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ABSTRACT The collaborative control of the multi-agent system (MAS) marks the trend of intelligent
transportation system (ITS). However, the collaborative control of MAS with flexible sampling periods
remains a challenge, because under-driven systems are prone to random delays, data loss and sensor
failures in semi-unstructured environment. Against the background of the semi-unstructured environment
in a Dutch greenhouse, this paper puts forward a universal collaborative motion control algorithm for the
MAS of automated guided vehicles (AGVs), in the light of the first-order dynamics of the system. The
proposed algorithm is called continuous-step-rotate-run (CSRR). Besides, the enhanced depth image fusion
positioning (EDIFP) scheme was designed to mitigate the disturbances on the control algorithm, arising from
flexible sampling periods and data loss. To verify its effectiveness, the CSRR control algorithmwas tested on
an MAS of three under-driven BigPan AGVs. The results demonstrate that our algorithm can collaboratively
control the AGVs in an effective and stable manner. The simple algorithm offers a desirable solution to the
collaborative control of various MASs.

INDEX TERMS Multi-agent system (MAS), collaborative control, automated guided vehicle (AGV),
enhanced depth image fusion positioning (EDIFP).

I. INTRODUCTION
Population aging and urbanization are two demographic
trends shaping today’s world. Under these trends, the percent-
age of the labor force engaged in agriculture is falling, and the
labor cost of agricultural workers is on the rise. The soaring
labor cost, coupled with the high labor intensity in unhealthy
operations like pest control [1], [2], directly pushes up the cost
of agricultural production: harvesting alone contributes to
25% of the total cost of agricultural production [3], [4]. This
contradicts the growing demand for agricultural products,
posing a major challenge to the sustainable development of
agriculture [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Dalin Zhang.

From the engineering perspective, the above challenge can
be tackled by developing a quality and low-cost intelligent
mechatronic system [6] that can replace human operations
in an efficient manner [7]. Essential to intelligent transporta-
tion system (ITS), the automated guided vehicle (AGV)can
effectively mitigate the risk of workers involved in dangerous
operations [7], enhance the production efficiency, and ease
the labor shortage induced by population aging [8]. Multi-
pleAGVs are often grouped into a multi-agent system (MAS)
to perform such operations as grazing [9], farming [10], fruit
picking [11], and sorting [12].

Despite its various advantages, the MAS faces several
limitations in agricultural applications, owing to the com-
plexity, flexibility and cost of the specific problem. The
environment of many applications, unlike those of factories
and warehouses, is highly unstructured, or semi-structured
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FIGURE 1. The semi-structured environment of a Dutch greenhouse.

at the best [13]. In China alone, the semi-structured agri-
cultural acreage reaches a staggering area of 981 Khm2.
Take a 6000m2Dutch greenhouse (Figure 1) for example.
500 L medicinal solution must be sprayed within 1.5 h. The
spraying operation could be implemented by an MAS of
five small AGVs with a capacity of 100 L each, or a large,
complex and costly AGV with a capacity of 500 L. This calls
for collaborative control of the MAS under semi-structured
environment. The key aspects of the control strategy include
roads, lighting and communication [1].

Over the years, theMAS collaborative control has attracted
much attention in the academia. Some scholars evaluated the
MAS performance by the speed of state convergence. For
example, [14] provided the necessary conditions for state
convergence, using frequency domain techniques like the
Nyquist criterion. References [15], [16] adopted a classic
method, Lyapunov stability analysis, to prove the state con-
vergence of the MAS. Reference [14] introduced the input-
to-state stability (ISS) to evaluate the stability of the control
strategy in nonlinear dynamic environment.

The MAS performance has also been evaluated by another
index: the quadratic cost function of state convergence and
control cost. For example, [17] proposed an optimal consen-
sus control protocol based on the linear quadratic regulator
(LQR), and established a closed-loop control gain matrix.

The model predictive control (MPC) has also been
employed to achieve the collaborative control of the MAS,
thanks to its ability to convert realistic constraints (e.g. oper-
ation speed and collision warning interval) into control
parameters. For instance, [18]designed a discrete-time MPC
consensus control scheme with discrete-time first-order and
second-order dynamics MPC consensus control scheme with
time-varying interactive topology. References [19], [20]
explored deep into the MAS collaborative control based on
MPC solutions.

The MAS collaborative control can be simplified by fix-
ing the sampling period, a common approach to facilitate
sampling control. However, the period should be fixed with

a reasonable length. Otherwise, the excessively rapid sam-
pling will bring too much redundant information, increasing
the overheads of information transmission and processing.
Then, the control strategy will be less effective. Moreover,
it is difficult to implement fixed-period sampling of the
MAS state in real-world scenarios, due to the existence of
multiple constraints on communication (e.g. random delays,
noise interference, and data loss). Adding to the difficulty
of fixed-period sampling, the clocks of the agents cannot be
synced easily in a semi-structured environment without GPS
support [21].

