]. Min
and Luo investigated the complex mechanism of projective
synchronization of Chua circuits through the theory of dis-
continuous systems [26]. Chen andMin studied the switching
motions on the displacement boundary in the periodically
forced Duffing system with absolute function [27].

Motivated by the above literature survey, in this paper,
a modified Duffing-Rayleigh system with a piecewise
quadratic function is studied via the theory of discontinuous
dynamical systems. The analytical conditions for periodic
and chaotic motions at the velocity boundary are investigated
for a better understanding of the mechanism of switching
motion. The coexisting bifurcation diagrams and its cor-
responding phase planes are depicted to illustrate the sys-
tem dynamical behaviors. The parameter maps and attractor
basins are employed to explain the extreme sensitivity of
such a nonlinear system. With the basic mappings defined,
the periodic and chaotic responses of the system are presented
through numerical simulation. The effectiveness of the ana-
lyzed model is validated by the circuit experimental results.

II. PROBLEM STATEMENT
In this section, the modified Duffing-Rayleigh system with
a piecewise quadratic function is investigated. Due to the
discontinuous nonlinearity, the phase plane of this system
consists of two domains and a velocity boundary. The pass-
able or grazing conditions of such a system on the boundary
are analyzed and the switching sets are presented.

A. DESCRIPTION OF THE SYSTEM
The nonlinear modified Duffing-Rayleigh system with peri-
odically forcing and a piecewise quadratic function was

proposed by Zhang and Li [17]. The system has a broader
region of chaotic attractor and parameter spaces than the
ordinary Duffing-Rayleigh systems. The governing equation
of such a system is given by

ẍ − ax + bx3 = ε[µ(1− |ẋ|)ẋ + f cosωt] (1)

or {
ẋ = y
ẏ = ax − bx3 + ε[µ(1− |y|)y+ f cosωt]

(2)

where a, b are linear and nonlinear restoring parameters,
f and ω amplitude and frequency of the external force, µ
is the nonlinear damping coefficient,ε a small nonnegative
constant. The system described by (1) or (2) is a non-smooth
system and the total forces at the switching boundary are
discontinuous.

In the phase plane, the state variable vector and the vector
field are given by

x , (x, ẋ) ≡ (x, y)T and F , (y,F)T (3)

where F represents the scalar force.
Two domains and the switching boundary are described as

�1 = {(x, y)|y ∈ (V ,∞)}

�2 = {(x, y)|y ∈ (−∞,V )} (4)

and

∂�αβ =
{
(x, y)|ϕαβ (x, y) ≡ y− V = 0

}
(5)

It should be emphasized that �αβ stands for the boundary
between two connectable domains �α and �β (α, β ∈ {1, 2}
and α 6= β) and V is a constant. The motion in each
domain can be described as a discontinuous switching flow
between the boundary in continuous dynamic systems as
shown in Fig.1, where V = 0, the light gray and dark gray
represent, respectively, the two different domains�1 and�2,
and the dashed line stands for the velocity boundary.

From Luo [20], the dynamical system is described as

ẋ = F(κ)
λ (x, t), (κ, λ ∈ {0, 1, 2}) (6)

where the superscript κ and subscript λ with non-zero values
represent two connectable domains for α, β ∈ {1, 2}, which
means that

F(α)
α (x, t) = (y,Fα(x, t))T in �α(α ∈ {1, 2})

F(β)
α (x, t) = (y,Fβ (x, t))T in �α(α 6= β ∈ {1, 2});

F(0)
0 (x, t) = (V , 0)T on ∂�αβ for stick,

F(0)
0 (x, t) ∈ [F(α)

α (x, t),F(β)
β (x, t)] on ∂�αβ

for non-stick


(7)

Fα(x, t) = a(α)x−b(α)x3+εµy−εµy |y|+εf cosωt (8)

F(α)
α (x, t) is the real vector field in the α-domain, F(β)

α (x, t),
controlled by the vector field in the β-domain, is the fictitious
vector field in the α-domain. F(0)

0 (x, t) is the vector field on
the boundary, and it can induce the discontinuity of the vector
for the whole system. The scalar force in the α-domain is
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FIGURE 1. Domain partitions in phase plane.

