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ABSTRACT Designing fitness-based adaptive scaling factor (F) is an effective method to enhance the
performance of differential evolution (DE) algorithms. This paper investigates the correlations between F
and fitness values of target vectors, base vectors and difference vectors. The correlations are described by
the notations of monotonicity and nonlinearity. Monotonicity is used to examine whether the optimization
performance of DE and the fitness values of certain vectors have positive or negative correlation. Nonlinearity
denotes the operation in which nonlinear mappings are used to redistribute the values of F in [0, 1] so
as to boost the optimization performance. These two aspects of correlations are empirically tested on the
Numerical Optimization Competition benchmark functions in IEEECongress on Evolutionary Computation.
Simulation results reveal different qualitative and quantitative correlations between F and fitness values of
different vectors. Then, a new F that combines these relations is designed. Its strength is numerically verified
by testing different CEC Benchmark functions.

INDEX TERMS Differential evolution, scaling factor, fitness values, CEC benchmark problems, single
objective optimization.

I. INTRODUCTION
The differential evolution (DE) algorithm invented by Storn
and Price [1] is a powerful population-based global searching
tool. DE is believed to be effective for problems involving
nonlinear and non-differentiable functions [2]. The number
of DE research articles indexed in Science Citation Index
database (viaWeb of Science) during 2007 to 2015 was 8714,
as indicated in Reference [3], [4]. DE has been successfully
implemented in diverse areas, such as spacecraft trajectory
design [5] and statistical fisheries model estimation [6]. The
major applications were also summarized in Ref. [3], [4].

DE employs the difference between distinct members from
the current population as a guidance to search for a better
solution. Compared with other intelligent algorithms, DE has
the merits of few control parameters, good optimization per-
formance and low space complexity [3]. Nevertheless, as an
evolutionary algorithm, DE needs to compute large numbers
of fitness functions to obtain the global optimum. To improve
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the performance, different types of enhanced DE have been
developed in recent years. The comprehensive surveys of
DE can be found in [3], [4], [7]. Among various techniques
to improve DE, choosing good values of the scaling fac-
tor (F) in each generation is commonly an efficient option.
Generally, the mechanisms to design F can be categorized
into four groups: fixed value, random value, history-based
adaption and fitness-based adaption. Fixed value indicates
that F remains constant during the whole optimization. Storn
and Price [1] indicated that F is not difficult to choose
for good results. In their opinion, 0.5 can be a good initial
choice of F . After testing different parameter settings for
DE on the Sphere, Rosenbrock’s and Rastrigin’s functions,
Gämperle et al. [8] found that the global searching ability
and the convergence are very sensitive to the value of F .
They suggested 0.6 as the initial choice. In another paper,
Rönkkönen et al. [9] stated that setting F = 0.9 can balance
well between the speed and probability of convergence. The
benefits of fixed value lies in its simplicity. For complex
problems such as the multimodal optimization problem [10]
and problems with constrained experimental domain [11],
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the fixed value has been successfully employed. Alterna-
tively, the value of F can be updated by random functions,
namely, random value type. Das et al. [12] proposed the
DE with Random Scale Factor (DERSF) and the DE with
Time Varying Scale Factor (DETVSF). DERSF allows for
stochastically scaling difference vectors, and thus, can help
to retain population diversity. With DETVSF, individuals
are encouraged to sample diverse zones of the search space
during the early stages of the search. In the late stage, they
tend to exploit the interior of a relatively small space in
which the suspected global optimum lies. In the SaDE algo-
rithm [13], F is varied by a normal distribution with a mean
value of 0.5 and a standard deviation of 0.3. By doing so,
SaDE attempts to maintain both exploration capability (with
large F values) and exploitation capability (with small F val-
ues). Compared with fixed value, randomization can produce
more values of F . Thus, it can enhance the performance to
some extent. In some modified DE, such as TLBSaDE [14]
and MDE [15], random values of F were used. The third
type, namely history-based adaption technique, adaptively
computes F by learning from the past generations of suc-
cesses. It is widely applied in adaptive and self-adaptive DE
algorithms, such as JADE [16], jDE [17] and SHADE [18].
In recent years, many SHADE-based algorithms [19] have
been proposed; and some have performed well in testing dif-
ferent IEEE CEC benchmark functions. However, the mech-
anism to design the scaling factor in these improved DE
algorithms is similar to that in SHADE. Based on the analysis
in [20], an ensemble sinusoidal approach to automatically
adapt the values of F was designed in LSHADE-EpSin [21].
It is believed that the performance of LSHADE-EpSin is
better than that of SHADE. EsDEr-NR [22] is an enhanced
version of LSHADE-EpSin. The last type of scaling-factor
designing technique is fitness-based adaption, in which F is
usually determined by fitness values from the current popu-
lation. The first research concerning fitness-based adaption
was by Ali and Törn [23]. It employed the minimum and
maximum fitness values of current generation to calculate F .
Ghosh et al. [24] developed a new fitness-based technique
considering the fitness difference between the target vector
and the best vector. Based on the idea that F for individuals
with higher fitness values are larger, Tang et al. [25] designed
the rank-based scheme and value-based scheme. In 2017,
Mohamed introduced the triangular mutation scheme. In that
paper, the adaptive scheme of F also takes into account both
the minimum and maximum fitness values in the current
generation [26].

