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ABSTRACT We develop, for the first time, and validate through some illustrative examples a new
neuro-processor based concept for solving (single-vehicle) traveling salesman problems (TSP) in complex
and dynamically reconfigurable graph networks. Compared to existing/competing methods for solving
TSP, the new concept is accurate, robust, and scalable. Also, the new concept guarantees the optimality
of the TSP solution and ensures subtours avoidance and thus an always-convergence to a single-cycle
TSP solution. These key characteristics of the new concept are not always satisfactorily addressed by the
existing methods for solving TSP. Therefore, the main contribution of this paper is to develop a systematic
analytical framework to model (from a nonlinear dynamical perspective) the TSP, avoid/eliminate subtours,
and guarantee/ensure convergence to the true/exact TSP solution. Using the stability analysis (nonlinear
dynamics), analytical conditions are obtained to guarantee both robustness and convergence of the neuro-
processor. Besides, a bifurcation analysis is carried out to obtain ranges (or windows) of parameters under
which the neuro-processor guarantees both TSP solution’s optimality and convergence to a single-cycle
TSP solution. In order to validate the new neuro-processor based concept developed, two recently published
application examples are considered for both benchmarking and validation as they are solved by using the
developed neuro-processor.

INDEX TERMS Basic differential multiplier method, bifurcation analysis, constrained optimization, conver-
gence to a single-cycle TSP tour/solution, dynamically externally reconfigurable TSP, local stability, neuro-
processor, nonlinear optimization, subtours elimination, traveling salesman problem, validation through a
benchmarking.

NOMENCLATURE
Ex Vector of decision variables
Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl Vectors of multiplier variables
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl Dependent variables (on t)
t Independent variable
f (Ex) Objective function
g1j, g2j, g3i, g∗3i, g4i, g5k,l Constraints functions
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L̃
(
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl

)
Lagrange function

α Step size of decision variables
β1, β2, β3, β∗3 , β4, β5,l Step sizes of multiplier

variables
α, β1, β2, β3, β∗3 , β4, β5,l Learning rate parameters
U Vector of the costs of edges
A Incidence matrix
D Matrix of parallel edges
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S Matrix of subtours
AT , DT , ST Transpose of A, D, S
A+, A+T Absolute value of A, AT

Sk Set of subtours in a specific group of
subtours

ℵ Number of subtours in the set Sk
N Number of edges in a given subtour
N Size of graph G
M Magnitude of graph G
n Index of a specific group of subtours
d()/dt First order total derivative with respect to t
∂x = ∂()/∂x First order partial derivative with respect

to x
‘‘×’’ and ‘‘◦’’ Product and elementwise product.

I. INTRODUCTION
A. POTENTIAL APPLICATIONS OF TSP IN SCIENCE
AND ENGINEERING
The traveling salesman problem (TSP) is a traditional combi-
natorial optimization problem, which has beenwidely studied
over 50 years in the fields of mathematics, artificial intel-
ligence and computer science. The problem is defined as
follows: ‘‘given a network of n cities, the salesman has to
travel to each city exactly once and return to the starting city
with minimum utilization of resources‘‘ [1] (in general, this
may be the shortest distance or in other words a ‘‘spanning’’
shortest path starting and ending at the starting city).

In intelligent transportation systems (ITS), for example,
TSP is encountered in vehicle routing problems [2] such as
pick-up and delivery problems (PDPs) [3], vehicle and crew
scheduling [4], etc. Further interesting fields of application
of TSP are: printed circuit boards manufacturing [5], data
transmission in computer networks [6], power distribution
networks [7], image processing and pattern recognition [8],
robot navigation [9] and data partitioning [10], logistics
and unmanned aircraft mission planning [11], just to name
a few. The TSP, as a typical example of a canonical vehicle
routing problem, has received tremendous attention during
the past decade [12]–[18]. The TSP has also been applied
in the assignment and scheduling strategies/procedures for
homogenous teams of unmanned vehicles [19] and in static
strategies for heterogeneous teams in multi-vehicle prob-
lems [20]. Further concepts of relevance for TSP have been
developed such as the following ones: (a) time-dependent
TSP [21], (b) a one-machine scheduling problem [22], (c)
shorter tours detection problems based on real-time traffic
data [23], (d) tolerances’ origin problems and sensitivity
analysis based on input data [24], just to name a few.

As a generalized form of TSP – which is however not
considered in this paper, the multiple TSP [25] denoted by
MTSP/a (a TSP solution with many cycles, many salesmen,
and one base city/node) compared to the TSP (a solution
with a single cycle), is a well-known NP-hard combinatorial
optimization problem. A particular case of MTSP/b (with
many base cities and one salesman) can be solved by the

neuro-processor developed in this paper by disabling of the
constraint related to the avoidance of subtours in the TSP
solution (this can be achieved by setting to zero the coeffi-
cients related to that specific constraint).

B. TRADITIONAL TSP SOLVER CONCEPTS: CHALLENGES
AND RELATED PROS AND CONS
A series of commonly used criteria for judging all rele-
vant concepts from literature can be summarized as fol-
lows: (a) sure detection of the exact TSP solution (several
TSP algorithms converge randomly between exact solutions
and approximate solutions); (b) complexity or computational
effort (several TSP algorithms are very time consuming);
(c) scalability (several TSP algorithms do not converge in
case of huge-size graphs or the computational effort raises
exponentially with regards to graph size); (d) the guaranty for
single- cycle TSP solution (several algorithms converge ran-
domly between solutions with one-cycle (TSP) and solutions
with multiple cycles (MTSP/b)); (e) good integration of the
dynamic change of graph parameters such as weights values,
size of the graph, magnitude of the graph, etc. (several TSP
algorithms do not efficiently handle the dynamic change of
graph parameters).

To date, several methods have been proposed for
solving TSP, which are based on deterministic or prob-
abilistic heuristics such as traditional graph search meth-
ods [27], simulated annealing (SA) [28], artificial neural
networks (ANN) [29], genetic algorithms (GA) [30], ant
colony optimization (ACO) [31], and particle swarm opti-
mization (PSO) [32], just to name a few.

