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ABSTRACT The distributed compressive video sensing (DCVS) system combines the advantages of
compressed sensing (CS) and distributed video coding (DVC), suitable for the limited-resource video
sensing and transmission environment. In this paper, we propose a comprehensive high performance DCVS
system. First, we introduce the BM3D-AMP algorithm reconstruct key (K) frames. Second, we propose
a new high efficiency video coding (HEVC) motion estimation (ME) algorithm with motion vector (MV)
prediction method. By integrating the segmentation idea and motion estimation, this algorithm can gets
more accurate side information (SI). Finally, we propose the £; — ¢; minimization model to achieve non-
key (NK) frames joint high-quality reconstruction. We utilize the alternating direction method of multipliers
(ADMM) algorithm to solve it. With the idea of dividing and conquering, the general problem is decomposed
into several smaller pieces. Experimental results demonstrate that the proposed system has significant
improvement over its counterparts.

INDEX TERMS Distributed compressive video sensing, side information, HEVC motion estimation,

{1 — £1 minimization.

I. INTRODUCTION

With the development of Internet of Multimedia Things
(IoMT) and unmanned aerial vehicle (UAV) technology, how
to transmit a large number of video signals quickly and safely
has become a research hotspot. In these cases, the video
channel conditions are asymmetrical and resource environ-
ments are constrained. The widely used video compression
algorithms MPEG-2/4 and h.26x adopt the ideas of nonlinear
compression and linear decompression, which bring great
pressure to the encoding end [1], [2]. Therefore, the tra-
ditional video coding technology is not suitable for these
applications, and it is necessary to seek for a new coding
compression method.
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Distributed video coding (DVC) [3] has good noise
immunity and low coding complexity. Through “intra-frame
encoding and inter-frame decoding”, the system implements
efficient compression on encoding side and relatively high-
quality reconstruction on decoding side. Compared with the
traditional method, such as the video decoding code standard
H.264 [4], the workload of the encoding end is transferred
to the decoding end. In order to further improve the rate
distortion (RD) performance and coding efficiency in DVC,
anew decoder is proposed in [5]. The decoder can recursively
carry out the decoding process on the augmented factor graph,
and in each frame, the recursive message passing algorithm
is used for decoding the bit-planes.

In 2006, Donoho et al. proposed the theory of compressed
sensing (CS) [6], [7], which means the sparse original sig-
nal can be reconstructed from low-dimensional observations.
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Due to the similarity redundancy of the video frames, video
image data can be regarded as sparse signals, which theo-
retically provides the possibility of entirely refactoring from
the compressed value. However, traditional CS algorithms,
such as convex optimization algorithms, do not make full
use of prior information, resulting in certain deficiencies in
the computational complexity and reconstruction accuracy.
In [8], the authors first combined the CS principle with DVC
scheme, designed the CS-based video coder. Subsequently,
the author in [9] systematically combined CS with DVC,
and proposed the Distributed Compressive Video Sensing
(DCVS) system.

The DCVS system groups the video sequence frames
at the encoding end. Generally, the first frame of group
is considered as key (K) frame, and the rest are set to
non-key (NK) frames. Then the compression processing is
conducted respectively. Compared with traditional coding
methods, the DCVS scheme firstly reduces the complexity
of the encoding. Motion estimation and correlation calcu-
lations between video frames are transfered to the decoder.
Secondly, the encoding end of the DCVS does not need
to encode or propagate the prediction information, which
can bring better anti-noise and fault-tolerance performance.
On the decoding side, the reconstruction K frames are
obtained by compression values and the corresponding CS
reconstruction algorithm. Then the reconstructed one will
be used to provide a side information (SI) for NK frames
reconstruction.

In [9], the authors noted that the side information can be
regarded as the non-key frames with noise, and generated
by the motion compensation interpolation method. On this
basis, the authors in [10] presented an enhanced side infor-
mation algorithm for obtain precise motion vectors (MV) [11]
through log search algorithm. In recent years, the motion esti-
mation algorithms [12] are widely used to generate accurate
SI frames. With the idea of difference fusion and redundant
dictionary, the bidirectional motion estimation (BME) [13],
[14] side information generation algorithm can be effectively
used to reconstruct NK frames. In [15], the initial reconstruc-
tion K frames are used to improve the secondary reconstruc-
tion value. And based on motion estimation, a hypotheses
set acquisition algorithm is proposed to further improve the
overall performance. The author in ref. [16] utilized the
motion similarity of the reconstructed non-key frames, key
frames and the current frame to perform position cross-
reconstruction algorithm. An adaptive prediction scheme is
proposed to create SI. When the motion of the pixel block is
weak, the linear combination of the key frames before and
after the current frame are used as the prediction result, with-
out motion estimation and compensation. In [17], the non-
key frames compression values are used to correct SI errors,
and use the motion compensated frame interpolation (MCFI)
techniques to realize the compromise between computational
complexity and estimation. Moreover, Fowler et al. proposed
the MH-BCS-SPL [18], [19] algorithm, which integrate bidi-
rectional motion estimation and multiple hypothesis (MH)

VOLUME 8, 2020

prediction to generate SI. Based on MH prediction, the re-
weighted residual sparsity (RRS) model [20] was proposed to
further enhances iteratively reconstruction quality. However,
these methods do not fully utilize the motion correction
between the contiguous video frames in time and space
domain.