As can be seen from the aforementioned reviews of
F-designing techniques, history-based and fitness-based
adaptive F are favorable in practice. However, compared
to the abundance in history-based adaptive strategies, few
researches have addressed fitness-based adaptive schemes.
Besides, most existing fitness-based methods mainly focus
on the minimum and maximum fitness values in each gen-
eration [23]–[26]. So far, the fitness values of more vectors
have been largely ignored, which we believe has encoded

important information about general structure of the fitness
function. Thus, each individual’s fitness should be exploited
so as to obtain good values of F . In order to understand the
scaling factor from a fitness-based perspective, this paper
comprehensively studies the correlations between F and fit-
ness values.

To that end, we propose a way to define the fitness-based
correlation. The correlation addresses fitness values of the
target vector, the base vector and the difference vector. Then,
qualitative and quantitative relations are found by testing
on the IEEE CEC 2014 problems. To show the potential of
these correlations, a new F that combines the correlations is
designed. The performance of the new F are verified on IEEE
CEC 2014 and 2017 problems. Several classic and recent
F-designing techniques are employed as a comparison.

The remainder of this paper is organized as follows:
Section II reviews the classical DE and improved DE.
Section III details the method to establish the correlations
between F and different fitness values. Section IV discusses
the correlations based on the numerical experiments.
Section V concludes the whole paper.

II. CLASSICAL DE AND IMPROVED DE
A. CLASSICAL DE ALGORITHM
In this subsection, the classical DE algorithm [1] is briefly
reviewed. In the rest of the paper, it is assumed that mini-
mization problems are to be resolved. There are four basic
steps in the classical DE: initialization, mutation, crossover
and selection.

1) INITIALIZATION
The population of DE is represented as

xi =
(
x1, x2, . . . , xD

)
, i = 1, 2, . . . ,NP (1)

where D is the dimension of variables and NP denotes the
population size.

The minimum and maximum of x are defined as{
xmin =

(
x1min, x

2
min, . . . , x

D
min

)
xmax =

(
x1max, x

2
max, . . . , x

D
max
) (2)

Then, a common method to initialize the i-th individual xi,0
is

x ji,0 = x jmin + unif (0, 1) ·
(
x jmax − x

j
min

)
, j = 1, 2, . . . ,D

(3)

where unif(0, 1) is a uniformly distributed random variable
within the range of [0, 1].

2) MUTATION
Let xi,G be an individual at generation G. After initialization,
a donor vector vi,G with respect to the target vector xi,G is
produced by the following mutation operator:

vi,G = xr i1,G + F ·
(
xr i2,G − xr i3,G

)
(4)
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where the indices r i1, r
i
2 and r

i
3 are randomly generated mutu-

ally exclusive integers within the range of [1,NP] and are all
different from index i. These indices are randomly generated
once for each donor vector. Here, xr i1,G is termed the base
vector, and xr i2,G − xr i3,G is called the difference vector.
F is the scaling factor and is usually constrained in the range
of [0, 1].

3) CROSSOVER
The purpose of the crossover operator is to produce a trial
vector ui,G by combining xi,G and vi,G. Let u

j
i,G be the j-th

components of ui,G. The following rule is applied element-
wisely:

uji,G =

{
vji,G, if (j = jrand) or

(
ri,j ≤ Cr

)
x ji,G, otherwise

(5)

where jrand is a randomly chosen integer in the range of [1,D],
ri,j = unif(0, 1), and Cr is the crossover rate and defined in
the range of [0, 1].

4) SELECTION
Once ui,G is generated, the fitness values of ui,G and xi,G are
calculated and compared. The vector that survives to the next
generation is selected by the following rule:

xi,G+1 =

{
ui,G, f

(
ui,G

)
≤ f

(
xi,G

)
xi,G, otherwise

(6)

where f
(
ui,G

)
and f

(
xi,G

)
represent the fitness values of ui,G

and xi,G.
The framework of the classical DE is shown in

Algorithm 1.