Fα(x, t) and the forces in the two domains are expressed by
(8), which includes the linear and nonlinear spring forces,
the nonlinear damping force and the excitation force plus the
friction force.

B. ANALYTICAL CONDITIONS
According to the theory of flow switchability [20], the neces-
sary and sufficient conditions of the flow passing the bound-
ary ∂�αβ with n∂�αβ → �α can be expressed as

G(0,α)(xm, tm−) = nT∂�αβ · F
(α)(xm, tm−) < 0,

G(0,β)(xm, tm+) = nT∂�
αβ
· F(β)(xm, tm+) < 0

}
from �α → �β

G(0,β)(xm, tm−) = nT∂�αβ · F
(β)(xm, tm−) > 0,

G(0,α)(xm, tm+) = nT∂�αβ · F
(α)(xm, tm+) > 0

}
from �β → �α


(9)

for n∂�αβ → �α , where α, β ∈ {1, 2} and α 6= β with

n∂�αβ = ∇ϕαβ = (∂xϕαβ , ∂yϕαβ )T(xm,ym) (10)

where ∇ = (∂x , ∂y)T is the Hamilton operator with ∂x(·) =
∂(·)/∂x and ∂y(·) = ∂(·)/∂y. The switching time tm stands for
the motion on the boundary and tm± = tm ± 0 represents the
motions in domains approaching the boundary, instead of on
the boundary. The switching time tm+ and tm− indicate the
motion just approaching and leaving the boundary.

If the motion in the domain is tangent to the separation
boundary ∂�αβ , the conditions for the grazing motion should
be satisfied with

G(0,α)(xm, tm±) = nT∂�αβ · F
(α)(xm, tm±) = 0,

G(1,α)(xm, tm±) = nT∂�
αβ
· DF(α)(xm, tm±) > 0

}
in domain �α (11)

for n∂�αβ → �α and

G(0,β)(xm, tm±) = nT∂�
αβ
· F(β)(xm, tm∓) = 0,

G(1,β)(xm, tm∓) = nT∂�αβ · DF
(β)(xm, tm∓) < 0

}
in domain �β (12)

The necessary and sufficient conditions for the sliding
motion on the boundary ∂�αβ are given by

G(0,α)(xm, tm−) = nT∂�
αβ
· F(α)(xm, tm−) < 0

G(0,β)(xm, tm+) = nT∂�αβ · F
(β)(xm, tm+) > 0

}
(13)

for n∂�αβ → �α . It should be noted that the conditions
are not valid on the boundary of system (1), and the relative
motions are illustrated in [22], [23].

Using (5) and (10), the normal vector is defined as

n∂�12 = n∂�21 = (0, 1)T (14)

From (14), the normal vector of the velocity boundary
tends to point to domain �1. The zero and first G-function
for α ∈ {1, 2} are

G(0,α)(xm, tm±)=nT∂�
αβ
· F(α)(xm, tm±)=Fα(xm, tm±),

G(1,α)(xm, tm±)=nT∂�
αβ
· DF(α)(xm, tm±)=DFα(xm, tm±)

=∇Fα(x,t) · F(α)(x, t)+ ∂tFα(x, t)|(xm,tm±)


(15)

and

G(0,1)(xm, tm±) = nT∂�12
· F(1)(xm, tm∓) = F1(xm, tm∓)

= ax − bx3 + εµ(1− y)y+ εf cosωt
G(0,2)(xm, tm±) = nT∂�12

· F(2)(xm, tm∓) = F2(xm, tm∓)
= ax − bx3 + εµ(1+ y)y+ εf cosωt

G(1,1)(xm, tm∓) = nT∂�12
· DF(1)(xm, tm∓)