In order to solve the above questions, we propose a High
Efficiency Video Coding motion estimation (HEVC-ME)
algorithm, with motion vector prediction techniques, make
full use of the motion associations between adjacent video
frames. The high performance motion estimation algorithm
adopts quadtree image partition method and realizes multi-
size estimation. HEVC-ME is the further development of
the advanced video coding standard H.265/HEVC [21], [22].
It incorporates the new division ideas and prediction methods
in motion estimation process. To further improve quality of
the restored video, we introduce the £{ — £ [23] minimization
compression sensing reconstruction algorithm. The model
weight coefficient 8 is dynamically adjusted by the NK
frames compression rate. In other words, the model relies
more on side information at low NK frames compression
rates, and relies more on compressed NK frames at high com-
pression rate. Moreover, we use alternating direction method
of multipliers (ADMM) [24] algorithm to solve this kind of
optimization problem. Through decomposition-coordination
process, the overall issue is divided into multiple small local
pieces that are easy to solve.

This paper was previously presented at the conference [25],
with the following extensions. We propose a comprehen-
sive high-performance video frame reconstruction frame-
work, which outperforms the previous structure in terms
of K and NK reconstruction algorithms. Through the in-
depth analysis of the existed DCVS decoder, we select the
BM3D-AMP algorithm for key frames reconstruction, and
introduce the implementation process and denoising princi-
ple. More importantly, build on the £; — ¢; minimization,
we propose a new non-key frames reconstruction model. The
algorithm can make full use of the side information and
compressed NK frames. With the change of compression
rate, the relative accuracy of the two kinds of information
changes. This algorithm can dynamically adjust the weight
coefficients of information, and lean towards the more one.
In brief, the main contributions of this paper are summarized
as follows:

o We first introduce the BM3D-AMP into DCVS system

for key frames reconstruction.

o We propose the new HEVC-ME algorithm with motion
vector (MV) prediction method to improve the accuracy
of side information.

« Based on ¢; — ¢; minimization, we propose a new NK
frames reconstruction model, which realize the dynamic
reliance on information.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the CS theory and the DCVS sys-
tem framework. The detailed HEVC-ME algorithm and
£1 — £, minimization reconstruction algorithm are presented
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in Section III. In Section IV, we provide the simulation results
to verify the effectiveness of the proposed HEVC-ME and
£1 — £1 minimization algorithms. Conclusions and future
works are given in Section V.

Il. RELATED WORK

In this section, we introduce the basics of the CS theory and
the DCVS system framework, and then briefly describe the
sate-of-art key frames reconstruction algorithm.

A. THE BASIC CS THEORY

According to compressed sensing theory, video image signals
can be sparse represented or approximately sparse repre-
sented in a sparse domain. First, the video signals are splited
to continuous video image. Then these image are expressed as
one-dimensional by signal vectorization treatment, and these
vectors are projected onto an incoherent compression matrix
to obtain the compression value. At the decoding end, with
these CS values, the sparse representation coefficient of the
original signals can be obtained. Finally, the reconstructed
video frames signal is obtained by sparse inverse transform.
The block diagram of the CS system is shown in Fig. 1.

Frame split Vectorization Sensing
Input—| -
V(XX Xy | N = veeX) y=
The Coding End

Transmission

Reconstruction

¥, =65

Frame reorganization N Matrix
V=(X, %, X0 | X, =05,

Output—

The Deconding End

FIGURE 1. Block diagram of the video CS system.

The CS process can be described as follows:
y=®x = Vs = Os, @))

where xyx1 denotes the signals in time domain, ypx1 iS
the compressed result that be transmitted into decoder, and
SN x1 18 the sparse signal reconstruction in the sparse domain.
Dyxy (M K N) is the compression matrix, yxny =
[Wy, ¥y, .-, Wy] is the sparse representation basis, and
® = oW is the sensing matrix. In addition, N is the
dimension of the original vector, and M is the dimension of
compressed elements obtained by sampling.

The essence of the decoding process is calculating N
elements in the sparse representation coefficients s by the
compression result y and the compression matrix ®. Because
M < N, the reconstruction process is a low-dimensional to
high-dimensional process, equivalent to an infinite solution
underdetermined equations:

§ =argmin |s|p, s.t.y= dWVs= Bs. 2)
N

Eq. (2) is a NP-hard problem, then we convert it to /{-norm
problem to solve:

§=argmin|sl|;, s.t.y=dWs= Os. 3)
N
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FIGURE 2. The proposed DCVS framework.

The problem in Eq. (3) can be solved by well-developed
approaches, including the convex optimization algorithms
(such as classical GPSR algorithm [26]) and the greedy
algorithms.