The event-triggered control (ETC) can effectively over-
come the defects of fixed-period sampling. This energy-
efficient control strategy only executes sampling, calculation
or update under the trigger conditions [22]. Under observer-
based mode or self-triggering mode, the ETC technique has
been applied to the first- and second-order collaborative con-
trol of linear and nonlinear MASs [23]–[28].

The sliding mode control (SMC) provides a desirable solu-
tion to the deteriorating performance of the MAS induced by
uncertainty and interference, laying the basis for collabora-
tive control of the MAS. Under control inputs of the SMC,
the system state slides along the given sliding surface function
towards the desired state. Based on Laplacian matrix, [29]
presented a sliding surface function for MAS collaborative
control. Reference [30] preserved and coordinated the finite-
time connectivity in a second-order MAS with limited sens-
ing range, designed a distributed controller based on integral
SMC and artificial potential field (APF), and proved that the
controller achieves robust finite-time collaborative control,
without sacrificing the connectivity of the communication
network.

Furthermore, many other control strategies have also been
successfully adopted to realize the collaborative control of the
MAS, including but not limited to the adaptive control [31],
linear matrix inequality (LMI) [19], and game theory [32].

The main objectives of the MAS research are identify-
ing the stable conditions for collaborative control, and then
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formulating suitable control methods for existing systems.
Nevertheless, most of the existing studies only verify the
theoretical results through simulation, rather than actual
application or field testing. Many of their control strategies
only apply to a specific MAS, failing to support general
applications.

Drawing on graph theory and nonlinear adaptive control
theory, [33] examined the leader-follower group consensus
control protocol, in which the leader moves at a constant
speed and makes the decisions, while each follower only
knows the relative position between him/her and another
agent. By the APF method, [30] controlled a set of non-
holonomic MAS robots to marshal into different shapes
without collision. Considering the interactive topology, [31]
explored the directional control of a mobile robot with
monocular vision, and introduced image processing algo-
rithm into the consensus protocol. Reference [32] investi-
gated a set of collaborative controltasks with high reference
value, and deployed image sensors on a Pioneer D3-PX
robot to collaboratively clean up color boxes scattered in a
room. Reference [34] combined the APF and robust control
technique into a formation control model, and estimated the
unknown parameters in the model by an adaptive fuzzy logic
algorithm.

A. RESEARCH CONTRIBUTIONS
This research mainly makes the following contributions:
• A continuous-step-rotate-run (CSRR) control algo-
rithmwas designed for the collaborative control of
the under-driven MAS of a set of AGVswith flexi-
ble sampling periods. The physical constraints of the
drive system, namely, the output speed of the motor,
were considered in the algorithm design, making the
MAS smooth and efficient. By contrast, the output
speed is allowed to change randomly in existing simula-
tion research.The CSRR control algorithm was verified
through an example analysis on BigPan, a self-designed
two-wheel differential drive AGV.

• The proposed collaborative control strategyis simpler
and more versatile than the existing strategies. Our strat-
egy applies to the MASs in varied topologies, provided
that the AGVs and the ITS satisfy the basic constraints.

• The enhanced depth image fusionpositioning (EDIFP)
scheme was developed to enhance the accuracy of visual
positioning under semi-structured environment. In the
proposed scheme, the depth data and RGB images
are fused and filtered to reduce the effects of non-
uniform illumination and heat sources. The accurate
positioningis conducive to the precise collaborative con-
trol of the MAS.

In addition, the algorithm proposed in this paper has been
effectively verified in BigPan’s actual MAS system, which
provides a strong reference and reference value for subse-
quent research.

FIGURE 2. The structure of the BigPan.

TABLE 1. The main components of the BigPan.

B. ORGANIZATION
The remainder of this paper is organized as follows: Section II
introduces the self-designed BigPan, and formulates the
CSRR control algorithm for the MAS; Section III puts for-
ward the EDIFP scheme, which achieves accurate positioning
for MAS collaborative control; Section 4 verifies the pro-
posed control algorithm through system tests; Section 5 puts
forward the research conclusions.

