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ABSTRACT Label-free methods neither cause cell damage nor contribute to any change in cell composition
and intrinsic characteristics. Indeed, there is much interest in the scientific community to learn more from
existing methods and to develop new label-free based methods for detection and classification of cells. Cell
classification using optical measurements has been frequently utilized. When cells interact with light, due to
differences in the composition of different types of cells, changes in the optical absorption and transmission
response result. This work combined the advancement in optical measurements and Prony techniques to
enhance the classification of cells based on their measured optical profiles. In this work, six types of cells,
HeLa, 293T, lung- cancer and normal, and liver- cancer and normal, were suspended in their corresponding
medium and their transmission characteristics were assessed. After media de-embedding, the transmission
profiles were fitted with a sum of exponentially decaying signals using the Prony algorithm. After that,
the optical response of each cell wasmodeled with a set of extracted parameters: amplitude, frequency, phase,
and damping factor. The four parameters extracted via the Prony method are related to the coefficients and
locations of the poles for each fitted model. A figure of merit (FOM) has been introduced, whose distribution
in the complex z-plane plays a major role in the classification of cell type. The changes in the values of FOM
are due to the changes in cell composition and intrinsic characteristics of different cells.

INDEX TERMS Cancer, cells, classification, detection, figure of merit, label-free, optical, Prony estimation,
sensors.

I. INTRODUCTION
Diagnosing diseases such as cancer at an early stage is very
crucial. At the initial stage, the symptoms of cancer are not
apparent. If cancer spreads, effective treatment is an onerous
task and, generally, the patient’s survival rate is very low.
More than 90% of women diagnosed with breast cancer sur-
vive the disease for 10 y compared to less than 20% of women
surviving for 5 y when diagnosed at an advanced stage [1].
Approximately 93% of patients diagnosed with colon cancer
at an early stage have 5-y survival rates compared to those
diagnosed at a later stage [2]. A similar increase in survival
rate is found for other types of cancer when detected early [3].
Much of the proposed work has been carried out for the
discrimination of normal and cancer cells at an early stage.
Various methods and techniques, such as the empirical mode
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decomposition technique [4], a genetic algorithm [5]–[8],
a projection image transformation algorithm [9], a quasi-
Newton inverse algorithm [10], and the Prony technique [11],
have been utilized for distinguishing normal and cancer tis-
sues or cells.

Mukhopadhyay et al. used the Empirical Mode Decompo-
sition (EMD) technique in their work detecting cancer at an
early stage [4]. The signals obtained from elastic scattering
spectroscopy from the normal and cancer cells are processed
using the EMD technique. The optical signal response is
decomposed into a set of finite numbers of band limited
signals known as the intrinsic mode function (IMF). The
area parameter of each IMF obtained for normal and cancer
cervical tissues is used as a tool for discriminating the tissues.
The results show that the algorithm is efficient in sorting
normal and cancerous tissues. However, EMD has limitations
in discriminating the components in narrowband signals [5].
Li et al. applied a genetic algorithm (GA) combined with
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linear discriminant analysis (LDA) as a signal processing
technique in the detection of nasopharyngeal cancer [6].
The spectra obtained from surface-enhanced Raman Spec-
troscopy for malignant and benign tissues are analyzed using
the GA-LDA method. The alterations in the features of the
Raman spectra of normal and cancer tissues are used for dif-
ferentiating the tissues. The GA –LDA algorithm is utilized to
look for the dominant features of the spectra. The algorithm,
although it worked efficiently for cancer tissue discrimination
based on feature selection, has limitations. The algorithm
has to be run more than 100 times to select the appropriate
spectral bands. The overall accuracy of the diagnostic model
is 76.9%. Li et al. used the same (GA-LDA) technique for
detecting bladder cancer [7]. As mentioned earlier, the down-
side of this technique is that the algorithm is executed more
than 100 times and Raman variables are searched for char-
acterizing bladder cancer in each run. Duraipandian et al.
reported the use of GA along with partial least squares-
discriminant analysis (PLS-DA) with double cross-validation
(dCV) for the feature selection from Raman spectra of nor-
mal and cancerous cervical tissues [8]. The results show a
diagnostic accuracy of 83% in discriminating cancerous and
normal cervical tissues. Franceschini et al. applied a projec-
tion image transformation algorithm for processing images
of breast tissues [9]. The optical images processed by this
technique enhance the features that show the inhomogeneity
in normal and cancerous tissues. The spatial resolution of
the optical method used in this work is 1 cm but they can
detect tumors of smaller size if the images have good optical
contrast. Salomatina et al. have investigated the optical dif-
ferences between cancerous and normal skin cells.They have
utilized a sphere spectrophotometer to conduct the absorption
and transmittance measurements. Optical properties such as
absorption and scattering coefficients of the normal and can-
cer skin are obtained from the measured quantities using a
quasi-Newton inverse algorithm and the Monte Carlo tech-
nique. The efficiency of the quasi-Newton inverse algorithm
is that it requires many fewer iterations (less than 10) to reach
convergence. The optical parameters obtained are statistically
acceptable if the probability value is less than 0.05, which
means the optical properties of the normal and cancer tissues
differ by more than 95%.