B. THE DCVS SYSTEM FRAMEWORK

The DCVS system introduces the CS theory on the basis of
DVC technology, reducing the complexity and computational
pressure on the encoder side. The encoding end directly com-
presses and samples the signals without any other operations.
The framework of the proposed high-performance DCVS
system is illustrated in Fig. 2. The workflow of DCVS system
can be summarized as follows:

At the encoding end, the video is first divided into frames
of video images, then these frames are gathered together to
form the group of pictures (GOP) frames. The first one of
GOP frame is often considered to be the key frames, and
the others are non-key frames. Video frames in each GOP
are compressed in the order of K frames and NK frames
respectively, and then transmitted to the decoding end through
the channel. We use the scrambled block Hadamard ensemble
(SBHE) matrix as the compression matrix ®, which only
contains 0, +1, —1 three elements. The compression matrix
has universality, ensures the incoherence of video images
and sparse basis. And the Hadamard diagonal structure also
ensures the lowest computational complexity. It should be
noted that during the compression process, the compression
rate of the K frames must be greater than or equal to the NK
frames. And the compression ration is definedas CR = M /N.

At the decoding end, two kinds of frames are respectively
restored. First, K frames are directly obtained according to
the compression value and the corresponding CS reconstruc-
tion algorithm. Then the reconstructed K frames are used to
provide side information. With the prior information frames
and compressed NK frames, we can use £1 — £ minimization
algorithm to reconstruct the NK frames.

Ill. THE PROPOSED HIGH EFFICIENT DCVS FRAMEWORK
In this section, we innovatively propose a efficient DCVS
framework. We mainly focus on three points: how to
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efficient reconstruct K frames, how to produce high-quality
side information and how to optimal combine SI with
compressed NK frames for decoding. For the first ques-
tion, we introduce the BM3D-AMP algorithm for key
frames reconstruction. For the second one, we proposed the
HEVC-ME algorithm, which combines the motion estimation
prediction methods with video coding standard HEVC. For
the last one, we propose the £1—£; minimization compression
sensing algorithm to make high-performance reconstruction.

A. HIGH QUALITY K FRAMES RECONSTRUCTION
ALGORITHM

Under the basic of compression sensing algorithms, we incor-
porate the Block Matching 3D (BM3D) [27] filtering noise
removal model. This model utilizes the non-local self-
similarity of images, uses the similar pixel blocks to get
more accurate information. With the idea of non-local mean,
the BM3D model divides video frames into several overlap-
ping or non-overlapping small blocks. Each block will search
the smallest Euclidean distance as a similar block. Then the
similar pieces are grouped to perform the 3D transformation.
Finally, the reconstructed K frames are obtained through
the collaborative filtering, inverse transformation, coefficient
aggregation and the final estimations.

The filtering process is composed of two phases. First,
we perform hard threshold collaborative filtering on coef-
ficients. Then the wiener filter using the basic estimated
energy spectrum as the real one. Through two phases of filter
estimate, BM3D can better preserves image clarity. The CS
reconstruction model based on BM3D denoising model can
be summed up as algorithm 1:

Algorithm 1 CS Reconstruction Model Based on BM3D
Require: sensing matrix ® = &W, compressed result y,
BM3D denoising model
Ensure: reconstruction video frames X
1: initialize the residuals: 20 = v, XO=0n=0
2n=n+1
3: calculate the current estimate of the signal:ix” <«
n:(OTZ" +a)
4: correct the results: ¢ = STD(x%), x <— Dppy3p(x®, €)
s: update the residual: Z'*! = y — Ox*t! 4+
F(n(®TZT + x1))
6: judge the stop condition
7: return x=W(x)

B. HEVC-ME BASED MV PREDICTION ALGORITHM

In DCVS system, non-key frames are usually compressed
with high compression ratio at the encoding end. So few
transmitted compressed NK frames can not be directly recon-
struction with high quality. The side information algorithms
compensate can greatly solve this question. When the video
sequence motion intensity is large, SI precision is low, the
encoding end needs to transmit more compressed NK frames.
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When SI has a high similarity with the frame to be recon-
structed, the required decoding check value is small, then the
NK frames can be compressed to a great extent. Therefore,
accurate SI generation algorithm can greatly relieve the video
frames compression rate.

Unlike traditional standards, in DCVS, motion estimation
is only used to generate side information at the decoding end.
As a prerequisite for generating side information, the motion
vector (MV) is a very important parameter that determines
the effect of motion estimation. Through bidirectional motion
compensation, accurate MV can obtain more precise side
information. H.265/HEVC video coding standard has made
many improvements to the motion estimation part of pre-
dictive coding. H.265 still use block-based hybrid coding
framework. With the quadtree method, coding block partition
structure ensures the prediction of multi-size. Based on the
new idea of H.265/HEVC in motion estimation, we propose
an HEVC-ME side information generation algorithm in this
section. We introduce the motion vector prediction to deter-
mine the accurate search starting point and range, realize the
effective combination of HEVC and MV.