II. MAS COOPERATIVE CONTROL UNDER NON-UNIFORM
SAMPLING CONDITIONS
A. ‘‘BIGPAN’’ AGV SYSTEM
Under the semi-structured environment of the Dutch green-
house [35], the authors designed a two-wheel differential
drive AGV called the BigPan [36]. The architecture of the
self-designed AGVfor pesticide spraying is illustrated in
Figure. 2 and Table. 1. It can be seen that the prototype
was extended from the full-featured version of a basic AGV
in Figure 1(d). Specifically, the motor and two drive wheels
are located on the central axis, forming a differential drive
system. Thus, the AGVcan move along the axis of the drive
wheels, as an under-drive system. The AGV is controlled
by an artificial intelligence (AI) controller (Nvidia Jetson
TX1/TX2), a vehicle control unit (Freescale MC9S12X), and
an electronic control unit (ECU) controller. Among them,
the AI controller is provided with two webcams (Logitech
HD Pro Webcam C920) to realize visual navigation control
from first-person perspective. All the controllers are con-
nected wirelessly to the host.The subsequent versions of the
AGVwere exhibited on the 15th China International Agricul-
tural Trade Fair in 2017.

B. BASICS OF MAS COLLABORATIVE CONTROL
The MAS and its workspace can be transformed into adi-
rected graph and several stochasticnonnegative matrices. The
transform is a necessary step for setting up a first-order
control model.
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For the MAS, the communication network can be
expressed as a directed graph G = (V, E,A), where V is
the set of n network nodes (AGVs), E ⊆ V × V is the set
of edges (between the AGVs), and A = [aij] ∈ RN×N ,
(aij ≥ 0,∀i, j = 1, 2, · · · ,N ) is the adjacency matrix. Each
edge eij = (vj, vi) describes the information flow from AGVj
to AGVi. If eij ∈ E , then aij=0, i.e. there is no information flow
between AGVi and AGVj. It is assumed that noinformation
flows within any AGV, i.e. aij=0. Then, the set of neighbors
of AGVi can be expressed as Ni = {vj ∈ V : (vj, vi) ∈ E}.
From AGVi to AGVj, the path is an ordered sequence of edges
(vi, vm1 ), (vm1 , vm2 ), · · · , (vmp , vj), all of which are elements
in E. If an AGVi has an edge to any other AGV in the directed
graph, this AGV is the root of the directed spanning tree of
the MAS. The graph LaplacianmatrixL = [lij] ∈ RN×N can
be defined as:

lij = −aij, ∀i 6= j; lii =
N∑

j=1,j6=i

aij (1)

Matrix A ∈ RN×N is nonnegative if all its elements are
nonnegative (A ≥ 0). If A− B ≥ 0, then A ≥ B. If the sum
of each row equals (1), then a nonnegative square matrix is a
stochastic matrix. If limk→∞Ak = 1ncT (c is an n× 1 vector
of constants), then the matrix is stochastic indecomposable
and aperiodic (SIA).

C. FIRST-ORDER DYNAMICS MODEL OF MAS
The top view of the global coordinate system is presented
in Figure 3, because this paper only considers the AGV
control on the approximately 2D plane. Note that the azimuth
angle θ ∈ [−180◦ to 180◦] lies between the heading of the
AGV and the positive direction of the x-axis The clockwise
direction is defined as the positive rotation direction.

FIGURE 3. Top view of the global coordinate system.

Assuming that the motions along the x and y-axes are
decoupled, the MAS dynamics on the x and y-axes can be
respectively expressed as:{

˙̂xi(t) = uv̂i (t),
˙̂yi(t) = uŷi (t), i = 1, 2, · · · ,N ,

(2)

where, x̂i(t), ŷi(t) ∈ R are the coordinates of each AGV; uv̂i (t)
and uŷi (t) ∈ R are the control inputs along the x and y-axes,
respectively.

Here, the AGVs are sampled at flexible periods to deter-
mine their positions. Let a1 = {t0, t1, · · · , tk}, k ∈ N be the
sequence of sampling periods. It is assumed that each sam-
pling period is an integer multiple of the minimum sampling
period h, and is selected from a finite set mkh = tk+1 − tk ∈
0 = {n1, n2, · · · , nτh}, ∀k ≥ 0 (ni is an integer).
Through flexible-period sampling, the position and control

input of AGVi at time k can be respectively derived from the
zero-order hold as the following discrete equations:{

x̂i(k + 1) = x̂i(k)+ mkhux̂i (k),
ŷi(k + 1) = ŷi(k)+ mkhuŷi (k),

(3)

Equation (3) can be rewritten as:{
x̂(k + 1) = x̂(k)+ mkhux̂(k),
ŷ(k + 1) = ŷ(k)+ mkhuŷ(k),

(4)

where, 
x̂(k) = [x̂1(k), x̂2(k), · · · , x̂N (k)]T

ŷ(k) = [ŷ1(k), ŷ2(k), · · · , ŷN (k)]T

ux̂(k) = [ux̂1 (k), ux̂2 (k), · · · , ux̂N (k)]
T

uŷ(k) = [uŷ1 (k), uŷ2 (k), · · · , uŷN (k)]
T

(5)

The decoupling model (2) is controlled by the following
protocol:{

ux̂i (t) = −βk
∑N

j=1 aij(tk )[x̂i(tk )− x̂j(tk )],

uŷi (t) = −βk
∑N

j=1 aij(tk )[ŷi(tk )− ŷj(tk )].
(6)

where tk ≤ t < tk+1.
The state transition of the AGV can be described as:{

x̂(tk+1) = (IN − mkhβkL(tk ))x̂(tk ),
ŷ(tk+1) = (IN − mkhβkL(tk ))ŷ(tk ).