Hauer employed the Prony method for determining the
modal components of the signal response obtained from a
Western U.S. power system [12]. The signal components
extracted using the Prony technique - in combination with
Fourier techniques and frequency domain approaches - are
used for dynamic modeling of the power system. The results
show that the Prony algorithm gave a good fit with a rea-
sonable SNR value for the high noise signal. The Prony
method is used for finding low frequency oscillations in
power systems. Xiao et al. compared the Fast Fourier Trans-
formation (FFT) technique and the Prony technique in their
study identifying low frequency oscillations in power systems
and concluded that Prony is a competent technique compared
to FFT [13]. The simulation results show that the technique

is efficient for identifying low frequency oscillations in real
grids. Chuang et al. applied the Prony analysis technique on
a synthesized signal that represents the backscattered signal
from radar targets [14]. Then, the Prony algorithm is used
to deduce natural resonances of the targets. The resonances
obtained using the Prony method are used for target detection
and discrimination. They concluded that the results obtained
through the Prony method in the absence of noise are more
reliable than those from the numerical search procedure. The
lengthy computation time in numerical search methods is
greatly overcome by using Prony’s method. Marple et al.
discussed the use of Prony’s method to detect and classify
acoustic transient signals obtained from subaquatic sonar sen-
sors [15]. The energy component coupled to the pole ampli-
tude and damping constants of the estimated model is used
as a key for transient detection and for extraction of features
used in classification. The results show that the technique
worked very well even in the presence of noise in the signal.

In biomedical signal processing, the Prony tech-
nique is prominently used for the characterization of
tumors [16]–[18], for cancer detection [19]–[21] and for
power spectrum estimation of DNA sequences [22]. Fur-
thermore, the Prony algorithm is widely used in biomedical
signal processing for tumor detection. Huo et al., in an
attempt to model breast tumors, reported the use of the Prony
method [16]. The tumor in the breast is represented as a
concealed dielectric target. When it is subjected to a short
EM pulse, it backscatters a signal that includes complex
natural resonances (CNR), which is equivalent to the poles
of the tumor. The Prony method gives the poles and residues
from the time domain backscattered signal. The complex
natural resonance can be correlated with the morphological
and intrinsic composition of the tumor. Hence, the optical
and electrical properties can be used to detect and identify
tumors. Li et al. utilized an approach similar to [16] for char-
acterizing breast tumors based on 2D-FDTD simulation [17].
The time-domain response of the tumors is obtained through
FDTD simulation and is analyzed using the Prony technique
for characterizing the tumors. The results are promising in
characterizing breast tumors when used in combination with
imaging diagnosing methods such as ultrasound imaging,
confocal microwave imaging and so on.Wang et al. discussed
the use of the Prony technique for extraction of poles from
noisy data for tumor characterization [18]. The results show
that the poles extracted using the Prony technique gave
accurate results even when the detected signal was mixed
with a limited level of noise. Bannis et al. employed the
Prony technique for breast cancer tumor detection from a
scattered field electromagnetic (EM) signal [19]. The poles
extracted from the scattered EM signal are used as a tool for
breast cancer detection. In another work to study the effect
of the chest wall on breast tumor detection, they utilized
the Prony algorithm for poles extraction [20]. Gale et al.
utilized the Prony method for estimating parameters of a
nuclear magnetic resonance (NMR) signal obtained from
blood plasma for the early detection of cancer [21]. Roy and
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TABLE 1. List of type of cells.