Algorithm 1 Framework of the Classical DE
1: G = 0
2: // Initialization
3: Generate a random initial population xi,0
4: Calculate the fitness values of the initial population
f (xi,0)

5: while The termination criteria are not met do
6: G = G+ 1
7: //Mutation
8: Generate Fi,G
9: vi,G = xr i1,G + Fi,G ·

(
xr i2,G − xr i3,G

)
10: // Crossover
11: Generate Cri,G

12: uji,G =

{
vji,G, if (j = jrand) or

(
ri,j ≤ Cri,G

)
x ji,G, otherwise

13: // Selection

14: xi,G+1 =
{
ui,G, f

(
ui,G

)
≤ f

(
xi,G

)
xi,G, otherwise

15: end while

B. IMPROVED DE
Generally, the techniques to improve DE can be categorized
into four aspects, by respectively or combinedly designing
the following: mutation operator, population size NP, scaling
factor F , and crossover rate Cr . To classify the different
variants of mutation operators, the notation ‘‘DE/x/y/z’’ is
introduced. Here, x represents the base vector to be perturbed,
y donates the number of difference vectors, and z stands
for the type of crossover. Two types of crossover have been
considered, which are exponential (exp) and binomial (bin).
The binomial type is mostly used and the ‘‘DE/x/y/z’’ nota-
tion is usually shortened as ‘‘DE/x/y’’. In the first paper
of DE [1], the classical DE can be noted as DE/rand/1.
Then, DE/best/1, DE/rand/2, DE/best/2 [27] and DE/current-
to-pbest/1 [16] were proposed and widely used in other
improved DE. More complicated mutation operators were
designed in [26], [28]–[30]. It should be noted that no matter
which mutation operator is chosen for DE, designing the
values of NP, F and Cr are always necessary. In 2006,
Teo [31] firstly demonstrated the feasibility of self-adapting
the population size parameter in DE. L-SHADE [32] showed
the powerful performance improvement and ranked as the
best algorithm in IEEE CEC 2014 problems. In that paper,
the linear population size reduction technique was used.
Poláková et al. [33] improved the population reduction tech-
nique and enables to decrease or increase the population
size during the search. In EsDEr-NR [22], the niching-based
population reduction method was employed to determine
the number of population in each generation. As for F
and Cr , many significant developments have also been per-
formed, such as the invention of jDE [17], JADE [16], and
DE-RCO [34]. Table 1 lists six improved DE algorithms.
Here ‘‘1’’ indicates that one of the aforementioned features
has been elaborately designed, ‘‘0’’ refers to retaining the
original setting; ‘‘−’’ means that the parameter is not mainly
designed, and the bold ‘‘1’’ donates the primary concerned
parameter in the paper.

TABLE 1. Improve DE (compared to classical DE).

As can be seen, large numbers of modern DE algorithms
have complex strategies to mutually tuning all these fac-
tors. However, recent work appears to be concentrating on
studying only one parameter. One one hand, focusing on one
parameter can help to provide insights into understanding
DE algorithms. On the other hand, new advances in tuning a
single parameter can be plugged into existed DE algorithms
to further improve performance, as is evident in [29] and [34].
Note that F is the unique feature of DE algorithms,
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as compared with NP and Cr . In fact, F is strongly bound
to mutation operators. For example, In (4), F is used to
scale the difference vector. In JADE [16], F is responsible
for two difference vectors. As a first step to understand the
fitness-adaptive DE, we choose mutation operator as in (4).
Based on (4), the correlations between F and fitness values
of different vectors will be discussed.

III. CORRELATIONS BETWEEN F AND FITNESS VALUES
A. ARCHITECTURE OF THE CORRELATIONS
Note from Section II-A that in a DE algorithm, the trail vector
is the vector that is to be evaluated and compared. As given
by the diagram in (7), the contribution of F on the trail vector
is mainly through the donor vector. It may be at first glance
that the donor vector and the target vector are independent
with each other. However, donor vector is weakly coupled
with the target vector since the base vector and the difference
vector are generated deliberately different from the the target
vector. Thus, in this work it is reasonable to assume that F is
related to the fitness values of target vectors, base vectors and
difference vectors. In the later context, these vectors will be
referred as tested vectors.

base vector
difference vector

}
F
⇒ donor vector

target vector

 Cr
⇒ trail vector (7)

Let f(·) denote the fitness value of ‘‘·’’. To evaluate the
correlations between F and fitness values of these vectors,
the functional form of F is written as

FT = gT
(
fri,G, fmin,G, fmax,G

)
FB = gB

(
fr i1,G

, fmin,G, fmax,G

)
FD = gD

(
fr i2,G
− fr i3,G

, fmin,G, fmax,G

) (8)

where ri, r i1, r
i
2, r

i
3 refer to the indices in classical DE,

gT, gB, gD represent the contributions of target vector, base
vector and difference vector, respectively. In the following the
functions gT, gB, gD are to be resolved.