In essence, various evolutionary algorithms (EA) are
inspired from the genetic and natural selection. EA can be
successfully applied for solving difficult/complex traveling
salesman problems (TSP). EA have been however frequently
found inefficient in solving especially large TSP cases [14].
J. Holland presented genetic algorithms (GA) in 1970 to study
the self-adaptation behavior of natural systems [37]. It is
a random search algorithm using a roulette wheel selection
to select chromosomes and it is also a global search algo-
rithm. Nevertheless, GA has both strong tolerance and strong
robustness, which are important features for solving complex
combinatorial optimization cases. GA is too dependent on
the initial population, is subject to premature convergence
and shows poor local search capabilities. Many heuristic and
metaheuristic supplements have been used to improve the per-
formance of GA, but GA cannot achieve optimum solutions
in finite time for graphs of high magnitude [38]. GA has the
potential of being combined with other algorithms to perform
the search for optimum solutions [15], [26]. Ant colony
optimization (ACO) always looks for optimum solutions but
requires more time for convergence and at times it remains
stagnating for higher number of nodes/cities. A parallel
implementation of ACO displays faster search of optimum
solutions [39] yet remains inefficient for graphs of high mag-
nitudes [40]. Similar to GA and ACO, particle swarm opti-
mization (PSO) has been inspired from the nature and is also

42298 VOLUME 8, 2020



J. C. Chedjou et al.: Efficient, Scalable, and Robust Neuro-Processor-Based Concept for Solving Single-Cycle TSP

a search algorithm that looks for optimum solutions amongst
the solutions obtained by each element in the herd. Parameter
tuning is necessary for obtaining optimum solutions. PSO
performs well in static search spaces and underperforms in
dynamic search spaces (that is, the search spaces of the
particles are variables) where parameter tuning would need
additional heuristics [41]. Simulated annealing (SA) avoids
the local optimum very efficiently but lags behind in terms of
the accuracy and running time (i.e., computing effort) [42].
ANNs are proven to be very fast, however with lower solution
quality [42]; hence, developing a neural network architecture
that generates good TSP solutions with less computational
complexity is a promising avenue. Hopfield and Tank pro-
posed an evolutionary memory associated neural network for
combinatorial optimization, thereby transforming TSP to a
memory association problem. But it was shown that the use
of Hopfield neural networks (in aforementioned context) for
solving NP- complete problems is in fact both memory and
time consuming [43]. The Concorde solver is one of the
most popular solvers for TSP in recent years [44]. This state-
ment is justified by the tremendous attention that has been
devoted to several benchmarks between some new developed
concepts and algorithms for solving TSP and the Concorde
solver [44]. However, the Concorde solver shows a serious
limitation as it is designed for solving symmetric traveling
salesman problems (STSP) and thus, does need some conver-
sion/transformation when dealing with the solving of asym-
metric traveling salesman problems (ATSP) [45]: indeed the
ATSP is the case of undirected graph with different edge costs
when travelling in the two contrary directions between two
specific adjacent nodes. The use of the Concorde TSP solver
for solving ATSP requires a conversion of the ATSP to a sym-
metric TSP. This conversion is tricky and tedious as it requires
additional nodes. The neuro-processor TSP solver concept
developed in this paper does efficiently overcome this lastly
mentioned problem as it can efficiently solve both STSP
and ATSP without any need of transforming, reconfiguring,
and/or retraining the neuro-processor solver. This statement is
justified by the fact that the neuro-processor solver developed
is mathematically modeled by a set of coupled differential
equations; the structure of these equations is constant (as
it does not vary) and the equations are applicable to graph
networks regardless of their size, magnitude and graph topol-
ogy (say, directed- and/or undirected- graphs, graphs with
negative values of weights, graphs with a mixture of negative
and positive values of weights, graphs with high/large values
of weights, etc.). The coefficients of the coupled differential
equations are obtained for a given graph structure/topology.
This is one of the main advantages (amongst many others)
of using the neuro-processor TSP solver developed in this
work. Though the above-mentioned methods (published by
the literature) perform sufficiently well in finding approxi-
mate solutions for TSP, these methods do not efficiently solve
a series of challenges such as real time path/route determi-
nation, accurate route detection, finding TSP in dynamically
reconfigurable graphs, etc. Since the problem is said to be

NP- hard [1], there exist several methods to calculate approx-
imate solutions in polynomial time. By contrast, finding exact
accurate solutions encounters convergence as well as running
time (i.e., computational effort) issues [46].

C. THE STABILITY CONCEPT AND KEY PERFORMANCE
CRITERIA FOR BENCHMARKING
The survey presented in Section I.B. clearly witnesses the
tremendous attention devoted to the analysis of TSP with
concrete applications in science and engineering. In order
to demonstrate the effectiveness of the neuro-processor con-
cept developed for robustly solving TSP in dynamically
reconfigurable graph networks, but also for validation pur-
poses, we perform a comprehensive benchmarking, which
consists of comparing the results of our novel TSP-solver
neuro-processor with those results published in [11]. The
key performance criteria considered as benchmarkingmetrics
are:

(a) Stability of ‘‘the previously computed TSP solution/
tour’’– it refers to the fact that due to random perturbations of
the arc values (values of weights) the total cost of ‘‘the newly
computed TSP path/tour’’ is always greater than the total cost
of ‘‘the previously computed TSP solution/tour’’ [11].

(b) Accuracy– it refers to the sure detection of the
true or exact TSP solution.

(c) Robustness– it refers to the fact that the performance of
the neuro-processor is not affected by the dynamic change of
graph-fundamental parameters.

(d) Flexibility– it refers to the fact that despite the
aforementioned dynamic changes of graph- fundamental
parameters, a new (re-) training is not necessary, as this is
otherwise (if needed; it is the case for most traditional/related
approaches) extremely time-consuming (i.e. very expensive)
computationally.

(e) Scalability– it refers to the capability of a solver
system (e.g. the neuro-processor developed in this paper)
to solve TSP with reasonable/efficient computational
effort even for (despite) cases of huge/high graph- sizes
and magnitudes. Ideally, the computational effort should
remain constant or rise only linearly with raising graph
size or magnitude.

Overall, two specific case-study application examples are
considered. The first case-study is related to the analysis of
the stability of a previously computed optimal TSP tour as
reported in [11]: one speaks of ‘‘TSP tour stability’’. This
‘‘tour stability’’ concept refers to its sensitivity to dynamic
changes, especially that of arc-weights. Hereby, it is observed
which changes in arc-weights are still tolerable without
resulting in changing a given optimal TSP tour.