In the H.265/HEVC standard, one video frame is firstly
divided into a number of no overlapping large coding units
(LCU), with the size of 64x64. Each LCU is recursively
divided into multiple coding units (CU) of size 32 x 32,
16 x 16 and 8 x 8 by quadtree method. The optimal division
scheme is made according to the charateristics of image.
As indicated in Fig.3 (a), small CUs partitions are applied
to predict the detail regions with large luminance variations,
and large CUs are used to predict areas with small background
changes. Specifically, each CU performs a full search match
in reference frame. Each LCU first using the coordinate posi-
tion in the reference frame as the search center, searches in up,
down, left, and right directions. Then the optimal matching

B\ PEG4
BWORLD

WORLD

(a) CU division of different characteristic regions

1 64%64

9
12 1314
1516 o 31415\ 1\ 88

(b) Specific quadtree partition map

(S}

w

FIGURE 3. HEVC quadtree partition CU schematic.
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coding unit with the smallest SATD function value is selected.
Then each LCU is divided into four coding units by quadtree
method, with 32x32 size. Repeat the search method, sum
the four optimal matches values and compare with LCU.
If the SATD value of LCU scheme is smaller, it will be pre-
served. Otherwise, the divided scheme will be accepted. Each
32x32 coding unit is recursively divided into 16 x 16, 8 x8 to
judgment. The specific quadtree process is shown in Fig.3 (b).

The essence of motion estimation is to find the best match-
ing block for each current frame pixel block in the reference
frame, so the search result of block matching directly deter-
mines the effect of motion estimation. Motion estimation
in traditional video coding standards usually occurs at the
encoding end, and the effect of it is usually measured by the
rate distortion (RD) function. That mean RD function needs
to maintain a compromise between the subjective quality and
the compressed. The DCVS system transfer motion estima-
tion to the decoding end, and only to minimize the distortion
of the predicted frame. Therefore, the rate-distortion function
can be replaced by the cost function. The widely used sum
of absolute differences (SAD) function function calculates
and selects the smallest distance between the current pixel
block and the reference frame. Based on this, the standard
H.265/HEVC proposed the SATD function as judge means.
The SATD function can simply expressed as the sum of
absolute values after hadamard transformation. The algo-
rithm performs hadamard transformation on the matrix Q
obtained by the difference between the matching block found
in the reference and the current block A, just multiplying the
hadamard matrix left and right of Q. The sum of absolute
values of the elements in matrix HDH is used as the basis
for similarity determining.

Block matching search is another important step in motion
estimation. The first step of block matching search is to
determine the starting point in the reference frame and set
the search range according to its location. Therefore, different
starting points correspond to different search scopes, and
greatly affects the search performance. To obtain more accu-
rate SI, we propose the motion vector prediction algorithm,
which hugely exploits the correlation of motion between
adjacent coding units. This algorithm first establishes the
candidate list for the current coding unit, with the MV of
these nearby CU that have obtained the prediction results.
By traversing the candidate MV and calculating each cost,
the minimum one is selected as the optimal MV. The
schematic diagram of the motion vector prediction algorithm
is shown in Fig. 4. As we can see, the coding unit M,, is the
current CU to be estimated, and the obtained MV from its left,
upper left, upper and upper right are utilized to compensate
the search starting point. Together with the scope determined
by the traditional corresponding method, this results in six
search scopes. Then block matching is performed in six
ranges, and the MV corresponding to the minimum rate-
distortion function value is taken as the optimal match.

After obtaining the motion vector of the current CU,
we obtain the optimal prediction block by bi-direction motion
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FIGURE 4. Motion vector prediction algorithm.

estimation and compensation. Taking GOP= 2 as an exam-
ple, the previous and next of NK frame are K frames, and only
the adjacent two reconstructed K frames exist at the decoding
end. As shown in Fig. 5, the coding unit to be estimated in the
unknown NK (¢) frame is M,,. In the previous frame K (# — 1)
and the next frame K (¢ + 1), the encoding unit with the same
positions are M,,_1 and M, respectively. The coding unit
M,,_1 performs motion estimation in the K (¢ + 1) frame, and
the result deviates from the initial coordinate position by (i, j).
The NK (t) frame is located at the intermediate equidistant
position. According to the proportional scaling property of
MYV, it can be inferred that the M, coding unit will move
to M) in K (+ + 1) frame, with (i/2,j/2) offset. Similarly,
we can obtain the motion vector (i/2, j/2) and the estimated
block M/ through backward motion estimation. By averaging
M), and M/, the final estimation result of one unit can be
obtained. By traversing all the coding units in one video
frame, the predicted one is obtained.

r
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|

K (t+1) frame

NK (t) frame

K (t-1) frame
FIGURE 5. Motion estimation and compensation processes.

The complete process of our proposed HEVC-ME is shown
in Algorithm 2.