= DF1(xm, tm∓)
= (a− 3bx2)y+ εµ(1− 2y)ẏ− εf ω sinωt

G(1,2)(xm, tm∓) = nT∂�12
· DF(2)(xm, tm∓)

= DF2(xm, tm∓)
= (a− 3bx2)y+ εµ(1+ 2y)ẏ− εf ω sinωt


(16)

From the equations above, the passable conditions of
switching motions through the boundary can be written as

G(0,1)(xm, tm−)=F1(xm, tm−)<0,
G(0,2)(xm, tm+)=F2(xm, tm+)<0

}
from �1→�2 (17)

G(0,1)(xm, tm−)=F1(xm, tm−)>0,
G(0,2)(xm, tm+)=F2(xm, tm+)>0

}
from �2→�1 (18)

and the conditions of the grazing motion to the boundary can
be expressed as

G(0,1)(xm, tm±)=F1(xm, tm−)=0
G(1,1)(xm, tm∓)=DF1(xm, tm−)>0

}
in domain �1 (19)

G(0,2)(xm, tm±)=F2(xm, tm∓)=0
G(1,2)(xm, tm∓)=DF2(xm, tm∓)<0

}
in domain �2 (20)

C. MAPPING STRUCTURES
The mapping structures for the periodic motion are illus-
trated by switching planes and generic mappings to describe
the complex motions of the dynamical system. In phase
plane, a trajectory in �α which starts and ends at the
switching boundary is portrayed in Fig.2. The mappings
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FIGURE 2. Switching planes and mappings.

Pα with the starting and ending points in �α are, respec-
tively, (xk ,V , tk ) and (xk+1,V , tk+1). Considering the veloc-
ity boundary, switching planes are defined as

4+ =
{
(xk , ωtk )|ẋk = V+

}
4− =

{
(xk , ωtk )|ẋk = V−

} } (21)

where V+ = lim
δ→0

(V + δ) and V− = lim
δ→0

(V − δ) with an

arbitrary small δ > 0.
Therefore, the two mappings are expressed as

P1 : 4+→ 4+, P2 : 4−→ 4− (22)

From the relationships between switching planes and map-
pings, it can be concluded that

P1 : (xk ,V+, ωtk )→ (xk+1,V+, ωtk+1)
P2 : (xk ,V−, ωtk )→ (xk+1,V−, ωtk+1)

}
(23)

A generalized mapping structure for a periodic motion with
non-stick can be written as

P =
(
P(km2)2 ◦ P(km1)1

)
◦ . . . ◦

(
P(k12)2 ◦ P(k11)1

)
︸ ︷︷ ︸

m−terms

(24)

where klλ ∈ {0, 1}, and P
(0)
λ = 1, P(klλ)λ = Pλ ◦ P

(klλ−1)
λ

(l ∈ {1, 2, . . . ,m}, λ ∈ {1, 2}).
From (24), the mapping structure of the simplest periodic

motion can be defined as

P21 = P2 ◦ P1 : 4+→ 4− (25)

Considering the equations above, the two mapping struc-
tures can be written as

P1 : (xk ,V+, tk )→ (xk+1,V+, tk+1)
P2 : (xk+1,V−, tk+1)→ (xk+2,V−, tk+2)

}
(26)

Without sliding, the velocity boundary V+ = V− = V
occurs. During N -periods of excitation, for a periodic motion
of yk+2 = Pyk in yk = (xk , ωtk )T , the periodicity of the
periodic motion is given by

xk+2 = xk , ωtk+2 = ωtk + 2Nπ (27)

TABLE 1. Different color regions and the corresponding mapping
structures.