Furthers, the second case-study is related to a comprehen-
sive analysis of the local stability (i.e. the stability of equilib-
rium/fixed points) of the developed neuro-processor. To the
best of our knowledge, this second case-study, which is intro-
duced for the first time concerning TSP solving is a sig-
nificant novel contribution aiming at demonstrating how the
analysis of the stability of equilibrium points can result into
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the derivation of fundamental relationships/formulas, which
can be used to control and ensure/guarantee the fast conver-
gence of the neuro-processor developed to the exact/true TSP
solution.

Regarding the ‘‘stability’’ analysis conducted in this paper,
two different forms of stability are considered.

Consider the first form of stability investigated in this
paper, the so-called ‘‘TSP tour stability’’. It is the stability of
a previously computed tour as reported in [11]. Here, the sta-
bility consists of verifying whether the previously computed
tour (called optimal TSP path) remains optimal (amongst
a set/group of tours) when changes occur in various costs
of edges within the graph network. Various stability crite-
ria discussed allow a fast evaluation of whether itineraries
remain optimal [11]. Indeed, Ref. [11] develops the integer
linear programming (ILP) relaxation method to analyze the
stability of ‘‘traveling salesman tours’’ when changes occur
in various costs of edges within a graph. That thereby con-
ducted analysis considers travel costs between cities for the
cases of symmetric TSP (i.e. cases where the arcs’ costs are
time-homogeneous or time-independent and are also equal
for adjacent arcs/edges), asymmetric TSP (i.e. cases where
the arc’s costs are time-inhomogeneous or time-dependent
and are also different for adjacent arcs/edges), and sequence
dependent TSP (i.e. cases where the costs of the transi-
tion from one city to another depends on both the distance
between these cities and on subsequent k cities). Various
regions of ‘‘TSP tour’’ stability as well as regions of insta-
bility are/were thereby computed/determined. Their analysis
consists of determining the sensitivity of a given/current opti-
mal TSP-solution to changes in the costs of edges. Indeed,
a variation (or monitoring) of the costs of an arbitrary number
of edges is performed in order to determine, whether the
previously computed TSP tour remains optimal amongst a
set/group of tours. The stability is observed whenever the
previously computed tour remains optimal, otherwise it is
unstable. This statement is used in [11] to derive regions of
stability and/or instability in terms of some specific costs
of edges, which are used as control parameters (or, to use
a system-dynamical term/terminology, bifurcation parame-
ters for stability analysis). Despite the effectiveness of the
tour-stability method developed in [11] when dealing with
graphs of restricted sizes, the method appears inaccurate
when considering graphs of huge/large- sizes [11]. According
to this reference, it is challenging (and quite impossible)
to enumerate all possible tours when dealing with graphs of
huge/large sizes. For such graphs, exact information concern-
ing the ‘‘tour-stability’’ cannot be provided using the method
in [11].

Consider the second form of stability investigated in
this paper, the so-called ‘‘local stability’’. It concerns the
stability of (the neuro-solver’s) equilibrium points (from
a system-dynamical perspective), which is further demon-
strated as being very critical to guarantee the sure conver-
gence to the exact TSP solution and thereby avoiding faulty
TSP detections. Full details of the analytical steps involved in

the local stability analysis of TSP related fixed/equilibrium
points are provided in Section IV. The focus (in this paper)
on the stability of equilibrium points is motivated by the wish
of significantly contributing to the enrichment of the related
state-of-the-art. Indeed, to the best of our knowledge, the cur-
rent relevant state-of-the-art does not provide yet a systematic
analytical concept to guarantee the sure convergence to the
exact TSP solution.

D. CORE CONTRIBUTIONS AND OVERALL
PAPER ORGANIZATION
This paper focusses on the mathematical modeling of TSP
from a system-dynamical perspective. Analytical expressions
/formulas (involving the fundamental parameters of the graph
under investigation) are derived (obtained) to guarantee the
avoidance of subtours and thus ensure the sole detection
of single-cycle TSP-solutions. The paper also comprehen-
sively develops the local stability (also called stability of
equilibrium or fixed points) analysis as a systematic analyt-
ical concept to predict and control the sure convergence to
‘‘true/exact’’ TSP solutions. Furthers, a bifurcation analysis is
conducted in order to ensure/guarantee detection of the opti-
mal TSP solution/tour. Analytical relationships (or formulas)
are thereby established/derived and used to guarantee both
accuracy and robustness of the neuro-processor developed
for solving TSP. Overall, the paper develops a systematic
analytical concept to tackle/address the five challenging
issues/problems (see below in Section II.B) commonly faced
(and not satisfactorily solved) by the traditional/related meth-
ods, concepts and algorithms for solving TSP. To the best
of our knowledge, the current relevant literature does not
provide yet a sufficiently comprehensive systematic analyt-
ical framework to address the mentioned five challenging
issues/problems.

The rest of the paper is organized as follows. Section II
explains the modeling principle of traveling salesman prob-
lems (TSP) by ordinary differential equations (ODEs).
Section III presents full details of the general methodology
for modeling TSP through ODEs. Section IV is then con-
cerned with the local stability analysis of the ODE based
neuro-processor. Analytical formulas are obtained under
which the neuro-processor developed always converges to
the exact TSP-solution. Section V focuses on numerical
simulations and a validation of the concept(s) presented in
Section IV. Two illustrative case-study examples are pre-
sented and discussed. The first case-study investigates the sta-
bility of a previously computed TSP- tour as reported in [11].
The second case-study is concerned with the numerical study
of local stability with the aim of verifying and validating the
analytical results obtained in Section IV. Also, the advantage
of the local stability analysis for the control and establishment
of the convergence properties (of the neuro-processor) to
the true/exact TSP solution is clearly demonstrated through
various numerical simulations (see bifurcation diagrams in
Figs. 8, 9, 10, 11, 15, 19 and 22). The analytical criteria of
convergence to the true/exact TSP solution (established in
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Section IV) are also validated numerically. To finish, a series
of concluding remarks are summarized in Section VI.