C. ¢; — £; MINIMIZATION NK FRAMES
RECONSTRUCTION ALGORITHM

Due to the high power compression of non-key frames under
the DCVS framework, the compressed signal transmitted
to the decoding end is relatively small. It’s not reliable to
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Algorithm 2 HEVC-ME Algorithm
Require: current video frame imgP, reference video frame;
Ensure: motion vector (MV)

1: assume (i, j) as the starting point with a length of CUSize

2: for mn = _% +1to CUZSize +1do
3: Q= imgP(, j) — imgl(i +m, j +n)
5: end for

6: S=min})_S;;

ij
7. MV;; = (@, ))
4

8: Ssum = Z Sn

9: length irr;(?rlease to 2 x CUSize, got Sacusize
10: if (Ssum < S2cuUsize) then

11:  division

12: else

13:  retain

14: end if

15: return The motion vector MV.

directly use the compressed value for reconstruction. In order
to combine the side information with the NK frames com-
pression value effectively, we first introduce the £; — ¢
minimization reconstruction model. And then we focus on the
specific steps of weight coefficient selection and algorithm
implementation.

As described in section II-A, the compressed video frames
can obtain the reconstruction result of original signal by
solving £; norm problem. Assuming that x € R" is an
unknown original sparse signal with s non-zero values, and
the side information w € R" is highly similar to x, which
can be regarded as the prior information of it. We aim to
reconstruct the signal x successfully using the compression
value b = Ax, A is the compression matrix and w is the prior
information. We introducing a function g(-) to characterize
the degree of similarity between the original signal x and the
prior information w, and the more similar they are, the smaller
the value of the function. An additional weight coefficient S is
also introduced, which value depends on the relative accuracy
of the compression signal and the prior information. When the
compression rate of the encoding end is low, the NK frames
existing at the decoding end have less check information and
poor check performance. But the side information obtained
by the HEVC-ME algorithm are more accurate. Therefore,
the reconstruction process should rely more on the informa-
tion provided by the SI frames, and the value of 8 > 1 is
greater than 1. As the compression rate of the NK frames
increase, the compression value of the NK frames obtained
by the decoding end gradually increases. The information
provided by the NK sampling result are equivalent to the
accuracy of the SI frames, i.e. the NK sample value and the
SI are equally important in the reconstruction process, and
B = 1. When the NK frames compression rate continues to
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increase, the compression value at the decoding end are more
reliable than the SI frames, and the 8 value is further reduced.

So the compressed sensing reconstruction problem of joint
prior information can be described as:

minimize ||x|; + Bg(x —w), s.t.Ax =b. O
X

The equation can be further modified to:

minimize ||x||; + B ||lx — w||;, s.t.Ax =b. (@)
X

We use alternating direction method of multipliers
(ADMM) algorithm to solve Eq. (5). Through the decom-
position and coordination process, the ADMM algorithm
decomposes large global problem into several small local
sub-problems that are easy to be solved. And the solution of
the global problem is obtained by coordinating the solution of
each sub-problem. First, we convert Eq. (5) as two problems:

minimize f (x) 4+ g(y), s.t.x =y, (6)
x,y
where

S =lxlly +Bllx —wly,
%@)2{0 xes

8(Y) = ix:p=ax(y),

+oo x ¢S

Then the augmented Lagrangian form can written as:
P
Lo, y; ) =f0) +80) + 4" (= + 2 Ix =yI*, (D

where X is the Lagrange coefficients, p is a penalty factor that
usually takes a value of 1. The ADMM algorithm constantly
updates the value of x,y, A by iterating over the solution.
The interation is stopped until the optimization condition and
the stop criterion are satisfied, and the optimal solution is
obtained.

In step 2, x* is updated by assigning each element in the
vector. Let v = AK — pyk, then xH1 = arg min||x||; +

X

Bllx — w1 +vlx+ 8 l|lx|I2. For each element of the vector x,
there is xf“ = arg min|x;| + B|x; — w;| + vix; + %xiz, and its
Xi

value is closely related to the corresponding position pixel
value in side information w. Therefore, x; can be updated
according to the positive and negative of each element in the
side information w and the value of the variable v in each
iteration. We then get:

while W; > 0:
%(—ﬁ—l—vi) vi<—pwi—p—1
wi —pwi—B—1=<vi<—Pwi+p—1
1
xF = —-B-1—-v) —PBwi+B—-1<vi<p-—1
i =1e
0 B—1<vi<p+1
1
;(,34‘1—\/:’) vi>p+1
31311
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Algorithm 3 Video CS Reconstruction Algorithm Based on
£1 — £1 Minimization Model
Require: compression matrix ® = ®W, compression value
b, side information w
Ensure: reconstructed original signal x
I: initialization: A <= 0, p < 1, rprim < 0, Squai < 0,
k<0
2: fix yk, Ak, update xk o x

Bllx —wlly G = py)Tx + §xI)?