(7)

Under the control protocol (6), the heading of the AGV
can be adjusted by changing the speeds of the driving wheels,
bringing changes to the AGV trajectory.

Then, the MAS coordinate system was defined. As shown
in Figure 3, the MAS coordinate system has two axes: x′ and
y′-axis. The x′-axis points to the heading of the AGV, and the
y′-axis is coaxial with the two driving wheels. The two axes
are perpendicular to each other.

Let vl and vr be speeds of the left and right wheels of
the AGV, respectively. Being a limited differential under-
driven system, the AGV cannot move in the axial direction.
Hence, more constraints should be added to equation (6).
On this basis, a CSRR control algorithm (Algorithm (1)) was
developed an alternative to the decoupling model (2).

For simplicity, the planar section of the MAS was divided
into four regions (Figure. 3), according to the MAS coordi-
nate system. Then, the state of each AGV can be updated
by Algorithm (1). At time k , the azimuth angle θ cannot be
calculated unless the rotation direction is fixed. If the steering
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angle surpasses the response ability of the drive system,
the corresponding AGV needs to decelerate, adjust its angle
and accelerate again. This process inevitably breaks the con-
tinuity of motion, suppressing the operating efficiency of the
AGV. To solve the problem, a limit on steering angle θ ′ was
set based on the acceleration capacity of the motor. In other
words, the adjustment in each sampling period was broken
down into several parts to ensure the continuity of AGV
motions.Once the angle is adjusted, the AGVwill move along

(x̂i(tk+1), ŷi(tk+1)) at the speed of v =
√
(ûxi (tk ))2 + ûyi (tk ))2)

until the next sampling periodor reaching the target position.
If v < vmax , the movingspeed will be limited to v = vmax .

D. FIRST-ORDER CSRR CONTROL
Through the above analysis, the CSRR control algorithm was
developed for the first-order control of theMAS. The specific
steps of the algorithm are presented in Algorithm (1).

Direction adjustment and forward movement are two key
actions in AGV control. Thus, each sampling period contains
a rotation time [tk , tk + 1T ) and a forward movement time
[tk , tk+1). According to the constraints on output speed of
the two driving wheels (‖ vl ‖≤ vmax and ‖ vr ‖≤
vmax), the desired azimuth adjustment can be obtained as
θmax ∈ [−90◦, 90◦]. The head or tail of the AGV should
point away from the current target as much as possible,
unless it is required to rotate by 180◦ in special operations
(e.g. replenishment) [36].

If 1T ≤ tk+1 − tk , ∀k = 0, · · · ,N , the position
of AGVi (xi(tk+1), yi(tk+1)) will fallon the line between
(xi(tk ), yi(tk )) and (x̂i(tk+1), ŷi(tk+1)) at time tk+1. Thus,
we have‖ xi(tk+1)−xi(tk )

x̂i(tk+1)−xi(tk )
‖=‖

yi(tk+1)−yi(tk )
ŷi(tk+1)−yi(tk )

‖= λi(tk ),
∀i = 1, · · · ,N , where λi(tk) ∈ (0, 1] is a con-
stant. If x(tk ) = [x1(tk ), x2(tk ), · · · , xN (tk )]T and y(tk ) =
[y1(tk ), y2(tk ), · · · , yN (tk )]T , then:{

x(tk+1) = 9kx(tk )
y(tk+1) = 9ku(tk )

(8)

where 9k = (IN − λkmkhβkL(tk )) and λk =

diag{λ1(tk ), λ2(tk ), · · · , λN (tk )}.
The next step is to discuss the collaborative control of

multiple AGVs. The βk , k = 1, 2, · · · satisfying 0 < βk <

mini(1/λi(tk )mkh
∑

j∈Ni
aij(tk )) was selected, which makes

9k in equation (10) a stochastic nonnegative matrix with pos-
itive diagonal elements.The stochasticmatrix M ∈ RN×N is
SIA, if it has diagonal elements and itscorresponding directed
graph has a spanning tree [17]. The same serve as necessary
but insufficient conditions for 9k .