II. MOTIVATION, KEY CHALLENGES RELATED TO
SOLVING TSP, AND MODELING PRINCIPLE OF TSP
A. MOTIVATION FOR DEVELOPING A TSP SOLVER
INSPIRED FROM THE NONLINEAR DYNAMICAL
PERSPECTIVE, AND A BRIEF OVERVIEW OF SAMPLE
CONTRIBUTIONS EXPLOITING THE BDMM CONCEPT
The literature is very poor in terms of scientific contributions
regarding the development of systematic analytical/ compre-
hensive methods for the efficient solving of TSP in complex
(i.e. large) and dynamically reconfigurable graph networks.
The nonlinear dynamical perspective used in this paper is
based on key concepts such as equilibrium points, stability,
convergence, and bifurcation analysis, which are used to
develop a systematic analytical framework for a comprehen-
sive addressing of TSP. The analytical framework developed
does comprehensively capture all relevant insights of com-
plexity related to the TSP solving. In this context, ordinary
differential equations (ODEs) models are found appropriate
and convenientmodelling instruments. This justifies themod-
eling procedure that consists of transforming TSP into a con-
strained optimization problem and thereafter transforming it
further into an unconstrained problem through the Lagrange
function. Finally, the basic differential multiplier method
(BDMM- see Refs. [33], [34], [47]–[49],) is used to obtain
the ODE’s-based solver model of the TSP. While using the
ODE’s based solver model of TSP for investigating equilib-
rium points, stability, convergence and bifurcations, key ana-
lytical expressions/conditions are obtained/established for the
analysis, handling and/or control of key challenging issues
like:
• Dynamic reconfigurability of the TSP solver;
• Stability and/or robustness of the TSP solver;
• Sure convergence to a TSP solution;
• Subtours avoidance and detection of solely single-cycle
TSP solutions;

In essence, the TSPmodeling procedure encompasses several
steps amongst which the BDMM (BDMM: Basis Differential
Multiplier Method) constitutes an essential methodological
brick in the huge flow-chart (i.e. methodology) describing
our TSP modeling procedure. Some illustrative special uses
of the BDMM in our previous works at a step of the gen-
eral optimization procedure can be found in [47]–[49], and
in [33], [34] (see also references therein).

Reference [47] develops a new concept based on cel-
lular neural networks (CNN) for the solving of nonlinear
ODEs and PDEs. A new templates calculation technique
performing nonlinear adaptive optimization (to which we
have assigned the acronym of NAOP – nonlinear adaptive
optimization process) is used to compute the appropriate
cellular neural network templates corresponding to eachODE
and/or PDE under investigation. The BDMM is exploited in
a step of the procedure for the CNN- template optimization.
This procedure encompasses several steps such as: the design

of an appropriate CNN- architecture, the formulation of
related constraints, the mapping of both dynamical systems
to be identical, the use of BDMM, the evaluation of the rate
of divergence between the dynamical systems at stake (to be
mapped), the CNN-templates calculation, just to name a few.

Reference [48] is focused on the generalization of the
NAOP technique developed in [47] for CNN- templates
computation. Therefore, a universal concept based on cel-
lular neural networks was developed for the ultrafast and
flexible solving of ODEs and PDEs. The main difference
between [47] and [48] is the applicability of the concept
developed in [48] to all types of complex (i.e., stiff or highly
nonlinear) ODEs and PDEs. Similarly, to [47], the BDMM
is exploited in a step of the procedure of CNN- templates
optimization.

Reference [49] develops a framework based on recurrent
neural networks for the efficient solving of both the short-
est path problem (SPP) and the shortest path spanning tree
problem (SPST). The effectiveness of the framework devel-
oped for solving both SPP and SPST was clearly demon-
strated through a thoroughly benchmarking of our method
with some published methods based on heuristics. Similarly,
to the present paper, the BDMM was exploited in a step of
the procedure for modeling SPP and SPST through ODEs.
Compared to the contribution in this paper, the TSP problem
is not addressed in [49]. Also not addressed in [49] is the
nonlinear dynamical perspective based on the investigations
of issues such as the following ones: equilibrium points,
stability, convergence and bifurcation analysis. These issues
are addressed in this paper in order to tackle all issues of
relevance with regards to the complexity of an efficient and
reliable TSP solving.

Reference [33] develops a general optimization concept
exploiting the basic differential multiplier method (BDMM).
It is thereby demonstrated how BDMM can satisfy the
constraints formulated according to a given optimization
problem. In essence, the constrained optimization problem
is transformed into an unconstrained optimization problem
characterized by the Lagrange function expressing the total
energy of the system. The Lagrange function is expressed
in terms of both ‘‘decision neurons’’ and ‘‘multiplier neu-
rons’’. While using BDMM, a set of differential equations is
obtained to model an optimization problem at stake. As proof
of concept (in order to validate the results), two concrete
application examples are considered: the case of enforcing
permutation codewords in the analog decoding problem, and
the case of enforcing valid tours in TSP. Compared to the
contribution in this paper, no systematic analytical method
is provided in [33], specifically to address the TSP prob-
lem. Furthers, the nonlinear dynamical perspective involv-
ing the investigation of issues like equilibrium points (fixed
points), stability, convergence and bifurcation analysis is not
addressed. Let’s note once more that the nonlinear dynamical
perspective is very important to tackle/handle all relevant
aspects with regards to the complexity and the reliability
related to solving TSP.
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Reference [34] develops an algorithm based on neural
networks to solve the multiple traveling salesmen prob-
lem (MTSP). The algorithm developed is expressed in
the form of differential equations. These equations are
obtained by combining the basic differential multiplier
method (BDMM) [33] with an expanded version of Hopfield-
Tank’s neuromorphic city-position map [35]. The MTSP is
modeled into the form of an energy function describing the
total length (to be minimized) of a tour. This tour is composed
of multiple non-trivial subtours with a common node/vertex
representing the base city. Here, nontrivial subtours are sub-
tours with at least one city other than the base city. The
great advantage of the algorithm developed is clearly justi-
fied in [34]. Indeed, the algorithm expressed in the form of
differential equations can be implemented on hardware and
thus solutions to complicated decision-making problems are
(or can be) obtained by solving the differential equations in
(real-) time. This comment witnesses the potential of achiev-
ing very good computing performances when solving MTSP
and TSP using algorithms based on differential equations.
It is also clearly stated in [34] that ODEs-based models
are easily implementable on analog circuits characterized by
an ultra-fast computing performance. By contrast thereto,
in [34], the main drawbacks of the Hopfield and Tank’s
method are discussed, amongst which the stability of both
MTSP and TSP solutions as well as the optimality of their
solutions are clearly underscored, which are important issues
not addressed so far in [34]. The solution proposed in [34]
to tackle/overcome the aforementioned drawbacks was to
combine Hopfield and Tank’s methods with the BDMM.
By combining these last-mentioned methods, it leads to the
algorithm developed and presented in [34] for the solving of
bothMTSP and TSP. A further interesting concluding remark
was formulated in [34] (see the last paragraph of section 5).
Indeed, it is thereby clearly stated that the stability of the
algorithm developed in [34] for solving MTSP and TSP as
well as the optimality of the respective solutions are impor-
tant (explicitly not, resp. not yet solved/addressed) research
questions (or research avenues) to be further investigated in
future research, as outlooks. This comment can be used to
witness/justify the key contribution of our work addressing
amongst many other questions, these last-named two research
questions/issues formulated in [34] as outlooks. When com-
paring the method/approach in [34] with our method in this
paper, the key difference and/or key innovation is summarized
by the five bullets/points below, which are comprehensively
and explicitly considered in this work, while, however, they
were not addressed in [34]:
• The mathematical modeling of subtours and the respec-
tive subtours avoidance;