3: fix x¥, A, update y* 7 = %(Ak + pxktly L 7
AT(AAT) 1Az — b)

4: update AF : JKFL — Xk 4 pr_ prim

5: update p

6: if ||r_ prim|| >t||s_ dual]|, then

7

8

9

k1 argmin x|, +

P < P
. else
P ﬁ
10: end if
11: if ||r_ prim|| < 1073 or ||s_ dual| < 103 then
12:  stop iteration

13: else

14:  skip back to step 2

15: end if

16: return reconstructed original signal: ¥ <« x*t1, & =

Wx*

while W; < 0,
FB—1=w) vi<—p—1
0 —-B—-1=<vi=-B+1

Xf=13(=B—1-v) —B+1l<vi<—Pwi—p+1
Wi —Pwi+B—1=<vi<—pwi—p+1
LB+1-m) vi > Bwi— B+ 1

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experimental eval-
uations for the proposed high quality DCVS framework.
For evaluating performance of reconstruction K frames,
we compare our approach with two conventional methods: the
GPSR [26] method and the AMP [31] method. For evaluating
performance of generated SI, we compare our approach to
the widely used BME [13] and latest MH-BCS-SPL [18].
For evaluating performance of reconstruction NK frames,
we compare our approach to the state-of-art BM3D-SAPCA-
AMP [28] and the frequently-used BM3D-AMP, GPSR meth-
ods [26]. In Section IV-A, we introduce the configuration and
settings of our experiments. In section IV-B, IV-C and I'V-D,
we compare the performance for K, SI and NK methods,
respectively.

A. CONFIGURATION AND SETTINGS

All experiments are performed on a desktop computer with
Intel core i7-8700K CPU @3.70GHz, 16GB RAM and the
Windows 10 Enterprise 64-bit operating system. In order to
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prove the universality of our method, we select six represen-
tative test video sequences, which contained video frames of
different image resolution and various change degrees. Each
sequence we intercept the first 25 frames, and the size of GOP
is set to 2. For sequence “Akiyo”, we select relatively redun-
dant part with little difference between frames. For sequence
“Bus”, we choose the fast changing segment. The pixels
at same position in adjacent frames are always changing
drastically. And for each frame, the sequence are complicated
and difficult to reconstruct. For sequence ‘“bowing” and
“Foreman”, frames have a varying degree of variation. The
sequence ‘‘Rush-field-cuts” and ‘“Fourpeople” are of high
definition (HD) images. The sparse basis is set to common
DWT transform, and the compression matrix is the SBHE
matrix. Reconstruction quality is reported as the average Peak
Signal-to-Noise Ratio (PSNR) and actually visual effect.

PSNR = 101 @ -1y ®)
= 0 —_— .
210 MSE

B. KEY FRAMES CONSTRUCTION

This section evaluates the performance of our BM3D-AMP
method application in K frames. The evaluation mainly
focuses on the reconstruction quality and image visual effect.

Then two classical algorithms are compared with our method,
including [26] and [31].

1) RECONSTRUCTION QUALITY

Fig.6 depicts the “Foreman’ K frames reconstruction quality
under different algorithms with the change of compression
rate. At each rate, we simulate all 25 frames and take the
average results. In addition, table 1 describes the exact recon-
struction values for four test sequences. Simulation result
shows that the BM3D-AMP algorithm always has the best
performance.

40t
n

£

835¢

g

=30t

o

Z

D o5t

3

£ 20 —+—BM3D-AMP
S —o-GPSR

X —6— AMP

15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
K frames compression rate

FIGURE 6. PSNR of different algorithms for K frames.

2) VISUAL EFFECT

Due to the characteristics of frame group division in DCVS
system, the compression rate of key frames is higher than that
of non-key, and is usually set to greater than 0.5. According
to Table 1, the GPSR works better at high compression rates.
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TABLE 1. PSNR of different algorithms for K frames.

K frames compression rate
01]02[703704[]057067]0.7]08
BM3D-AMP|22.34|26.05(29.56]33.27(36.01]38.92|42.25]45.62
Akiyo GPSR  |21.82(23.64|25.84|28.46|30.86|32.86|34.75|37.05

AMP 19.44|23.72|25.65|27.97|29.48|31.60|32.97|34.27
BM3D-AMP|17.24|19.97|21.36|23.61|25.54]27.31|28.91|31.15
Bus GPSR  [17.00{19.29|20.13|21.28|22.09|23.30|24.62|26.94

AMP 16.87|18.59|19.71|20.54|21.28|21.90|22.44|22.88
BM3D-AMP|20.8924.14|26.33|28.65]31.02{33.57|36.28|38.66
Bowing GPSR  |20.62|23.11|24.08|24.79|25.52|26.11|28.69|30.89

AMP 18.50(22.54|24.57|24.89|25.36|25.88|26.74|28.85
BM3D-AMP|21.07|23.24|26.74|28.42130.84(33.12|35.24|38.19
Foreman GPSR  |20.81|22.02|22.96|24.37|25.48|26.05|28.64|30.77

AMP 14.75|22.68|23.83|24.94|25.45|25.96|27.01|29.41
BM3D-AMP|19.65|20.39|21.61|22.99(24.44]26.29|28.50|31.01
Rush-field-cuts| GPSR  |17.89|19.23|20.44|21.35|22.59|24.25|25.14|25.98

AMP 16.00{18.08/19.83|20.94|21.45|22.17|23.01|24.21
BM3D-AMP|18.81(21.33(23.30(25.38(27.47|29.60(31.81{34.52
Fourpeople GPSR  |18.28(20.33|21.27|22.28|24.13|25.07|25.84|27.20
AMP 18.02{19.65|20.75|21.27|22.08|22.97|24.20|25.44

Sequence

So we only compare the image visual effect of GPSR and
BM3D-AMP. For each test sequence, we select one GOP to
analyze. The compression rate is set to 0.7. As shown in Fig.7,
BM3D-AMP preserves the details of video frames well, and
the brightness of image is significantly clearer and less noise.
So we use the BM3D-AMP as the K frames reconstruction
algorithm in our subsequent experiments.