To that end, several functional forms of g(·) functions are
considered to computed F . The computed F are then plugged
into existing DE algorithms to run a large number of numer-
ical experiments. The performance of each g(·) function is
recorded and then compared. Good functional forms of F can
thus be identified. Then, correlations between F and fitness
values of tested vectors are obtained.

In this paper, the following two features of g(·) functions
are mainly considered: monotonicity and nonlinearity. Here
‘‘monotonicity’’ refers to the comparison between optimiza-
tion performance improvement/deterioration with F com-
puted from two reversely-designed formulae. For example,
it is termed as ‘‘positive correlation’’ if F with g(f (v))
performs better than that with 1 − g(f (v)), where g(·) is a
monotonically increasing function of v and v is a tested vector.
On the other hand, ‘‘nonlinearity’’ denotes the operation
that redistributes values of F in [0, 1]. In this work we use

modified power functions (see later in (15)) to account for
the nonlinearity.

B. MONOTONICITY
In the following, gT, gB, gD are designed elaborately. For
gT, F can be designed from the perspective that how much
relative deficiency of the target vector’s fitness as compared
with the current best. It is denoted as ‘‘proportion type’’ and
can be written as

Fp,t =
f
(
xi,G

)
− fmin,G

fmax,G − fmin,G
(9)

where fmin,G and fmax,G are the minimum and maximum of
fitness values of generation G.

On the contrary, F can be understood as the improvement
of the target vector’s fitness by comparing with the current
worst. It is termed as ‘‘reverse proportion’’ and it is written
as

Frp,t =
fmax,G − f

(
xi,G

)
fmax,G − fmin,G

(10)

Note that Fp,t + Frp,t = 1.
Similarly, for gB, the proportion-type of F is

Fp,b =
f
(
xr1,G

)
− fmin,G

fmax,G − fmin,G
(11)

and the reverse-proportion type of F is

Frp,b =
fmax,G − f

(
xr1,G

)
fmax,G − fmin,G

(12)

For gD, the proportion-type of F is

Fp,d =

∣∣∣∣∣ f
(
xr2,G

)
− f

(
xr3,G

)
fmax,G − fmin,G

∣∣∣∣∣ (13)

and reverse-proportion type of F is

Frp,d = 1−

∣∣∣∣∣ f
(
xr2,G

)
− f

(
xr3,G

)
fmax,G − fmin,G

∣∣∣∣∣ (14)

Here Fp,d and Frp,d can be understood as the local relative
roughness/smoonthness of the fitness function, thus provid-
ing an intuitive way to characterize the local structure.

C. NONLINEARITY
The better F in Section III-B, denoted by F0 is used as a
benchmark of performance. Then, the following expressions
of F0 are searched to improve the performance. The exact
expressions are

power 1 : F = F0
power 1/2 : F =

√
F0

power 2 : F = F2
0

power 1/3 : F = 1/2+ 1/2 · 3
√
2 · F0 − 1

power 3 : F = 1/2+ 1/2 · (2 · F0 − 1)3

(15)
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Figure 1 presents 5 curves of (15), respectively.
Apparently, (15) redistributes the original F0 into new con-
centrations in [0, 1] by using nonlinear maps. The 5 cases
in (15) represent 5 typical maps. Given 1000 samples of F0
that are uniformly distributed in [0, 1], Fig. 2 presents the
new distribution of F after applying (15). As can be seen
from Fig. 2, these maps have distinct behaviors. For power
1/2 and power 2, the new F spans the whole [0, 1]. However,
the power-2-map tends to concentrate the value of F into
smaller values whereas the power-1/2-map prefers larger
values. Similarly, the power-1/3-map and the power-3-map
have two reverse behaviors. The power-1/3-map produces
two peaks around the left end and right end regions, whereas
a condense F around 0.5 can be seen from the power-3-map.
Thus, (15) can be used to represent most of the change
processes from F0 to F .

FIGURE 1. Different powers of F0.

FIGURE 2. Histograms of F transformed from the uniform F0 with
different powers.