Therefore, the simplest periodic motions can be derived
from (1) as,

f (1)1 (xk , ωtk , xk+1, ωtk+1) = 0
f (1)2 (xk , ωtk , xk+1, ωtk+1) = 0
f (2)1 (xk+1, ωtk+1, xk+2, ωtk+2) = 0
f (2)2 (xk+1, ωtk+1, xk+2, ωtk+2) = 0

 (28)

The periodic motion for the generalized mappings can also
be derived by the same method.

III. DISCONTINUOUS DYNAMICAL BEHAVIORS
In this section, from the passable and grazing conditions
from (17) to (20), the parameter maps, global and local
bifurcation diagrams and attraction basins will be presented,
which can illustrate the coexistence and multistability of the
modified Duffing-Rayleigh system. The coexisting periodic
and chaotic motions are also depicted, based on the theory of
flow switchability, through mapping structures and switching
sections.

A. PARAMETER MAPS
The parameter maps can be used to visually illustrate the peri-
odic and chaotic motions. Numerical simulations, using the
conditions (17)-(20), are carried out through the symplectic
scheme. The results, with the computational error tolerance
10−12, and the initial conditions: (t0, x0, y0) = (0.0, 0.1, 0.1),
(0.0,−0.5, 0.5), are shown in Fig.3, where some discrete
points represent the coexistence of different mapping struc-
tures, and the different color regions and their corresponding
mapping structures are listed in Table 1. From Fig.3, it can be
clearly observed how the changeable motions depend on the
special regions of parameters.

B. BIFURCATION AND COEXISTENCE ATTRACTORS
For the study convenience, the modified Duffing-Rayleigh
system is established with the parameters fixed as a = 1,
b = 1, ε = 0.1, µ = 1.4, ω = 1. The bifurcation diagrams
with varying f can be observed in Fig.4, where the orbits
represent the increasing and decreasing f with the same ini-
tial conditions (t0, x0, y0) = (0.0,−0.5, 0.5), the acronyms
‘PD’, ‘PF’ and ‘SN’ stand for ‘Period-Doubling Bifurcation’,
‘Pitchfork Bifurcation’ and ‘Saddle-Node Bifurcation’. It can
be observed that the system exists complex dynamical behav-
iors with multistability. In Fig.4(a), the Duffing-Rayleigh
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FIGURE 3. Parameter maps: (a) a− f for b = 1, ε = 0.1, µ = 1.4, ω = 1;
(b) µ− f for a = 1,b = 1, ε = 0.1, ω = 1.

FIGURE 4. Bifurcation diagrams of switching displacement on the
boundary with varying amplitude f : (a) f ∈ [0,100]; (b) f ∈ [27,60].

system is firstly changed from period-1 with P21 to chaos
through period doubling bifurcation at f = 25.6, and then
goes back to period-2 with P(21)2 through saddle node bifur-
cation at f = 37.2. After two period doubling bifurcation
at f = 60.0 and f = 56.9, the system turns into chaotic
motion through a series of period doubling bifurcation. Then,
through a saddle node bifurcation at f = 68.3 and a pitch-
fork bifurcation at f = 80.8, the Duffing-Rayleigh system
enters into chaotic motion again. To highlight the coexisting
part of the bifurcation, the bifurcation of f is zoomed to
[27, 60] as shown in Fig.4(b), where the step is 1f = 0.02.
In Fig.4(b), two chaotic motions exist simultaneously for
f ∈ [27.0, 32.1]. From f = 32.01, it is the saddle node
bifurcation that leads the system into period motion, then the
system returns to chaotic motion again through period dou-
bling bifurcation at f = 32.7. After reverse period doubling
bifurcation at f = 35.8, the system goes into periodic motion.
The phase planes are depicted in Fig.5, where the

coexisting period or chaotic behaviors are demonstrated,
and it is relative to the coexisting bifurcation diagrams
in Fig.4 (a) and (b). The coexisting trajectories with the
blue and red cures are symmetric to the origin in phase
planes, with the initial conditions (t0, x0, y0) = (0.0,2.128,-
1.691) and (0.0,−0.018,2.331) in Fig.5 (a), (0.0,1.727,3.841)
and (0.0,2.177, 3.841) in Fig.5 (b), (0.0,1.635,−1.701)
and (0.0,2.925,1.485) in Fig.5 (c), (0.0,3.019,−2.713) and
(0.0,2.698,5.032) in Fig.5 (d), respectively. The specific
coexistence ranges of the amplitude parameter f are listed
in Table 2.