Barman suggested a method to estimate the power spectral
density of a DNA sequence. In this approach, the simulation
results from Prony’s all-pole model efficiently distinguished
the coding and noncoding regions of a DNA sequence [22].

This work combined the advancement in optical measure-
ments and Prony techniques to enhance the label-free based
classification of cells based on their measured optical pro-
files. Here, six kinds of cells, HeLa, 293T, lung- cancer and
normal, and liver- cancer and normal, were suspended in their
corresponding medium and their transmission characteristics
were collected. It is worth to mention that the cell lines under
investigations: HeLa, 293T, lung and liver cells were taken
from different tissue organs. However, the lung (as well as
liver) healthy and cancer cell lines were taken from the same
organ tissue. The transmittance profiles were then fitted with
a sum of decaying exponential signals using the Prony algo-
rithm. A figure of merit was introduced, whose distribution
in the complex z-plane plays a major role in the classification
of cell type. The alteration in the values of FOM is due to
the changes in cell composition and intrinsic characteristics
of different cells.

II. MATERIALS AND METHODS
A. CELL SAMPLE PREPARATION AND CULTURE
The cell lines used in this work were procured per the Amer-
ican Tissue Culture Collection (ATCC) standard. Each type
of cell was cultured in a medium that is specific for the cell
type. Based on the type and feature of cells, the nutritional
requirements for its growth in vitro also differ [23]. This
difference in nutritional requirements is applicable for normal
and cancerous cells of the same tissue. A summary of the cells
used in this work is shown in Table 1.

The culture medium and methods for the six type of cells
used in this study are discussed in detail below. A humidified
air ambience with 5% carbon dioxide (CO2) at 37◦C was
maintained for all the cells.

1) BEAS 2B – NORMAL LUNG CELLS
Per the ATCC guidelines, the culture plates on which the
cells were cultured were precoated with a precoating mixture.
The mixture used for BEAS 2B cells contains fibronectin
(0.01 mg/mL), bovine collagen (0.03 mg/mL) and bovine
serum albumin (0.01 mg/mL) diluted in bronchial epithe-
lial basal medium (BEBM). The BEGM bullet kit (Lonza
TMClonetics TM), which includes the essential additives (gen-
tamycin/amphotericin was discarded) for primary culture,
was used for BEAS 2B cells. Supplements such as penicillin

(100 units/mL) and streptomycin (100 mg/mL) were added to
the medium. For trypsinization, an EDTA solution (0.53 mM)
with 0.5% polyvinylpyrrolidone (PVP) was used.

2) HCC-827 – LUNG CANCER CELLS
The ATCC-recommended medium suitable for culturing
CC-827 lung cancer cells is the Roswell Park Memorial
Institute (RPMI) 1640 medium. RPMI-1640 was obtained
from HyCloneTM, US. The medium is suitable for culturing
a variety of mammalian leukemic cells. The medium had a
10% heat-inactivated fetal bovine serum (FBS) supplement
as base. The trypsinization of the cells was done with 0.25%
trypsin (a 0.53 mM EDTA solution).