IV. NUMERICAL EXPERIMENTS AND RESULTS
In this section, numerical experiments are designed to test the
performance of different F . Inspired by the machine learning
method, a ‘‘training set’’ is employed to determine the exact
(proportion/reverse-proportion) types and the best powers of

F for the tested vectors. Then a ‘‘test set’’ is used to validate
the performance of these correlations. For the training set,
‘‘Real-Parameter Single Objective Optimization’’ of IEEE
CEC 2014 (hereafter IEEE CEC 2014 problems) [35] are
adopted. IEEE CEC 2014 problems have 30 benchmark func-
tions: 3 unimodal functions, 13 simple multimodal functions,
6 hybrid functions and 8 composition functions. Both uni-
modal/multimodal and separable/non-separable problems are
included. Many of the functions have large numbers of local
optimums. In some cases, such as function 11 and 12, the sec-
ond better local optimum is far from the global optimum.

We reversely design two relations to find out the better
monotonicity formulation for each tested vector. For exam-
ple, (9) and (10) on target vector. These two relations, denoted
by proportional and reverse-proportional formula, are used to
solve the IEEE CEC 2014 problems. The one that performs
better is chosen as the representative monotonic relation.

For the test set, the benchmark functions (without
function 2) in ‘‘Real-Parameter Single Objective Optimiza-
tion’’ of IEEE CEC 2017 (hereafter IEEE CEC 2017 prob-
lems) [36] are considered. In IEEE CEC 2017 problems,
there are also 30 benchmark functions: 3 unimodal func-
tions, 7 simple multimodal functions, 10 hybrid functions and
10 composition functions.

A. MONOTONICITY AND NONLINEARITY OF A SINGLE
VECTOR
Before solving an optimization problem, Cr and NP need to
be designed. According to the paper of [13], Cr is usually
sensitive to problems with different characteristics. Thus,
the mechanism of determine the value Cr should be designed
carefully. In this section, the method to design Cr is designed
to be the same as that in EsDEr -NR [22]. As for NP, two
cases are concerned: (1) adaptive NP, the same as that in
EsDEr -NR [22]; (2) Fixed NP, NP = 5D [8], D is the
dimension of the problem.

1) ADAPTIVE NP
First, the adaptive NP is used.

a: TARGET VECTOR
Table 2 compares (9) and (10) in testing the 10-D version of
IEEE CEC 2014 problems. Here the benchmark is set as (10).
In order to analyze the solution quality from a statistical point
of view, the results are compared using the Wilcoxon’s rank-
sum test with a significance level of 0.05 [37]. For each F and
each benchmark function, the tests are run 51 independently.
The mean and standard deviation of the errors for these
runs are recorded in the table. The best solutions with the
smallest error mean values for each function are marked in
boldface font. After comparison, one of three signs (+,−,=)
is assigned. ‘‘+’’ means that (9) performs significantly better
than (10); ‘‘−’’ means that (9) performs worse than (10);
When the two F have no obvious performance difference,
their relation is represented as ‘‘=’’. Learning from the table,
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TABLE 2. Comparison results for monotonicity of the target vector on
IEEE CEC 2014 problems for D = 10.

(10) performs better in 6 functions and worse in 4 functions.
Thus, (10) is slightly better than (9).

Furthermore, the performance of mapping F in (10) via
(15) is tested. Table 7 (See Appendix) records the detailed
optimization results and the comparison results for each func-
tion. Figure 3 depicts the total numbers of ‘‘+’’, ‘‘−’’ and
‘‘=’’ for different powers. Here the benchmark is set as power
3 of (10). It can be found that the 3 power of (10) outperforms
1/2, 2 and 1/3 to a large extent and is slightly better than 1.
Thus, 3 is regarded as the best power of (10).

FIGURE 3. Comparison results for different powers of the target vector on
IEEE CEC 2014 problems for D = 10.

b: BASE VECTOR
Table 3 shows the comparison results of (11) and (12). Here
the benchmark is set as (11). Compared to (12), (11) is better
in 13 functions but only worse in 6 functions. Intuitively,
if the fitness value of the base vector is low, a smaller F
is better because the donor vector can inherit more from
the base vector. In other words, it prefers the exploitation
operator. Then, the performances of different powers of (11)
are compared. The optimization results and the comparison
results for each function are given in Table 8 (See Appendix).
Fig. 4 is the total numbers of ‘‘+’’, ‘‘−’’ and ‘‘=’’ for different
powers. Here the benchmark is set as power 3. Among the
5 types of powers, 1 and 3 perform the best. Considering that 3
finds more of the best solutions, 3 is chosen as the best power
of (11).