C. SIDE INFORMATION GENERATION

This section evaluates the quality of side informa-
tion. Through the reconstructed K frames generated by
BM3D-AMP, we use the HEVC-ME, BME [13] and
MH-BCS-SPL [18], [19] algorithms to generate SI separately.
The compression rate of K frames are always set to 0.7.

We first performed the simulation on ‘‘Foreman”
sequence. Fig.8 directly reflects the performance of side
information generated by different algorithms. The advantage
of our method is that the obtained SI can retain reference
frame detail information, which requires the reconstruction
K frames are sufficiently clear. BM3D-AMP algorithm intro-
duced in section IV-A greatly meets the requirement. Based
on this, HEVC-ME improves the side information quality
by 1 ~ 4 dB. Our algorithm has some limitations in fast
changing frame segments. Such as 15 and 17 frames, large
displacements occur between the pixel blocks in a single
plane, and our advantage is no longer obvious. Then we
use BM3D-AMP to jointly reconstruct the non-key frames.
Fig. 9 verifies the effectiveness of HEVC-ME algorithm
for NK frames reconstruction, with about 2.5 dB improve-
ment than MH-BCS-SPL and 8 dB than BME. Similarly,
we perform experiments on all four different characteristic
sequence. The SI results are shown in Table 2. In most cases,
our algorithm maintains a relatively large lead.

D. CS RECONSTRUCTION ALGORITHM BASED ON JOINT
PRIOR INFORMATION

This section evaluates the performance of our ¢; — ¢
minimization model application in joint NK frames recon-
struction. Quality and visual effect are our core concerns.
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(a) BM3D-AMP. PSNR=42.01dB

(c) BM3D-AMP. PSNR=28.97dB

(d) GPSR. PSNR=24.71dB
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(e) BM3D-AMP. PSNR=34.07dB

(f) GPSR. PSNR=28.21dB

(k) BM3D-AMP. PSNR=31.80dB

(1) GPSR. PSNR=25.07dB
FIGURE 7. Comparison of image visual effects.

The state-of-art algorithm BM3D-SAPCA-AMP [28] and
widely-used BM3D-AMP are set to control group. When

using the contrast reconstruction algorithms, an algorithm
based on the difference fusion idea is used to achieve the

31313
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TABLE 2. PSNR of different algorithms for side information.

Sequence

NK frames order

9

11

13

15

19

21

23

Akiyo

HEVC-ME
MH-BCS-SPL
BME

39.42
34.12
30.89

29.72
25.84
24.80

37.80
33.40
30.47

26.72
25.67
22.80

36.02
31.89
28.48

33.73
29.76
25.76

39.39
34.57
30.50

36.64
32.29
27.44

36.30
32.11
27.05

35.47
31.97
26.78

39.56
34.55
29.87

40.99
34.90
29.63

Bus

HEVC-ME
MH-BCS-SPL
BME

22.15
22.05
20.00

22.27
22.16
20.10

22.18
21.89
19.90

21.79
21.37
19.80

22.25
22.00
19.55

22.45
22.15
19.54

21.51
21.19
19.44

22.08
21.50
19.32

21.31
20.58
19.19

21.21
20.41
19.11

22.09
20.94
19.09

21.95
21.01
19.03

Bowing

HEVC-ME
MH-BCS-SPL
BME

31.43
29.42
26.37

29.67
2791
25.33

26.32
25.43
24.16

23.59
23.36
22.75

23.87
23.45
22.98

26.22
25.79
24.68

28.60
27.34
25.08

34.08
30.89
26.43

36.88
31.12
27.80

37.80
31.86
27.86

34.35
30.88
27.55

29.17
27.64
26.43

Foreman

HEVC-ME
MH-BCS-SPL
BME

30.92
27.64
24.62

31.98
28.25
25.93

28.54
26.50
24.47

29.60
28.87
25.47

29.32
27.69
25.60

24.87
23.52
23.48

29.56
28.11
25.80

20.95
22.73
19.21

19.67
22.04
19.17

31.68
28.76
26.28

30.40
28.68
26.01

28.77
26.43
25.76

Rush-field-cuts

l — 0
MH-BCS-SPL
BME

28.68
26.10
25.44

28.63
26.07
25.35

28.52
26.03
25.28

28.52
26.06
25.13

28.44
26.07
25.17

28.74
26.12
25.21

28.36
26.06
25.13

28.38
26.06
25.12

28.40
26.10
25.12

28.36
26.09
25.17

28.45
26.07
25.09

28.29
26.02
25.04

Fourpeople

0y — 0
MH-BCS-SPL
BME

23.78
22.85
22.20

27.06
2542
24.98

31.05
27.28
26.35

29.18
26.59
25.67

31.04
27.19
26.02

30.02
26.87
25.75

30.75
27.28
26.09

30.10
26.97
25.88

20.00
19.72
19.21

19.35
19.31
18.74

30.63
27.08
25.83

32.80
28.40
26.67

32
30
28
26
24

Sl frames PSNR (dB/frame)