3) THLE2 – NORMAL LIVER CELLS
A mixture consisting of 2.9 mg/mL of collagen I, 1 mg/mL
of fibronectin, and 1 mg/mL of bovine serum albumin
in BEBM was used as a precoating mixture coated on
the culturing plates. The reagents were procured from
Sigma-Aldrich. Discarding the gentamycin/amphotericin and
epinephrine, the Lonza TMClonetics TMBEGM bullet kit
with a base of epidermal growth factor (EGF) (5 ng/mL),
phosphoethanolamine (70 ng/mL), and other additives in
the kit were used as growth medium for the THLE2 cells.
The supplements for the media were heat-inactivated FBS
(HyCloneTM, US – 10%) and penicillin-streptomycin (Gibco
– 1%). Trypsinization was carried out with 0.5% trypsin
(0.53 mM EDTA solution).

4) HEPG2 – LIVER CANCER CELLS
The HEPG2 cancer cells from liver tissue were grown in Dul-
becco’s modified Eagle’s medium (DMEM–HyClone TM) in
culture plates. Ten percent of FBS (HyCloneTM, US) and 1%
of penicillin-streptomycin (Gibco) were supplements for the
medium. Per ATCC guidelines, trypsinization for these cells
was done using 0.5% trypsin (0.53 mM EDTA solution).

5) 293T – NORMAL KIDNEY CELLS
These normal cells from kidney tissue were cultured in
DMEM (HyCloneTM) base. The medium was supplemented
with 10%FBS and antibiotics such as penicillin-streptomycin
and gentamicin.

6) HeLa – CERVICAL CANCER CELLS
According to the ATCC standard, the HeLa cells were cul-
tured inDMEM (HyCloneTM) with 7% fetal calf serum (FCS)
and the antibiotics PenStrep and gentamicin as supplements.
The cells were subcultured and trypsinized as per the ATCC
protocol. Each type of cell was suspended and cultured sepa-
rately.

B. SPECTROPHOTOMETER
A light beam from a xenon light source is split into its compo-
nent monochromatic beams by diffraction grating [24]. The
single wavelength beam is divided into two equal-intensity
beams. One of the two beams is the reference beam that
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FIGURE 1. Measured optical transmittance response of (a) HeLa cells, (b) 293T fitted with Prony estimations. The measured
transmittance is sampled at a uniform sampling interval of Ts = 2.3 nm. This results in a number of samples of N = 256.

passes through a cuvette loaded with only the medium.
The second beam passes through a transparent container
loaded with cells in the media. The container is a high pre-
cision cell made of quartz superasil with light path of 1 mm
and an area of 2 by 2mm2. The spectrometer has an electronic
detector that measures the intensities of the light beam. Based
on the measured intensities, the transmittance of the cells is
determined.

C. SENSOR AND LIGHT SOURCE
Mini-Spectrometers C11708MA from Hamamatsu/Japan,
the optical sensor used in this work, convert the variable
attenuation or reflectance into signals. The details of the
integrated MEMS sensor and the light source used in this
work are reported in [25].

III. CURRENT APPROACH
This section summarizes the Prony estimation principle. The
measured optical responses can be fitted or modeled with a
sum of damped exponential signals as given in (1) [26]:

y [n] =
∑p

i=1
Aiejθi .e(αi+j2π fi)Ts(n−1), n = 1, 2 . . .N (1)

where N is the number of samples, and p is the order of the
fitted model, which is same as the total number of damped
exponential components in the summation. The least number
of exponentials that gives the best fitting is considered the
optimum order of the fitted model. The complexity of the
fitted model increases with the increase in the order number.
The ith exponential component has amplitude Ai (same unit as
y[n]), frequency fi (Hz), damping factor αi (per second), and
initial phase θi (in radian). Ts is the sampling interval between
consecutive data samples. Using Z-transformation, (1) can be
expressed as follows:

y [n] =
∑p

i=1
hiz

n−1
i (2)

where hi represents the coefficient (magnitude) of the esti-
mated poles and zi denotes the location of the poles in (2).
These parameters can be expressed as:

hi = Aiejθi (3)

zi = e(αi+j2π fi)Ts (4)