TABLE 3. Comparison results for monotonicity of the base vector on
IEEE CEC 2014 problems for D = 10.

c: DIFFERENCE VECTOR
Table 4 shows the comparison results for (13) and (14). Here
the benchmark is set as (14). Equation (14) is better than (13)
in 19 functions and worse in only 4 functions. Intuitively,
when the fitness of difference vectors is small, F should
be large enough to have a substantial perturbation on the
base vector. In other words, it encourages exploration during
searching. Then, based on (14), 5 different powers are tested,
and the results are recorded in Table 9 (See Appendix). The
total numbers of ‘‘+’’, ‘‘−’’ and ‘‘=’’ for different powers
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FIGURE 4. Comparison results for different powers of the base vector on
IEEE CEC 2014 problems for D = 10.

TABLE 4. Comparison results for monotonicity of the difference vector on
IEEE CEC 2014 problems for D = 10.

are shown in Fig. 5. Here the benchmark is set as power 3.
Obviously, the power of 3 outperforms the others.

d: DISCUSSIONS OF MONOTONICITY AND NONLINEARITY
Learning from experiments above, it is found that the cor-
relations between F and fitness values of different vectors
are different. Firstly, the number of equivalent results (tie)
of (9)/(10), (11)/(12) and (13)/(14) with power-1 are 20, 11
and 7. It can be understood that the larger the number of ties,
the less sensitive F is to the fitness of this vector. Namely,
F is most sensitive to the fitness values of difference vectors.

FIGURE 5. Comparison results for different powers of the difference
vector on IEEE CEC 2014 problems for D = 10.

This is one of the most important primary features of the DE
algorithms. By contrast, F is insensitive to the fitness values
of target vectors.

Secondly, the number of good and bad results of (10)/(9),
(11)/(12) and (14)/(13) with power-1 are 6/4, 13/6 and 19/4.
Thus, F is in proportion to the fitness values of base vectors
whereas having the opposite dependence on that of target
vectors and difference vectors. It is interesting to note that
the sensitivities are different. For example, the ratio 6/4 again
indicates that a good F is weakly dependent on the target
vector, since (9) and (10) have roughly the same trend of
improvement. Thus, the analysis above provides insights of
how DE works in a quantitative manner, which can guide the
designing of F .

Thirdly, from the analysis of nonlinearity, it can be found
that the best power of these vectors are all 3. Figure 2
reveals that the power-3-map tends to produce a condense F
around 0.5. In the previous studies of [1] and [8], 0.5 and
0.6 are suggested to be initial value of F . Thus, power-3 is
consistent with the conclusions in [1] and [8].

2) FIXED NP
In order to study the effect of NP on the correlations, in this
subsection, the population size is fixed, namely, NP = 5D.
Another round of comparison reveals that the correlations
remain the same. The results are recorded in Table 5.

TABLE 5. Correlations of the tested vectors for adaptive NP and fixed NP .

B. COMBINATION OF THESE CORRELATIONS
In fact, the previously discovered correlations can be
combined to obtain a novel way of designing F . As an
illustrative example, in this section we choose a simple
combination, namely, the average of the power-3 formulae
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of (10), (11) and (14):

F̄ =
1
6
[
(
2Frp,t − 1

)3
+
(
2Fp,b − 1

)3
+
(
2Frp,d − 1

)3
+ 3] (16)

Similar as the treatment in Section III-C, we first evaluate
the distribution of F̄ . Without loss of generality, we assume
f (x) ∈ [0, 1]. We uniformly take 1000 samples of f (x); Fig. 6
presents the distribution of F̄ . Different from Section III-C,
here F̄ is computed intermediately via Fp,t,Frp,b and Frp,d,
which are all directly computed by fitness functions. After
beingmapped by (15), values of (10), (11) and (14) aremostly
concentrated around 0.5, of which the shape appears a normal
distribution.

FIGURE 6. Histogram of F̄ .

Next, we consider applying a composite nonlinear function
on (16). Although previously it is empirically revealed that
the power-3 map in (15) is a good option, it is inappropriate
to be directly used here since the distribution of F̄ is far from
uniform distribution. On the contrary, we adopt a new strategy
via a simple translation:

F = I (u) (17)

where u = F̄ +1F, 1F = 0,±0.1,±0.2,±0.3 and

I (u) =


1, u ≥ 1
0, u ≤ 0
u, otherwise

(18)

The performance of (17) under each 1F is compared in
solving the 10-D version IEEE CEC 2014 problems. Here
the benchmark is set as 1F = 0. Figure 7 shows that
negative 1F can achieve better results; and 1F = −0.2 is
the best.