• The new mathematical modeling of the so-called bina-
rization constraints (i.e.: they do express whether a given
edge does belong to the final TSP solution or not);

• The analytical investigation of stability and conver-
gence properties of the single-cycle TSP solver model
developed;

• A comprehensive bifurcation analysis and the deriva-
tion of conditions/ranges of parameters to ensure
the ‘‘always’’-optimality of detected single-cycle TSP
solutions;

• The possibility of detecting only single-cycle TSP solu-
tions. This corresponds to one salesman and one base
city (also called ‘‘TSP solution with a single depot’’).

B. COMPLEXITY, STABILITY, AND ROBUSTNESS: KEY
CHALLENGES RELATED TO SOLVING TSP
According to the overview provided above, it clearly appears
that nowadays several challenging issues/problems still exist
(see below), which are not yet satisfactorily solved/addressed
by existing methods for solving TSP:
1) Lack of flexibility.
With respect to dynamic changes in the fundamental

parameters of a graph network (e.g. arc’s weights, size, mag-
nitude, topology, etc.) most existing methods (concepts and
algorithms) do need either a new (re-) training or a new
start of calculations, which consequently result in additional
significant computational costs. By contrast, the mathemat-
ical model of the neuro-processor solver developed here is
expressed by a model made of coupled ordinary differential
equations (ODEs). The main advantage is that the coupled
ODE-model remains valid and thus applicable to all changes
in the graph fundamental parameters. The flexibility of the
neuro-processor solver developed is therefore justified as
the dynamic changes in the graph- fundamental parameters
(i.e., magnitude, size, costs of edges, and graph topology)
affect solely the coefficients of the coupled ODE-model (and
these belong to the model/system inputs, which can freely
dynamically change (over time)) and do not affect the struc-
ture (or the form) of the ODE-model describing the neuro-
processor. The advantage hereby is that the output of the
neuro-processor is obtained through a solution of the (dynam-
ically reconfigurable – through inputs) coupled ODE-model.
Therefore, no re-training is needed as the numerical solving
of ODEs is realized as a direct iterative process even in case
of ODEs models with time-varying coefficients.
2) Weak robustness to the dynamic change of graph-

fundamental parameters (e.g. values of weights, size,
magnitude, and topology).

In the concept of this paper, the robustness (this is due
to the fact that the performance of the neuro-processor is
not affected by the dynamic change of graph parameters
‘‘size, magnitude, and topology, etc.’’) of the neuro-processor
TSP solver developed is ensured by a system-dynamical
perspective.

In fact, an appropriate analytical formulation of the key
modeling constraints is comprehensively done (e.g. connec-
tivity of nodes (see Eq. (10) ), binarization (see Eq. (11)),
subtours avoidance (see Eq. (13)) and also, the possi-
bility of monitoring the step sizes of both decision and
multiplier neurons (see α, βi, β∗3 , and β5,l in Eq. (15)).
Furthers, a straight-forward comprehensive demonstration
involving some fundamental instruments/concepts from the
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nonlinear system-dynamical science (e.g. stability analy-
sis, bifurcation analysis, etc.) are used to demonstrate an
‘‘always’’-sure convergence to the exact/true (single-cycle)
solution despite the dynamical changes of graph parame-
ters. This demonstration and related validation is performed
through various numerical simulations in Section V.
3) Poor capacity of avoiding subtours and thus the poor

capacity of ensuring the detection of single-cycle TSP- tours.
In case of complex graphs, several classical/traditional

algorithms do generally detect TSP-solutions in form of sub-
tours (called multiple TSP (MTSP)) rather than detecting
TSP- solutions/tours with only a single-cycle.

The modeling of subtours is carried out (in this paper) and
analytical expressions (involving the fundamental parame-
ters of the graph under investigation) are used/involved in
the overall concepts as constraints in order to ensure the
avoidance of multiple TSP (i.e., MTSP) solutions and there-
fore ensure the ‘‘always’’-convergence to single-cycle TSP
solutions.
4) Failure to converge during the TSP solving.
It is known (from the literature) that several classical/

traditional methods and algorithms often do not converge
in cases of the simultaneous presence of several optimal
TSP-tours called global minima (with different trajectories
of equal total cost) co-exist in a graph. The investigation
of the respective stability (stability of the neuro-processor
from a system-dynamical perspective) is carried out in
this paper to establish key analytical conditions/formulas
to ensure/guarantee the ‘‘always’’-convergence to an opti-
mal TSP solution even in cases where several optimal
TSP-solutions (with different trajectories) coexist in a graph.
The analytical/theoretical results obtained (in Section IV)
are confirmed (in Section V) through various numerical
simulations.
5) Failure to detect the true/exact TSP solution/tour.
The true/exact TSP solution also called ‘‘optimal TSP

solution’’ is the one corresponding to the global minimum.
This challenging problem (i.e. failure to detect the true
global optimum) generally occurs whenever several local
minima co-exist in the vicinity (neighborhood) of the global
minimum.