The sampled data is preprocessed prior to fitting and param-
eter extraction. The first step in preprocessing is to eliminate
noise from the data. This is done by smoothing the data. Data
smoothing is followed by data detrending to remove trends,
if any, from themeasured sequence. The detrending operation
gives a more accurate linear model that best describes the
relationship between the input-output signals. Based on the
observation of the pole coefficients and locations, a figure of
merit (FOM) has been introduced for the discrimination
between normal and cancer cells from the same tissue.

IV. RESULTS AND DISCUSSION
Six types of cells were utilized in this study. These cells
were utilized to carry out the proposed current approach in
terms of detection capabilities. Normal and cancer cells of
lung and liver were used to demonstrate cell identification
using the current approach. Using a hemocytometer, the cell
concentration in each suspension was adjusted to 107 cells
per mL with 5% mean error. After that, each type of cell
suspension was loaded in the experimental setup and the
optical transmittance of the cells was measured over the
wavelength of 640-1050 nm with a wavelength reproducibil-
ity between −0.5 to 0.5 nm and maximum of 20 nm FWHM
spectra, under constant light conditions. The de-embedding
of themedium and holder contributions are then performed by
subtracting the suspension responses directly from the filled
control medial response.

Figure 1 shows the signal intensities varying with wave-
length. As the measured signal exhibits transient behav-
ior, a wavelength modified Prony algorithm can be applied.
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FIGURE 2. Extracted parameters versus number of exponentials in the fitted model for 293T cell line: (a) amplitude
(b) damping factor, (c) frequency and (d) phase.

Figures 1(a) and (b) depict the measured optical responses
superimposed with the Prony estimated signal for the HeLa
and 293T cell lines, respectively. The least number of expo-
nentials that gives the best fitted model is considered the opti-
mum order of the model. The optimum order (p) was found
to be 40, which is the minimum required order that provides
the excellent fitting. A higher order (higher p values) will
result in redundancy and require further processing resources.
The responses were collected using the experimental setup
reported in [25]. It is recommended to apply the same order
to both the 293T and HeLa cell suspensions for fair com-
parison. Parameters such as amplitude, frequency, phase and
damping factor of the exponentials are extracted from the
fitted response of each type of cell. Further information about
the parameter estimation for exponential sums approximated
by the Prony method has been detailed by Jun et al.. in [27].
Furthermore, a description of the extractions of the corre-
sponding transient parameters, such as the order of the sig-
nal model, the data window length, sampling interval and
parameters such as the attenuation factor has been explicitly
described in [26].

Figures 2(a), (b), (c) and (d) show the plots of amplitude,
damping factor, frequency and phase, respectively, obtained
for 293T with a fitting order of 40. The measured data
were smoothed using the Savitzky–Golay method [28]. This
has been used here to increase the data precision without

distorting the signal tendency. The extracted parameters are
further processed to extract the corresponding coefficients
and pole locations. The coefficients and locations of poles
were computed using (3) and (4). The extracted coefficients
and location of poles for the HeLa and 293T cell suspension
are illustrated in Fig. 3(a) and (b), respectively.

Rodríguez et al. have conducted a review of Prony’s
method regarding the signal approximation using MATLAB
code [29]. They have implemented the classical methods to
test both performance and Prony approximation. The com-
plete theoretical bases of Prony’s method and their piece-
by-piece implementation in MATLAB have been presented.
Rodríguez’s algorithms and codes are adopted in this work.
As illustrated in Fig. 3(a) and (b), the extracted poles are
located within the unit circle of the z-plane. The y-axis rep-
resents the imaginary part and the x-axis represents the real
part. The coefficients of HeLa are focused around the origin
point when compared to 293T in the z-plane. The distribution
of the coefficients and poles locations is not helpful to be used
for cell identification. Therefore, a figure of merit (FOM)
is introduced for better identification accuracy. The FOM is
defined as follows:

FOM (p) = C(p)/L(p) (5)

where L(p) and C(p) represent the location and coeffi-
cients of the poles, respectively. The computed FOM is then
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FIGURE 3. Z-plane plot (unit circle) showing coefficients (in blue) and locations of poles (in red) for (a) HeLa and (b) 293T cell suspensions.