Inspired by this translation behavior, the final F takes the
following form:

F = F̄2
=

1
36

[3+
(
2Frp,t − 1

)3
+
(
2Fp,b − 1

)3
+
(
2Frp,d − 1

)3]2 (19)

This form comes from the observation that squaring a ran-
domized variable in [0, 1] decreases the expectation, which is

FIGURE 7. Comparisons of different 1F on IEEE CEC 2014 problems for
D = 10.

similar to the translation behavior with 1F < 0. In addition,
(19) increases the nonlinearity of (16).

Though (19) appears to be complicated, it only involves
algebraic calculation of known fitness values. It is worthy to
mention that these fitness values of the tested vectors have
already been calculated in the stage of selection, namely,
the fourth step in the classical DE, or Line 14 in Algorithm 1.
Thus, (19) does not add extra burden on computer resources.
In fact, numerical test shows that it only takes about 3 mil-
liseconds to produce all the F values (1800 in total) in each
generation(CPU: 3.60 GHz, RAM: 8 GB).

1) TESTING F IN (19) ON IEEE CEC 2014 PROBLEMS
The performance of (19) is tested on IEEE CEC 2014 prob-
lems. As mentioned in previous context, F is strongly associ-
ated with mutation operators. Since the current work is built
onto the classic mutation operator, numerical comparisons
are mainly limited into this type. Comparisons with other DE
variants and other metanephritic algorithms are beyond the
current scope. The adaptive Cr and NP are used. In order
to comprehensively evaluate the strength, 7 types of F in
literatures are used, which are:

(1) 0.1 and 0.9 [9] are the fixed values;
(2) rand [12] is the random value, and can be described as

F =
1
2
(1+ unif (0, 1)) (20)

(3) SinDE and SHADE are the history-based adaption;
SinDE is designed to be the same as that used in [22] and
is used during the whole generations, SHADE represents the
method to design F in the SHADE algorithm;

(4) FiADE [24] and Rbs [25] are the fitness-based
adaption. FiADE refers to the following equation:

Fi = max
(
0.8

(
1− e−1fi

)
, 0.8 (1fi/(λ+1f ) )

)
(21)

where 1fi = |f (xi)− f (xbest )| and λ = 1fi/10+ 10−14.
Rbs is short for rank-based scheme:

Fi =
i
NP

(22)
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Table 10 (See Appendix) and Table 11 (See Appendix)
record the optimization results and comparison results on
the 30-D and 50-D IEEE CEC 2014 problems. Figure 8 and
Figure 9 show the total numbers of ‘‘+’’, ‘‘−’’ and ‘‘=’’ for
different schemes of F . Here, the benchmark is set as the
proposed F in (19). Compared with 0.1, 0.9, rand, SinDE,
FiADE and Rbs, the performance of the proposed F is much
better. If compared with SHADE, the proposed F seems to
be slightly better. For 30-dimension problems, the proposed
method has an 8−8 tie with SHADE. When the dimension
is set to 50, the proposed method beats SHADE to a larger
extent, namely, performing better in 13 functions whereas
getting worse in 3 functions.

FIGURE 8. Comparisons with F in literatures on IEEE CEC 2014 problems
for D = 30.

FIGURE 9. Comparisons with F in literatures on IEEE CEC 2014 problems
for D = 50.

Figure 10 presents the convergence history in log scalewith
different F . Several benchmark functions are taken from the
50-D version of IEEE CEC 2014 problems, namely, f1, f3,
f11, f12, f22, and f23. These functions include all the afore-
mentioned types, namely, the unimodal functions (f1, f3),
simple multimodal functions (f11, f12), hybrid functions (f22)
and composition functions (f23). For composition functions
(f23 to f30), the time history fitness values with different F are
all similar. In fact, the initial fitness values with (17) are the
worst in this simulation. However, its performance catches
up its peers very quickly; it is among the best only after first
100 generations, as can been from Fig. 10 (f). The strength
of (17) can be better revealed by checking other functions. For
f1 and f3, the exploration capability of (17) is demonstrated.

TABLE 6. Wilcoxon’s test between (19) and F in literatures using
CEC2017 problems for D= 10, 30, 50 and 100, benchmark: (19).

The fitness value decreases rapidly during early generations.
The exploitation capability of (17) can be seen by examining
f11, f12 and f22. Though the error fitness values with (17) in
the early stage is not the best, its strength is evident after the
generation exceeds 1000.