Let S = S1, S2, · · · , Sk be a set of finite SIA matrices with
the same sizem×nThen, any sequence Sim, Sim−1, · · · , S1 of
matrix products of any length is SIA. If the product sequence
Sim, Sim−1, · · · is infinitely long, the existence of a column
vector c makes:

lim
m→∞

Sim, Sim−1, · · · , S1 = 1ncT (9)

Algorithm 1 The CSRR Control Algorithm for AGVi With
First-Order Dynamics
Input: xi(tk ), yi(tk ), θi(tk ), xi(tk ), yj(tk ) and ∀j ∈ Ni(tk ).
Output: vl(t), vr (t) and tk ≤ t < tk+1.

if t = tk then
2: Choose the value of βk that satisfies 0 < βk <

mini(1/λi(tk )mkh
∑

j∈Ni
aij(tk )).

Set x̂i(tk ) = xi(tk ), ŷi(tk ) = yi(tk )
4: θiT = atan2((ŷi(tk+1)− yi(tk )), (x̂i(tk+1)− xi(tk ))),

Set default speed: vi = vmax
6: if

√
(ux̂i (tk ))

2 + (uŷi (tk ))
2 < vmax then

update speed: vi =
√
(ux̂i (tk ))

2 + (uŷi (tk ))
2

8: end if
Set Pk = ((x̂i)(tk+1), (ŷi)(tk+1)) represent the current
position of AGVi, then

10: if Pk ∈ Region1 then
RDIR = 1,MDIR = 1 and θid (tk ) = θiT ;

12: else if Pk ∈ Region2 then
RDIR = −1,MDIR = 1 and θid (tk ) = θiT ;

14: else if Pk ∈ Region3 then
RDIR1, MDIR = −1 and

16: θid (tk ) = θiT ± 180◦ ∈ [−180◦, 180◦);
else if Pk ∈ Region4 then

18: RDIR = −1,MDIR = −1 and
θid (tk ) = θiT ± 180◦ ∈ [−180◦, 180◦).

20: end if
end if

22: while tk ≤ t < tk+1 do
if | θi(t)− θid (tk ) > ε | then

24: vl = v̄, vr = −v̄ if RDIR = 1,
vl = −v̄, vr = v̄ if RDIR = −1.

26: else
vl = vi, vr = vi if MDIR = 1,

28: vl = −vi, vr = −vi if MDIR = −1.
end if

30: end while
RDIR = 1 and RDIR = −1 indicate clockwise and
counterclockwise rotation. MDIR = 1 and MDIR = −1
for forward and backward motion, when the nose or
tail of the BigPan is pointing at ((x̂i)(tk+1), (ŷi)(tk+1)).
(x̂i)(tk+1) and (ŷi)(tk+1) are x- and y-axis coordinates and
heading ofAGVi at time tk ; epsilon is the tolerance for the
heading, vl and vr are are the speeds of the left and right
drive wheels; v̄, 0 ≤ v̄ ≤ vmax is the constant wheel speed
for the BigPan to rotate in place.

If the switching directed graph (SDG) G(tk ), k = 1, 2, · · ·
has a spanning tree at each time, and there exist βk and 9k
satisfying the above conditions, then the AGVs with first-
order dynamics can be coordinated collaboratively with flex-
ible sampling periods. In our model, the length of rotation
time 1T = (|θi(tk ) − θid (tk )|πd)/(360 × v̄) can be changed
within [tk , tk+1) by adding or reducing the rotation speed
of wheels v̄ (v̄ ∈ [0, vmax])), such that λi(tk ) ∈ (0, 1].
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Note that θi(tk ) is the azimuth angle of AGVi at time tk ,
θid (tk ) is the target azimuth of AGVi, and d is the diameter
of the driving wheels. In this way, the 9k can be confirmed
as SIA:x(tt ) = lim

k→∞
9k9k−1 · · ·90x(t0) = 1ncT1 x(t0)

y(tt ) = lim
k→∞

9k9k−1 · · ·90y(t0) = 1ncT1 y(t0)
(10)

Hence, it is possible to realize the collaborative control of
the AGVs in the MAS.

III. AGVPOSITIONING UNDER SEMI-STRUCTURED
SCENARIO
In MAS collaborative control, the position of each AGV is an
important input parameter. Based on RGB images, the visual
positioning is generally effective. However, this positioning
approach relies on camera calibration, and its accuracy is
easily affected by external factors like light. The positioning
accuracy can be improved by binocular visual positioning
to a certain extent, especially when the AGV is blocked.
Compared with visual methods, infrared depth sensing is an
institutive and accurate means to identify the spatial position
and distance of AGVs.