FIGURE 4. Extracted figure of merit (FOM) for 293T (in blue) and HeLa (in
red).

normalized for each type of cell with its corresponding max-
imum value.

Although the Prony algorithm was developed for mod-
eling signals in the time domain, it can be applied for
responses obtained in frequency domains as well [30]. In his
paper, Kumaresan has extracted the poles directly from the
frequency response using a technique that is analogous to
Prony [30].

Figure 4 shows the extracted FOM for HeLa and 293T
cells. The FOM distribution for the HeLa is very close to
the center of the unit circle. Significant differences in cell
composition for normal and cancer cells have been reported.
Their interaction with light will cause a change in the optical
absorption and transmission response. Due to differences in

the composition of the different type of cells, the light inter-
action with the cells causes an alteration in their absorption
and transmission responses. The modifications of the opti-
cal responses from normal to cancer were explained mainly
by morphological changes, modification of its physiological
and biochemical properties that affect the refractive index
and allow them to be differentiated from each other. The
pole locations and coefficients will be affected accordingly.
Empirically, the cancer cells exhibit higher transmittance
intensity when compared to normal ones from the same tissue
type.

The FOM is inversely proportional to L(p); therefore, for
corresponding high locations of poles, lower FOM values are
obtained. On the other hand; the complex poles are defined
as σ ± jω, where σ is the damping coefficient and ω is the
resonant pulsation. The damping and resonant pulsation are
higher in cancer cells compared to normal cells. Therefore,
the FOM becomes smaller for cancer cells than for normal
cells.

Based on these results, it is evident that the coefficients and
poles locations vary with composition and cell morphology.
Undeniably, the main difference between normal and cancer
cells of the same tissue is in terms of composition and mor-
phology. Hence, the proposed FOM is a distinctive parameter
that can be used to explore the detection and identification of
normal and cancer cells. This is possible when the technique
is used only for fitting the response in the frequency domain
to the sum of the damped exponential and for parameter
extraction. The objective here is to make inferences from
the obtained parameters and for further processing. These
frequency domain measurements cannot be utilized for the
generation of a representative equivalent circuit. Hence, this
work claims the validity of using the Prony technique to
model a frequency domain signal, as the extracted parameters
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FIGURE 5. Extracted figure of merit (FOM) for normal and cancer cell lines from same tissue: (a) lung normal, (b) lung cancer,
(c) liver normal and (d) liver cancer.

are used for making inferences for cell identification. It is
worth mentioning that the focus of this work is to classify
normal and cancerous cells for the same tissue. Therefore,
the FOM for lung and liver normal and cancerous suspen-
sions were extracted per the introduced procedure and are
depicted in Fig. 5. Figures 5(a) and (b) show the FOM of
cell lines for lung normal and cancer cells, respectively.
Figures 5(c) and (d) show the FOM of cell lines for liver
normal and cancer cells, respectively.

The distribution of the FOM of cancer cells is closer to
the origin of Z-plane when compared with that of the nor-
mal cells. Each plotted measurement represents the aver-
age of 15 measurements. The multiple measurements were
conducted on different aliquots taken from the same sample
suspension in the same region spot. The error bars in the
subfigures of Fig. 5 represent the average values along with
maximum andminimum values. The bar corresponding to the
x-axis represents the average in the FOM real part, while
the endpoints represent its maximum and minimum values.
The bar corresponding to the y-axis represents the average
in the fom imaginary part, while the endpoints represent its
maximum and minimum values.