Suppose a = 1, b = 1, ε = 0.1, ω = 1, f = 65,
the global bifurcation diagram of µ for µ ∈ [0, 3.6] with
1µ = 0.002 is shown in Fig.6 (a), and the local bifurcation
diagram for µ ∈ [1.8, 3.6] is shown in Fig.6 (b), where the
coexistence distribution can be clearly observed. The system

FIGURE 5. The coexistence phase planes with a = 1,b = 1, ε = 0.1,
µ = 1.4, ω = 1 and: (a)f = 31.6, with P(21)∞ ; (b)f = 44,with P(21)2
(c) f = 54,with P(21)4 (d)f = 82.5,with P(21)7 .

TABLE 2. Coexistence mapping structures of the ranges of parameter f .

goes into chaos from periodic motion through a saddle node
bifurcation at µ = 0.212. The pitchfork bifurcation happens
at µ = 0.723, which shows that the routes of the damping
parameter µ are complementary in terms of the dynamical
properties. The saddle node bifurcation at µ = 1.165 leads
to the chaotic motion. Finally, the system motion becomes
periodic through the reverse period doubling bifurcations for
µ = 2.070, µ = 2.544.
Fix b = 1, ε = 0.1, µ = 1.4, ω = 1, f = 65 with varying

parameter a, the periodic motion, chaos, as well as coexisting
bifurcation modes can be observed as shown in Fig.7, where
the bifurcation diagram is shown in Fig.7 (a) for a ∈ [0, 4]
with 1a = 0.004. Increasing a, the motion route is from a
series of period-doubling to chaos, and then it diverges to
the end. Decreasing a, the route to chaos is similar to that of
increasing a. In Fig.7 (b), the coexisting bifurcation diagrams
are for a ∈ [0, 0.4] with 1a = 0.0002, where the mapping
structuresP(21)4 withP(21)4 ,P(21)7 withP(21)7 andP(21)∞ with
P(21)∞ are also observed. From Fig.7 (b), the system gets into
chaos through a series of period doubling bifurcations for
a = 0.13, a = 0.21. The coexistence motions of this system
and the corresponding ranges of a and µ are listed in Table 3.
To sum up, the modified Duffing-Rayleigh system is

extremely sensitive to the change of parameter or initial
condition, which means that the rich dynamical behavior can
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FIGURE 6. Bifurcation diagrams of switching displacement with µ:
(a) µ ∈ [0,3.6]; (b) µ ∈ [1.8,3.6].

FIGURE 7. Bifurcation diagrams of switching displacement with a:
(a)a ∈ [0.0,4.0]; (b)a ∈ [0.0,0.4].

TABLE 3. Coexistence mapping structures of the ranges of parameter a
and µ.

be observed by varying parameter or initial condition. All of
the bifurcation diagrams and phase planes can be homolo-
gized with various motion states of parameter mappings in
Fig.3, which are determined by the conditions of grazing and
passable flow, described in (17) - (20).

C. COEXISTENCE AND ATTRACTION BASINS
From the bifurcation diagrams above, it can be concluded that
the system, with the same parameter sets but different initial
conditions, may have multiple states. For the comprehensive
observation of the coexistence of the special parameter value,
attraction basins are used to illustrate the motions with dis-
tinct initial condition.