FIGURE 4. Framework of the EDIFP scheme.

Unlike indoor environment, the Dutch greenhouse is
a semi-structured environment with various disturbances.
Among them, sunlight and other heat sources severely disturb
the sensing operations, especially infrared depth sensing. For
the accuracy of MAS collaborative control in semi-structured
environment, this paper puts forward the EDIFP scheme

(Figure 4), which covers the following three parts: classifi-
cation of features, i.e. regions of interest (ROIs), based on
RGB image, modelling spatial coordinates through camera
calibration, and 3D spatial reconstruction and AGV position-
ing based on depth image.

In our scheme, an Intel RealSense D415 depthcamera
(effective range: 10 m; field of view: 69.4◦ × 42.5◦) is
equipped with a visible light sensor and an infrared depth
sensor. In this way, the camera can simultaneously capture
RGB images (1920× 1080) and depth images (1080× 720)
at 30 and 90 frames per second (FPS), respectively.

A. CAMERA CALIBRATION
Before positioning, the main objects in the monitoring space
(Figure 5 (a)) must be fully calibrated, including the ground,
the walls and the top surfaces of theAGVs. In this paper,
the calibration is performed using a GP290 12×9 calibration
board. Through calibration, the internal and external param-
eters of the camera were optimized, and the feature plane of
the main objects was generated (Figure 5 (c)).

B. FEATURE IMAGE SEGMENTATION
Currently, images are often segmented by frame-difference
method, CamShift method, etc. For images containing AGVs,
these methods are outshined by deep learning-based semantic
segmentation in accuracy and adaptability. Here, the RGB
image is segmented by the semantic segmentation method
proposed by Chen et al. [40]. The feature labels were
trained under the semi-structured environment, and used
to segment the main objects more accurately as shown
in Figure 5(d).

C. THE EDIFP PROCESS
(1) 3D point cloud transform. To reconstruct the 3D monitor-
ing space, it is necessary to transform the data of the depth
image into 3D point cloud. In our scheme, the depth image
has the same size and resolution as the RGB image. The size
of the depth image can be expressed as Sizeimg = (w, h),
where w and h are width and height, respectively. The coor-
dinates of depth image data Dij can be described as (x ′i , y

′
j),

i ∈ [1,w], j ∈ [1, h]. Then, the global coordinates (Xij,Yij) of
the data point can be computed by triangular similarity:

Xij = (x ′i −
w
2
)× Dij ×

1
f

Yij = (y′j −
w
2
)× Dij ×

1
f

(11)

where, f is the focal length of the camera.
Then, the transformed dataset was added the data of the

corresponding RGB image, forming a standard 3D point
cloud {PPCD(x, y, z,R,G,B)}.
(2) Noise filtering.
The interferences and measurement errors should be elim-

inated to obtain the ideal distribution of the point cloud.
Therefore, a grid model was established for the point cloud
before data segmentation, and the vector of each data point
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FIGURE 5. The flow of the EDIFP scheme.

was calculated. As shown in Figure 5(b), the sampling plane
is smooth locally, although the point cloud is not uniform.
For a point p in the cloud, an approximate plane Planeapprox

can be created based on its k neighboring points:

Planeapprox(nvct , dO)

= argminnvct ,dO

k∑
i=1

(nv× PPCD|i − dO)2 (12)

where, nvct represents the normal vector of Planeapprox ; dO
is the distance between the origin of the coordinates and
Planeapprox .

Through iterative computing of the set of neighboring
points {qj(xj, yj)}, j ∈ [1, k] of pi, the approximate tan-
gent plane of pi and the approximate normal vector can be
obtained. In this way, the error function ferr can beminimized:

ferr =
k∑
j=1

((xj, yj) · nvct|j)2 (13)

The value of ferr is negatively correlated with the distance
from the fitted plane to the ideal plane. Thus, the point cloud
was divided into several approximate planes, each containing
a set of neighboring points.
(3) Plane fitting and positioning.
Under the semi-structured environment, the plane fitting

should consider the ground, the walls and the AGVs. The nor-
mal vector of the fitted plane should not deviate far from that
of the feature plane. Otherwise, the fitting result should be
discarded. In this paper, the distribution of each approximate
plane is clustered by Gaussian mixture Model (GMM) [37]
and neural network (NN) [38]. Then, the remaining planes
were merged with theknown feature planes. Let PF and PV
be the feature plane and the plane to be verified, PPF and pPV
be the points on PF and PV , and EnPF and EnPV be the normal
vectors of PF and PV , respectively. Then, the planes can be
filtered by:

θ = cos−1( EnPF · EnPV ) < θTHR

1d = max(| EnPF · Edv|, | EnPV · Edv|) < dTHR
{PPV } ∈ {PROI }

(14)

where, θ , 1d and Edv are the angle, distance and distance
vector between PF and PV , respectively;2THR and dTHR are
the error thresholds for the angle and distance, respectively;
{PPV } is the set of points on the PV ; {PROI } is the set of points
in the ROI, i.e. only the data of the ROI are verified.