For further investigations, the distribution of the FOM
for normal and cancer cells has been superimposed on each

other, as depicted in Fig. 6. Figure 6(a) superimposes the
lung normal and cancer corresponding FOMs. Figure 6(b)
superimposes the FOMs for the liver normal and cancer cell
lines. Themajority of the real part of the FOMs corresponding
to cancer cells have positive real part (located in the right hand
side) of the z-plane; the majority of the real part of the FOMs
corresponding to normal cells have negative real part (located
in the left hand side) of the plot.

The figure of merit (FOM) which we are introducing for
the first time relates the location of the poles (L(p)) and the
coefficient of poles C(p)). Scientifically: significant differ-
ences in cell composition for normal and cancer cells have
been reported [25]. Their interaction with light will cause a
change in the optical absorption and transmission response.
Due to differences in the composition of the different type of
cells, the light interaction with the cells causes an alteration
in their absorption and transmission responses. Themodifica-
tions of the optical response from normal to cancer state were
explained mainly by morphological changes, modification
of its physiological and biochemical properties that affect
the refractive index and allowing them to be differentiated
from each other. The poles location and coefficients will be
affected accordingly. Therefore, it is suggested that within
the range −0.5 to +0.5 in the z-plane, if 85% of the FOM
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FIGURE 6. Figure of merit distributions: (a) lung normal and cancer cells, and (b) liver normal and cancer cells. The blue dots represent the normal cell
lines and the red dots count for the cancer cell lines.

values have negative real part (located in the left hand side)
then the cell lines under study is considered to be normal;
else it is cancer cells. There is a clear discrimination strat-
egy: by performing optical measurements on the different in
vitro normal and cancer cell line models, the developed data
processing procedure based on the Prony method to achieve
a label-free discrimination between cancer and healthy cells
from the same tissue type works very well.

V. CONCLUSION
In summary, this work addressed the classification and dis-
crimination between normal and cancer cells from the same
tissues. A label-free method combining the Prony estimation
theory and optical transmittance measurements was intro-
duced and proven to be a powerful technique. The proposed
approach has been examined using six types of different cell
lines. The measured optical responses of the six types of cells
have been reconstructed using the Prony algorithm with same
fitting order of 40. Based on the observations, a normalized
figure of merit has been introduced for identification. Based
on this merit, the distribution of the FOMs around the center
of the unit circle of the cancer cell lines was closer than the
normal cell lines from same tissues (in the case of lung and
liver cells). These findings can be considered the foundation
stage for cell identification using optical measurements com-
bined with the Prony estimation theory.

APPENDIX
To plot the FOM, the following MATLAB code has been
developed. The function has two inputs, ‘‘a’’ and ‘‘b’’. ‘‘a’’
represents the computed figure of merit for the normal cells,
whereas ‘‘b’’ represents the computed figure of merit for the
cancer

cells. The plot includes the unit circle for reference.
function [] = graphpronyayesha(a, b)

figure % for opening new figure to plot the FOMs data.
[hz1, hp1] = zplane(a,a), % plot the input ‘‘a’’ as a cross

in the z plane.
grid on,% turn on grids
hold on,% Plot the second FOM (for the cancer cells) graph

in same figure
[hz2, hp2] = zplane(b,b), % plot the input ‘‘b’’ as a cross

in the z plane.
hold off,
set(findobj(hz1, ’Type’, ’line’), ’Color’, ’b’), % color the

input ‘‘a’’ in blue.
set(findobj(hp1, ’Type’, ’line’), ’Color’, ’b’), % color the

input ‘‘a’’ in blue.
set(findobj(hz2, ’Type’, ’line’), ’Color’, ’r’), % color the

input ‘‘b’’ in red.
set(findobj(hp2, ’Type’, ’line’), ’Color’, ’r’), % color the

input ‘‘b’’ in red.
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