A bifurcation analysis conducted in this paper is used
to demonstrate that appropriate windows/ranges for val-
ues/settings of the neuro-processor’s parameters can be
selected and fixed to ensure an ‘‘always’’-optimality of the
TSP solution despite/regardless of the specific settings of
various input graphs and their related respective parameters’
settings (i.e. arc weights, topology, etc.). This demonstra-
tion is explained, validated, and experimentally proven (in
Section V) through various numerical simulations.

C. MODELING PRINCIPLE OF TSP THROUGH ODES
This section focuses on the full description of the developed
concept for traveling salesman optimal path/tour detection
problem in dynamically reconfigurable graphs. The synoptic
representation of the concept is depicted in Figure 1.

FIGURE 1. Synoptic representation of the neuro-processor based TSP
solver concept. The four inputs are fundamental parameters of the graph
under investigation. These inputs are used as external commands. The
output xi = 1 expresses the belonging of an edge to the TSP solution, and
xi = 0 otherwise.

The neuro-processor solver is made-up of four inputs A,D,
S, and U (see Figure 1). The first three inputs are matrices
and the fourth input (U ) is a vector. The details of these
inputs are provided in Sections III and IV. The output xi of the
neuro-processor is binary; xi = 1 expresses the belonging of
an edge with state xi to the TSP solution and xi = 0 otherwise.
The core of the neuro-processor is modeled by a set of cou-
pled ODEs. The coefficients of the coupled ODEs-model are
the inputs (A,D, S, andU ), and the step sizes of both decision
and multiplier neurons are denoted by α and βi respectively
(these are internal parameters of the neuro-processor; more
details are provided in Sections III and IV).

The main advantage of the neuro-processor based TSP
solver concept developed is that the inputs are made-up
of the fundamental parameters of the graph under inves-
tigation. These inputs are therefore used as external com-
mands, which can even dynamically change without affecting
the neuro-processor. Besides, the coefficients of the cou-
pled ODEs-model are expressed in matrix form and this
expression witnesses the scalability of the coupled ODEs-
model. Also, the coupled ODE-model is a suitable frame-
work for both stability and bifurcation analyses (from a
system-dynamical perspective).

In some of our recent papers, the neuro-processor based
concept has been successfully applied for solving nonlin-
ear ordinary and partial differential equations (ODEs and
PDEs) [47], [48] and also for solving shortest path prob-
lems (SPP) and shortest path tree problems (SPTP) in
dynamically reconfigurable graph/networks (see [49]).Worth
mentioning that the neuro-processor based TSP solver is
of general applicability as it has already been successfully
applied to various graphs, regardless of their sizes, magni-
tudes, structures/topologies, the weight-values (e.g. low costs
values, high costs values, negative costs, positive costs, mix-
ture of negative and positive costs, etc.) (See our Ref. [49]).
By contrast, it is well-known that the robustness of heuristic
methods is drastically affected for high weights values [49].
This statement is justified by the benchmarking performed in
this paper (see Section V). This benchmarking could be used
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to underscore the neuro-processor based TSP solver concept
developed as a good candidate to overcome the inherent
serious drawbacks (e.g. instability and weak robustness) of
most heuristic (traditional) methods for TSP solving.

III. GENERAL METHODOLOGY FOR MODELING TSP:
LAGRANGE FUNCTION AND COUPLED ODES MODEL
A. TRANSFORMING TSP INTO AN OPTIMIZATION
PROBLEM
1) DERIVATION OF THE LAGRANGIAN AS ‘‘TOTAL ENERGY’’
OF THE SYSTEM (SEE EQ. (7) AND ALSO [47]–[49])
Considering the TSP as a nonlinear optimization problem,
we define the objective function by Eq. (1), where the func-
tion f (Ex) represents the total cost of the graph.

Min
[
f (Ex)

]
(1)

The objective function (1) is subject to constraints (2) - (6).{
g1j (Ex) = 0 (2)

g2j (Ex) = 0 (3){
g3i (Ex) = 0 (4a)

g∗3i (Ex) = 0 (4b){
g4i (Ex) = 0 (5)

g5k,l (Ex) = 0 (6)

Note that (4) are split up into (4a) and (4b) because they
are mathematically equivalent. However, in the context of
the neuro-processor TSP solver developed, (4a) and (4b)
are used simultaneously to ensure a robust binarization of
components of Ex (see details below) characterized by two
stable equilibrium points P1(x = 0) and P2 (x = 1) as shown
in Figure 2.

FIGURE 2. Illustration of the binarization constraints. The constraints
g∗3i

(
Ex
)
=
[
g3i

(
Ex
)]2
= 0 are fulfilled at points P1(x = 0) and P2 (x = 1).

The constraint g3i
(
Ex
)
= Ex

(
Ex − 1

)
is squared to obtain the two stable

equilibrium points Pi .

In Equation (1) to (6), the vectors of multiplier variables
are expressed as follows:

Eλ = [λ1, λ2, . . . ,λM ]T ; Eϕ = [ϕ1, ϕ2, . . . ,ϕM ]T ;

Eγ = [γ1, γ2, . . . ,γN ]T ; Eγ ∗ =
[
γ ∗1 , γ

∗

2 , . . . ,γ
∗
N
]T
;

Eω =
[
ω1, ω2, . . . ,ωN/2

]T
; Eµl =

[
µ1,l, µ2,l, . . . ,µℵ,l

]T
;

their components are denoted λj, ϕj, γi, γ ∗i , ωi, and µk,l . The
decision variable Ex = [x1, x2, . . . ,xN ]T is the state vector

of all edges xi of the graph under consideration (xi = 1
for edges belonging to the TSP solution and xi = 0 oth-
erwise). Thus, the dimension of Ex is equal to N (N is the
graph size). The optimization constraints g1j (Ex) = 0 and
g2j (Ex) = 0 (see (10)) are formulated to ensure the belonging
of each node of the graph to the TSP solution. Constraints
g3i (Ex) = 0 and g∗3i (Ex) = 0 (see (11)) ensure the binarization
of all components of vector Ex. These constraints are identical
mathematically. However as depicted in Figure 2, the expres-
sion g∗3i (Ex) =

[
g3i (Ex)

]2 is characterized by a double-well
potential with two stable equilibrium points P1(x = 0) and
P2 (x = 1). Thus, using constraints g3i (Ex) and g∗3i (Ex)
simultaneously leads to consolidate the binarization and this
ensures a robust binarization of all components of Ex. The
advantage of using (4a) and (4b) simultaneously is also
reported in our previous related works/references [47], [48].
Constraints g4i (Ex) = 0 (see (12)) are formulated to avoid
adjacent edges in the TSP solution, specifically in the gen-
eral case of undirected graph networks. Finally, constraints
g5k,l (Ex) = 0 (see (13)) are introduced to avoid subtours in
the TSP solution and therefore ensure solely convergence to
a single-cycle (one-cycle) TSP solution.