2) TESTING F IN (19) ON IEEE CEC 2017 PROBLEMS
Table 12 to Table 15 (See Appendix) are the simulation
results for testing on IEEECEC2017 problems of dimensions
of 10, 30, 50 and 100. Here, a slightly different statisti-
cal analysis, namely, the Wilcoxon signed rank test [38] is
used to evaluate the performance. The comparison results
are collected in Table 6. The benchmark is set as (19).
R+ represents the sum of ranks for the test problems in which
the aforementioned previous F performs better than (19);
R− represents the sum of ranks for the test problems in which
the aforementioned previous F performs worse than (19).
In this subsection, the technique of designing F that used
in the original EsDEr -NR algorithm is also employed as a
comparison. Setting the significance level to be 0.05, it can be
found that the performance of most previous F are no better
than that of (19). Specifically, In most of the dimensions,
(19) performs better than 0.1, 0.9, rand, FiADE and Rbs.
For SinDE, it is competitive to (19) if the dimension is low.
However, when the dimension is high, such as 50 and 100,
SinDE can no longer catch up with (19). For SHADE and
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FIGURE 10. Convergence graph (error of best value (log) and optimal value curves) for different F on 50-D f1, f3, f11, f12, f22, and f23 in CEC 2014
benchmark functions. (a) f1. (b) f3. (c) f11. (d) f12. (e) f22. (f) f23.

EsDEr -NR, their performances are similar to that of (19).
If the dimension is 100, SHADE becomes better.

It should be noted that the combination method of the
correlations in (16) is preliminary. More advanced combina-
tion strategies may lead to better optimization performance.
Studying different combination strategies of F with fitness
values of different vectors are beyond the scope of this
work. However, the primary purpose of this subsection is to
demonstrate the potentials of these relations. Learning from
the comparison results above, it can be concluded that the
performance of the proposed F in (19) with the relations is
competitive.

Limited by the classical mutation operator in (4) used
in this work, the performance of the new F in (19) is
occasionally less powerful than the original EsDEr -NR [22].
Nevertheless, this paper provides a new perspective to design
fitness-based F . For complicated mutation operators such
as in [22], F usually controls the scale of more than one
difference vector. Predictably, the correlations between F and
the vectors are more complicated. Fox example, F is likely
to be related not only to the fitness values but also to the
angles of these difference vectors. The detailed discussions
about these correlations are beyond the research of the paper.
However, the simulation results in this section already indi-
cate the existence of correlations between F and the fitness
values of many vectors. Thus, it is beneficial to exploit this
phenomenon. As for specified results for complex mutation
operators, it will be the focus of future work.

V. CONCLUSION
This paper presents a novel method to investigate the correla-
tions between F and fitness values of target vectors, base vec-
tors and difference vectors in classical DE. By testing on the
single-objective-optimization problems in IEEE CEC 2014
Competitions, the qualitative and quantitative dependency is
obtained. It is found that F is in proportion to the fitness val-
ues of base vectors whereas it has the opposite dependence on
that of target vectors and difference vectors. Compared with
target vectors, F is more sensitive to the fitness values of the
base vector and difference vector. To verify the potential of
these correlations, a new F is designed that comprehensively
combines these relations. The expression involves a second
order power function of the arithmetic mean. Simulation
results show that the proposed F outperforms most current
schemes of F .

This work provides a new way to tune fitness-based adap-
tive parameters. It can be extended to design F for newly-
developed mutation operators, or to design Cr for general
metaheuristic algorithms. More advanced combination of
fitness-basedF-scheme, or correlation between scaling factor
and recent mutation operators, may also be future research
directions.

APPENDIX
NUMERICAL RESULTS
See Tables 7–15.
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TABLE 7. Comparison results for different powers of the target vector on IEEE CEC 2014 problems for D = 10.
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TABLE 8. Comparison results for different powers of the base vector on IEEE CEC 2014 problems for D = 10.
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TABLE 9. Comparison results for different powers of the difference vector on IEEE CEC 2014 problems for D = 10.
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TABLE 10. Comparisons with F in literatures on IEEE CEC 2014 problems for D = 30.
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TABLE 11. Comparisons with F in literatures on IEEE CEC 2014 problems for D = 50.
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TABLE 12. Comparisons with F in literatures on IEEE CEC 2017 problems for D = 10.
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TABLE 13. Comparisons with F in literatures on IEEE CEC 2017 problems for D = 30.
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TABLE 14. Comparisons with F in literatures on IEEE CEC 2017 problems for D = 50.
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TABLE 15. Comparisons with F in literatures on IEEE CEC 2017 problems for D = 100.
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