Finally, the AGV position {P1RGB,P
2
RGB, · · · ,P

n
RGB} from

the RGB image and that {P1depth,P
2
depth, · · · ,P

m
depth} from

depth image need to be fused together. Let {w1
RGB,w

2
RGB, · · · ,

wnRGB} and {w
1
depth,w

2
depth, · · · ,w

m
depth} be the fusion weights

of the AGV positions from RGB and depth images, respec-
tively. Then, the position fusion formula can be expressed as:

Pfusion =
n∑
i=1

PiRGB × w
i
RGB +

m∑
j=1

Pjdepth × w
j
depth (15)

Figure 5(e) provides the fusion results on AGV positions.
The proposed EDIFP schemeachieveda greater than 0.03m
accuracy in actual tests.
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FIGURE 6. The test platform.

IV. EXAMPLE ANALYSIS
A. OVERVIEW OF TEST PLAN
Based on the BigPan, the authors constructed a test platform
forMAScollaborativecontrol. As shown in Figure 6, the test
platform is deployed in a 4×4m roomwith south-facing win-
dows. The boundaries of the test site were marked in yellow
to control the AGV motions. In daytime, strong sunlight can
enter the room, and change rapidly with the elapse of time.
The indoor and outdoor temperatures are 36◦C and 38◦C an
enter the room, and chrelative humidity is about 85%. These
conditions are similar to those of the Dutch greenhouse. The
high temperature and humidity have a great impact on the
data collection by the infrared depth sensor.

Three BigPan AGVs were adopted for our tests. Among
them, AGV2 (diameter: 55 cm; height: 77 cm) is the fourth
generation robot, carrying a 140 L medicine tank and a
complete spray system, while AGV1 and AGV3 (diameter:
55 cm; height: 23 cm) are the fifth generation robots. The
latter twoAGVs do not have any spray system. Themaximum
speed of the three AGVs stands at 0.8 m/s. To improve the
dynamic performance, the upper limit of speed is generally
set to 0.65 ∼ 0.7 m/s. In our tests, the maximum speed is set
to 0.6 m/s, and the maximum acceleration, to 0.2 m/s2.

To enhance the positioning accuracy, the two webcams
(image sensors) on the Intel RealSense D415 depth camera
were calibrated by a calibration plate, and a spatial coordinate
model was established before our tests. The two sensors can
capture RGB image and depth image, and support the pro-
posed EDIFP scheme. During the tests, a position calibration
plate was placed on each AGV, with its center directly above
that of the AGV’s upper surface.

The host is a laptop (CPU: Intel Core i7-4700MQ, 2.4GHz;
RMB: 8GB; GPU: GeForce GTX 765M) that connects

multiple external devices (e.g. a wireless router). The host and
the multiple AGVs are linked up wirelessly, forming an MAS
communication network.

B. MAS COMMUNICATION NETWORK
The communication between AGVs is the key to the effective
control of the MAS. Before the tests, a wireless communica-
tion network [39] was implemented. As shown in Figure 7,
the network encompasses three main parts: a Host, a wireless
router and a set of AGVs.

FIGURE 7. The architecture of the wireless communication network.

The workflow of the communication network is as follows:
Step 1. Set up the IP address of the router (e.g.

192.168.1.1), and expose it to all authorized AGVs.
Step 2. Enable the dynamic host configuration proto-

col (DHCP) of the router, and assign a new IP address to
newly entered AGV. Rather than preset an IP address to each
AGV, each AGV is identifiedby its name and hardware ID.
Similar to media access control (MAC) address, this identifi-
cation strategy prevents the waste of address resources.
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Step 3. Fix the IP address of the host and keep it in the same
network segment as the router (e.g. 192.168.1.100). In this
way, the other AGVs can send a registration request to the
host and joint the network. Then, the system will enter the
ready state. The host manages the list of AGVs via the agent
manager. All AGVs in the online state are included in the list.
Their state is maintained periodically by a thread.
Step 4. Power on the AGVs in turn and connect them

to the wireless route. Each AGV will send a registration
request to the host, after obtaining the automatically assigned
IP address. Once the request is accepted, the AGV will be
connected to theMAS. For the three AGVs, their IP addresses
are 192.168.1.101 - 103.

FIGURE 8. The login/logout process of AGVs.