According to the above definitions of all optimization
constraints, the indexes i, j, k , and l are defined as follows:
i = 1, 2, . . . ,N , j = 1, 2, . . . ,M , k = 1, 2, . . . ,ℵ, and l =
1, 2, . . . , n. The integersM ,N ,ℵ and n represent respectively
the magnitude, size, the total number of subtours in a given
group of subtours Sk , and the total number of different groups
of subtours identified in a graphG. Therefore, in the last term
of (7), the index l is used for the numbering of constraints in
each group of subtours (say, g5k,1 (Ex) denotes the constraints
in group 1 and g5k,2 (Ex) denotes the constraints in group 2,
etc.). Similarly, the index k denotes the subtours found in a
given group of subtours (say, k = 1, . . . , 20 in a class/group
of TSP solutions with a total of 20 subtours; k = 1, . . . , 500
in a class/group of TSP solutions with a total of 500 subtours,
etc.). Details regarding the identification of subtours are pro-
vided below (see section related to the modeling of subtours);
more details can also be found in [50], [51].

The relaxation method is used to transform the constrained
optimization problem (modeled by (1) to (6)) into the uncon-
strained optimization problem (see (7)).

L̃ = f (Ex)+
∑M

j=1
λj ·

[
g1j (Ex)

]
+

∑M

j=1
ϕj ·

[
g2j (Ex)

]
+

∑N

i=1
γi ·

[
g3i (Ex)

]
+

∑N

i=1
γ ∗i ·

[
g∗3i (Ex)

]
+

∑N
2

i=1
ωi ·

[
g4i (Ex)

]
+

∑n

l=1

∑ℵ

k=1
µk,l ·

[
g5k,l (Ex)

]
(7)

2) APPLICATION OF THE BASIC DIFFERENTIAL MULTIPLIER
METHOD (BDMM) [33], [34], [47]–[49]
The concept of neuron-dynamics is exploited as an opti-
mization strategy that maps the optimization problem unto
the energy of a neural network in order to find the
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optimal solution. The underlined energy is represented by the
Lagrange function as the total energy of the system. Thus,
minimizing the Lagrange function leads to a stable state.
This stability is explained by the sure convergence of the
basic differential multiplier method (BDMM). An in-depth
demonstration of this convergence can be found in our pre-
vious works, see recently published papers [47]–[49]. Thus,
applying the BDMM to the Lagrange function in (7) leads
to (8).



dxi
dt
= −α

∂L
∂xi

dλj
dt
= β1

∂L
∂λj
;
dϕj
dt
= β2

∂L
∂ϕj
;
dγi
dt
= β3

∂L
∂γi

dγ ∗i
dt
= β∗3

∂L
∂γ ∗i
;
dωi
dt
= β4

∂L
∂ωi
;
dµk,l
dt
= β5,l

∂L
∂µk,l

(8)

In Equation (8), xi are components of the vector of decision
variables Ex (i = 1, 2, . . .N ), λj are components of the vector
of multiplier variables Eλ (j = 1, 2, . . .M), ϕj are components
of the vector of multiplier variables Eϕ (j = 1, 2, . . .M), γi
and γ ∗i are components of the vectors of multiplier variables
Eγ (i = 1, 2, . . .N ) and Eγ ∗ (i = 1, 2, . . .N ),ωi are components
of the vectors of multiplier variables Eω (i = 1, 2, . . .N/2) and
µk,l are components of the vector of multiplier variables Eµl
(k = 1, 2, . . .ℵ and l = 1, 2, . . .n). As already mentioned
above and due to the importance of these two parameters
(k and l) let’s recall here that the parameter k is the index
of each subtour and ℵ is the total number of subtours in a
specific class/group of subtours. l is the index assigned to
each class/group of subtours and n is the total number of
classes/groups of subtours in the graph. It is worth mention-
ing that according to (8) the variables xi, λj, ϕj, γi, γ ∗i , ωi,
and µk,l depend on ‘‘t’’ (‘‘t’’ is the independent variable of
the set of (8)). Further, the set of (8) reveals the coupling
between decision variables xi and the multiplier variables λj,
ϕj, γi, γ ∗i , ωi, and µk,l . These dependent variables converge
to equilibrium/fixed points (as ‘‘t’’ increases): this conver-
gence corresponds to the end of the optimization process. The
quantities α and βi represent respectively the step sizes for
updating decision- and multiplier- variables. These quantities
are positive real numbers (α > 0; βi > 0). The next
section (Section III. B.) shows how the mathematical model
of the neuro-processor based TSP solver concept can be
obtained/derived using (8).

B. MATHEMATICAL MODEL OF THE NEURO- PROCESSOR
BASED TSP SOLVER SIMULATOR
1) FORMULATION OF CONSTRAINTS WITH REGARDS
TO THE TSP
Let’s consider a graph denoted by G = (V ,E), where V
and E represent the sets of nodes and edges respectively. The
objective function is formulated asMin

[
f (Ex)

]
where f (Ex) is

the total cost ofG. In (9) the costs of edges are denoted ci and
the decision variables xi give the states of edges: xi = 1 for

edges belonging to the TSP solution and xi = 0 otherwise.

f (Ex) =
∑N

i=1
cixi

{
xi ∈ F = {0, 1}

∀i|ci ∈ <
(9)

The expression (9) does assume a linear path cost model.
Nevertheless, in various practical cases the path cost may be
nonlinear. This latter issue is to be addressed in future works.