22 —e—HEVC-ME
—6—MH-BCS-SPL
20+ ——BME ]
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NK frames order
FIGURE 8. PSNR of generated SI by different algorithms.
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FIGURE 9. Effects of different SI generation algorithms on NK frames.

combination of side information and NK frames. As men-
tioned above, we use BM3D-AMP, HEVC-ME as the K
frames reconstruction and SI generation algorithms. The K
frames compression rate are set to 0.7.

1) RECONSTRUCTION QUALITY
As shown in Fig.10, we compare the NK frames of
“Foreman”” sequence reconstructed by three algorithms. The
algorithm based on £1 — £1 minimization has the best effect,
and the reconstructed PSNR value is I ~ 5 dB higher than
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FIGURE 10. PSNR of different resconstruction algorithms for NK frames.
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FIGURE 11. Different NK frames algorithms on resconstruction DCVS
system.

the counterparts. When NK frames compression rate is 0.1,
our method PSNR value is still greater than 30 dB. The over-
all reconstruction quality for DCVS system are illustrated
in Fig.11. When the NK frames at low compression rate,
our method overall PSNR value remains above 32 dB. And
as the compression rate increases, its advantages are even
more significant. Other sequence NK frames PSNR value are
shown in Table 3. In order to adapt the constrained resource
environment, the non-key frames should be compressed to the
maximum extent, so we only conduct the low compression
rate 0.1, 0.2 and 0.3.
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(c) £1 — ¢1. PSNR=28.97dB  (d) BM3D-AMP. PSNR=24.71dB

N R

(e) 41 — £1.PSNR=31.11dB  (f) BM3D-AMP. PSNR=28.21dB

(i) €1 — ¢1. PSNR=28.07dB

s
ey

(j) BM3D-AMP. PSNR=25.56dB

(k) ¢1 — £1. PSNR=31.13dB
FIGURE 12. Comparison of image visual effects.

(1) BM3D-AMP. PSNR=27.64dB

2) VISUAL EFFECT
Fig. 12 displays the NK frames visual image reconstructed
by different algorithms when the compression rate is 0.1.

VOLUME 8, 2020

TABLE 3. PSNR of different algorithms for NK frames.

Sequence NK frames compression rate

0.1 0.2 0.3

{1 — 4y 35.15 | 38.42 40.50

Akiyo BM3D-SAPCA-AMP | 32.47 | 35.86 37.39

BM3D-AMP 31.29 | 34.02 35.89

{1 — 4y 23.78 | 25.64 27.71

Bus BM3D-SAPCA-AMP | 23.26 | 24.38 25.71

BM3D-AMP 2242 | 23.52 24.77

lh— 0 30.68 | 33.41 34.84

Bowing BM3D-SAPCA-AMP | 29.57 | 31.08 32.77

BM3D-AMP 28.89 | 30.46 31.68

0 — 0 31.87 | 3343 34.77

Foreman BM3D-SAPCA-AMP | 29.54 | 31.65 31.90

BM3D-AMP 30.14 | 31.58 31.74

4 — 4y 28.03 | 28.45 29.87

Rush-field-cuts | BM3D-SAPCA-AMP | 25.80 | 26.12 26.78

BM3D-AMP 25.44 | 25.87 26.03

{1 — 4y 31.24 | 32.58 33.15

Fourpeople BM3D-SAPCA-AMP | 27.98 | 28.61 29.44

BM3D-AMP 27.74 | 28.34 28.98

The images reconstructed by £; — £ mininization preserve
the details clear and have less noise.

V. CONCLUSION
In this paper, we design a high-performance DCVS system,
which suitable for the asymmetric node resource video trans-
mission scenarios.

Firstly, the BM3D-AMP algorithm is introduced to recon-
struct key frames. Secondly, we put forward a new HEVC-
ME side information generation algorithm. Combined with
the motion vector prediction, the HEVC-ME can greatly
improves the quality of the obtained SI. Actually, it pro-
vides a possible to improve the quality of NK frames from
the prior information aspect. Finally, for effiective integrate
SI with NK frames compression results, we proposed a
{1 — £; minimization reconstruction model. As the com-
pression rate changes, the model dynamically relies on more
accurate information, and the reconstruction accuracy is sig-
nificantly improved.

There are two promising directions for the future works.
Our work, at current stage, mainly focuses on high quality SI
generation and joint decoding algorithm. In image deep learn-
ing area, some techniques have been proposed to accelerate
the reconstruction speed [29]. And how to combine these
models with our algorithm is a meaningful work. In addition
to directly operating the image, we can further mining the
features of video images to improve the recovery level [30].
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