According to Fig.6 (a) and (b), the coexistence of the
mapping structures P(21)2 with P(21)2 can be observed with
µ = 3, a = 1, b = 1, ε = 0.1, ω = 1, f = 65 as
shown in Fig. 8, where the corresponding attraction basins for
left and right period-2 attractors are depicted in yellow and
green, respectively, and the coexisting trajectories with the
blue and red curves are presented with the initial conditions
(0.0,2.625,−1.401) and (0.0,1.937,4.237) in Fig. 8(c). The
coexistence of the mapping structures P(21)∞ with P(21)∞ ,
with a = 1, b = 1, ε = 0.1, µ = 1.4, ω = 1,

FIGURE 8. Attraction basins and corresponding phase planes :
(a)attractors basin and (c) the coexisting periodic orbits with
a = 1,b = 1, ε = 0.1, µ = 3, ω = 1, f = 65; (b) attractors basin and (d) the
coexisting chaotic attractors with a = 1,b = 1, ε = 0.1, µ = 1.4, ω = 1,
f = 59.4.

f = 59.4, can be seen in Fig.8 (b), where the basins of chaotic
attractors depending on different initial values are portrayed,
with the blue and orange regions representing two symmetry
chaotic attractors. The corresponding phase plane with the
blue and red curves is also depicted with the initial conditions
(0.0,1.668,−1.686) and (0.0,2.065,4.748) in Fig.8 (d), where
the switching flow of the system is passable to the velocity
boundary.

D. SIMULATION RESULTS
For the better understanding of the coexistence of motion
switchability at the velocity boundary, the periodic motions
for the Duffing-Rayleigh system are presented as shown
in Fig.9, where the horizontal dashed line V = 0 is the
velocity boundary. From (16), the switchingG-functionG(0,1)

is equal toG(0,2) at the switching points, marked by white and
green circles, respectively representing P2 switching to P1
and P1 to P2, the gray circular symbol stands for the starting
point.

From the attraction basins and trajectories in phase planes
in Fig.8 (a) and (c), the coexistence of periodic orbits
with the mapping structures in P(21)2 with P(21)2 are pre-
sented with the initial conditions (0.0,2.625,−1.401) and
(0.0,1.937,4.237) in Fig.9 (a) and (b). Note that (16) is
symmetric to the origin in phase planes with respect to the
function |ẋ| ẋ. The coexistence time histories of velocity are
depicted in Fig.9 (c) and (d). Fig.9 (e) and (f) illustrate the
time histories of G-functions, verifying the flow switchabil-
ity of this dynamical system. The G-function for the piece-
wise function is the real flow in the corresponding domains,
which means that the discontinuous flow is switched once
the motion switched. It can be seen from Fig.9 (c) and (e)
that, for the flow switching from domain-2 to domain-1,
the G-functions satisfy G(0,1) > 0 and G(0,2) > 0, and for the
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FIGURE 9. Coexisting periodic motions with the same mapping:
(a)and(b)coexistent trajectories;(c)and(d)velocity time
history;(e)and(f)G-function time history.

flow switching from domain-1 to domain-2, the G-functions
satisfy G(0,1) < 0 and G(0,2) < 0. The behaviors like this are
in consistent with (17) and (18). In one period, the G-function
distribution along with periodical time in Fig.9 (e) and (f)
are symmetrical to the origin, which are corresponding to the
phase planes in Fig.9 (a) and (b).

The coexistence of chaotic attractors with the mapping
structures in P(21)∞ and P(21)∞ is presented with the ini-
tial conditions (0.0,1.668,−1.686) and (0.0,2.065,4.748),
as shown in Fig.10, the parameters of which are chosen
as the same as Fig.8 (b) and (d). The partial trajectories
in phase planes for the coexisting chaotic motion are illus-
trated in Fig.10 (a) and (b) and the time histories of veloc-
ity are presented in Fig.10 (c) and (d). The corresponding
G-function distribution at the switching points versus the
switching displacement are depicted in Fig.10 (e) and (f),
where the force changes along the displacement are also
illustrated. The switching points for G(0,1) and G(0,2) are
represented by the black and red dots in Fig.10 (e) and (f).
Therefore, for both the left and right sides of the switching
displacement, the switching points of motion at the velocity
boundary are passable because of the switching G-functions
G(0,1)

= G(0,2) > 0 for domain-1 and G(0,1)
= G(0,2) < 0

for domain-2, which are also satisfied with the passable con-
ditions given in (17) and (18), and the sliding motion doesn’t
exist for no switching points at the boundary.