The login/logout of the MAS is of critical importance.
Once an AGV accesses the network, Algorithm (1) will be
implemented to execute the control. Considering their sim-
ilarity, the login and logout were merged into one module
(Figure 8). The login/logout process can be split into 7 steps:
(1) The client and server establish a connection through
socket and OSLIP protocol; (2) The MAS user interface (UI)
sends a registration notification to the agent manager, once
the client is successfully connected; (3) The agent manager
creates aproxy object; once authenticated, the object will be
added tothe list of AGVs; (4)Once created and activated,
the AGV sends a verification message to the agent entity;
(5) When the entity verifies the message, the online state
will be replied; (6) The AGV will notify the agent manager
to update the entity state and update the UI; (7) The logout
process is basically the same as the login process, except for
the message update. The offline state is divided into normal
and abnormal situations. Normal offline is a request from the
agent entity (the server may also require the entity to logout).
Abnormal offline often occurs at network failure. There are
two solutions to network failure: (1) Socket exception will be

detected, triggering the offline event; (2) A daemon thread
is set in agent manger, which periodically requests all AGVs
in the list to confirm if the agent entity is still online, and
removes the offline entities. More details of MAS communi-
cation are available in Zhang’s research [39].

C. SIMULATION TEST
Considering the complexity of MAS collaborative control,
our CSRR control algorithm was simulated on Simulink
before offline deployment. Specifically, the data obtained by
each sensor were visualized on a control program written
on Simulink. The control commands were issued by the
OSLIP protocol, with the M language. The Simulink exe-
cution supports both single or multiple AGVs, and allows
real-time adjustment of controller parameters and measured
values, providing the user an intuitive view without complex
coding.

FIGURE 9. The simulation framework.

As shown in Figure 9, the simulation framework mainly
consists of stream server block, stream client block, and agent
controller. The first two blocks form a communication flow in
a client/server (C/S) architecture, under which the sensors in
each AGV exchange information. To monitor the MAS state,
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FIGURE 10. The trajectories of the three AGVs.

FIGURE 11. The time variation of speeds.

the AGV communication is relayed by the stream server,
although the AGVs are capable of direct communication.

Implemented in the host, the CSRR control algorithm com-
putes the control outputs based on the state of each AGV, i.e.
the speeds of the left and right driving wheels. The micro
control unit (MCU) of BigPan will respond to each received
control command.

D. RESULT ANALYSIS
Under the conditions in Section 4, the control effect of the
CSRR control algorithm on the MAS of AGVs with first-
order dynamics was verified through tests. The trajectories
of the three AGVs are displayed in Figure 10.

To prevent the AGVs from collision, a virtual OBB
(diameter: 65 cm) was designed around each AGV (diameter:
55 cm). When the three OBBs are in contact with each other
near the origin (target point), the three AGVs are considered
to have the same system state.

The OBBs of different AGVs might overlap each other
within the allowable range, due to errors in measurement and
control. Because theOBB has a larger diameter than theAGV,
the overlapping distance d is smaller than 1d < 0.05 m,
within the range of allowable error. In actual application of the

FIGURE 12. The time variation of azimuth angles.

BigPan, the sensor diameter is larger than the OBB diameter.
Thus, it is unlikely for AGVs to collide with each other in
actual operations.

Figure 11 and Figure 12 show the time variation of the
speeds and azimuth angles of the three AGVs, respectively.
It can be seen that the three AGVs were adjusted simultane-
ously, and moved very close to the target point.

V. CONCLUSION
This paper attempts to collaboratively control an MAS of
multiple under-driven AGVs withflexible sampling periods
and changing communication topology. A Dutch greenhouse
with semi-structured environment was taken as the research
background. Based on the directed graph, a first-order collab-
orative control algorithm called the CSRR was developed for
the under-driven AGVs, which guarantees the convergence
of system states. In addition, the EDIFP schemewas designed
to mitigate the disturbances on the control algorithm, arising
from flexiblesampling periods and data loss. This scheme
combines RGB and depth images, and thus enhances the
positioning accuracy of AGVs, despite the light and heat
sources in the semi-structured environment. To verify its per-
formance, the CSRR control algorithmwas applied to a simu-
lation on anMAS of three BigPan AGVs. The results on AGV
trajectories, speeds and azimuth angles demonstrate the effec-
tiveness of our algorithm. Coupled with the test data [36],
the simulation results provide a valuable reference for the
largescale application of MASs in semi-structured environ-
ments. Besides high accuracy and smoothness, the CSRR
control algorithm reduces the number of interventions in the
drive system and suppresses the loss of drive components,
improving the system durability. The preliminary work on the
reliability and durability of the drive system can be found in
Zhang’s research [35].
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