FIGURE 10. Coexisting chaotic motions with the mapping structures:
(a) and (b) coexistent trajectories in phase plane; (c) and (d) velocity time
history; (e) and (f) switching G-function distribution.

IV. MULTISIM SIMULATION
The circuit model, using Multisim Simulation 14.0, is estab-
lished for the Duffing-Rayleigh system with typical parame-
ters as shown in Fig.11. From (2), the system circuit equations
are given by

dx
dt
=

1
R1C1

y

dy
dt
= −(

R14
R9

V1 +
R14
R10

(−x)+
R14
R11

x3+
R14
R12

(−y)+
R14
R13

y |y|)

(29)

The designed circuit in Fig.11 includes the integration
of two state variables. The operational amplifiers OPAMP_
3T_VIRTUAL, resistors and capacitors perform the basic
operations of addition, integration and proportion. The non-
linear part in (2) is implemented by two multipliers AD633.
The voltage supplies of active devices are of ±12V and the
gain of multiplier is set as g = 1. The absolute function is
completed by the amplifier, resistors and one diode. Part of
the circuit parameters are R1 = R2 = 1M�, C1 = C2 =

1µF , R3 = R4 = R5 = R6 = R7 = R8 = 10k�.
According to the inverting summing amplifier in (29),

it can be deduced that

a = R14/R10, b = R14/R11, ε = R14/R9
εµ = R14/R12 = R14/R13 (30)
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FIGURE 11. Circuit model for the modified Duffing-Rayleigh System.

FIGURE 12. (a) and (b) Coexisting periodic orbits; (c)and(d) Coexisting
chaotic trajectories.

Therefore, for the typical parameters a = 1, b = 1, ε =
0.1, µ = 3, ω = 1, f = 65, we get R10 = R11 = R14 = 3k�,
R12 = R13 = 10k�,R9 = 30k�. The amplitude and fre-
quency of V1 are set to be 65V and 0.15915HZ respectively.
The simulated phase portraits under different initial condi-
tions are presented in Fig.12 (a) and (b). Similarly, we got
Fig.12 (c) and (d) for a = 1, b = 1, ε = 0.1, µ = 1.4, ω =
1, f = 59.4, R10 = R11 = R14 = 1.4k�,R12 = R13 =
10k�,R9 = 14k�, with the amplitude 59.4V and frequency
0.15915Hz. Comparing curves in Fig.12 with that in Fig.8,
it is obvious that the experiment results from Multisim are
in good consistence with the numerical simulations, which
verify the complicated dynamical phenomena of the modified
Duffing-Rayleigh system.

V. CONCLUSION
In this paper, a periodically forced modified Duffing-
Rayleigh system with a piecewise quadratic function is pre-
sented and discussed through the theory of switching flow,
focusing on the switching behaviors on the boundary between
two adjacent domains. The mapping structures of the system
are investigated and analyzed. Through bifurcation diagrams
and corresponding phase planes, the coexistence and mul-
tistability of such a system are demonstrated. The param-
eter maps and attraction basins illustrate that the dynamic
behaviors of the example system are rich and affected greatly
by both the parameter values and initial conditions. Chaotic
and periodic motions are observed in the switching sections,
which are conducive to a better understanding of the switch-
ing motion mechanism. The coexisting varying attractors are
finally validated by Multisim software.
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