The constraint to ensure the connectivity of all nodes
(belonging to the optimal TSP route/path) is modeled math-
ematically by (10). The system (10) is applied to each node
j (j = 1 . . .M) of the graph under investigation.

At node j :


g1 (Ex) =

∑N

i=1i6=j
xi ∗ hij = 0

g2 (Ex) =
∑N

i=1i6=j
xi − 2 = 0

(10)

The parameter hij in (10) can take only two values (hij =
−1 or hij = +1). At a node j, 2 groups of edges are identified
and a specific value of hij is assigned to edges belonging to
a particular group. Specifically, hij = −1 for all incoming
edges (i.e., edges entering the node j) and hij = +1 for all
outgoing edges (i.e., edges leaving the node j).

The constraints formulated in (11) ensure the binariza-
tion of state variables (decision variables) xi of all edges of
graph G.

g3 (Ex) = xi (xi − 1) = 0 (11a)
g∗3 (Ex) = [xi (xi − 1)]2 = 0 (11b)

The constraints (11) are reported in our previous works pub-
lished in [47] and [48].

The constraints (12) are used in case of bi-directed graph.
Here, vertices or nodes are pairwise connectedwith two edges
in opposite directions (called parallel or adjacent edges).
Thus, constraints (12) are formulated to avoid the belonging
of parallel edges to the TSP solution. Considering a given pair
of vertices/nodes connected by two parallel edges x2i (in one
direction) and x2i−1 (in reverse direction), constraints (12a)
are formulated accordingly (where, x2i and x2i−1 are binary):

(x2i−1 + x2i) (x2i−1 + x2i − 1) = 0 (12a)

The expression (12a) avoids the belonging of a pair of parallel
edges to the TSP solution/tour. Therefore, only one edge of
a pair of parallel edges can belong to the TSP solution/tour).
Applying (12a) to all parallel (or adjacent) edges leads to the
following expression into matrix-form (D is defined in (15h),
at the bottom of page 12):

g4 (Ex) = DEx◦ (DEx − 1) = 0 (12b)

The matrix D is easily obtained for a given graph as follows:
D1 is the pair of parallel edges (x1, x2). D2 is the pair of
parallel edges (x3, x4), and DN/2 is the pair of parallel edges
(xN−1, xN). Thus the matrixD in (15h) is of dimension

(N
2

)
×

N , where N is the size of the graph under investigation. The
vector Ex = [x1, x2, . . . ,xN ]T is the state vector of edges in G
and the operator ‘‘◦’’ performs the elementwise product.
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The constraint (13a) is formulated to avoid the belonging
of a particular class/group of subtours to the TSP solution.
Specifically, the constraint (13a) avoids the belonging of
subtours with exactly N edges to the TSP solution. xj are
the edges forming a given subtour in Sk . When (13a) is
fulfilled the N edges of a subtour in Sk cannot form a closed
loop (cycle).

g5k,l (Ex) =
∏N

i=1

[∑N
j=1
xjεSk

(x j − i+ 1)

]
= 0 (13a)

Considering a specific class/group of subtours Sk with
exactly N edges each, if we denote by ℵ the total number
of subtours identified in the class/group of subtours, thus the
constraint (13a) can be applied to all subtours leading to the
general expression in (13b).∑ℵ

k=1
µk .

[∏(N−1)

i=0

(∑N
j=1
xjεSk

xj − i

)]
= 0 (13b)

For a given class/group of subtours, µk are coefficients
assigned to each subtour in the set of subtours Sk con-
taining a total number of ℵ subtours with exactly N edges
each.

We now consider different classes/groups of subtours. For
example: Group 1 (subtours with 3 edges (N = 3)), Group 2
(subtours with 4 edges (N = 4), Group n (subtours with N
edges)), etc. For the sake of generalization we introduce a
new parameter l = 1, . . . ,n to denote different classes/groups
of subtours identified in a graph G under investigation. Thus
applying (13b) to all classes/groups leads to expression (13c).∑n

l=1

∑ℵ

k=1
µk,l .

[∏(N−1)

i=0

(∑N
j=1
xjεSk

xj − i

)]
= 0

(13c)

Worth mentioning that the constraints (13) assume a prior
knowledge of subtours in a graph G under investigation.
This can be done using existing/classical algorithms. Indeed,
several algorithms do exist for the determination of subtours
in a graph G (see Refs. [50], [51] and references therein).
Further worth mentioning that the subtours do not consider
the real values of arc weights. In fact the elements of the
matrix S of subtours can take only two values (‘‘0’’ and ‘‘1’’).
As it appears from the matrix S of subtour in (15h), the edges
xi belonging to a subtour Sk are denoted in the matrix S by
the value ‘‘1’’ and the edges which do not belong to Sk are
denoted by ‘‘0’’.

In (15h) we have represented only the matrix S of
the class/group of subtours Sk containing exactly 3-edges
each. Similarly the matrices S of the other classes/groups of
subtours Sk (say, a class/group of subtours containing exactly
4-edges, 5-edges, and up to N-edges) can be easily deduced
according to (15h).More precisely, considering the number of
elements with values ‘‘1’’ in a row of matrices S, this number
corresponds to the number of edges forming each subtour in
a class/group of subtours Sk .

To illustrate the applicability of the general expres-
sion (13a) we consider the following concrete case of
subtours formed by exactly 3-edges (e.g., (x1, x2, x3),
(x4, x5, x6) , (x7, x8, x9),. . . , etc.). According to (13a) the fol-
lowing set of algebraic equations is obtained:
(x1 + x2+x3) (x1 + x2+x3 − 1) (x1 + x2+x3 − 2) = 0

(x4 + x5+x6) (x4 + x5+x6 − 1) (x4 + x5+x6 − 2) = 0

(x7 + x8+x9) (x7 + x8+x9 − 1) (x7 + x8+x9 − 2) = 0
. . . etc . . .

Therefore considering the class/group of subtours containing
exactly 3-edges (within a graph G) and applying (13a) leads
to the following general expression into matrix-form:

g5k,l (Ex) = SEx◦ (SEx − 1)◦ (SEx − 2) = 0 (13d)

S is a matrix of size ℵ × N , where ℵ is the total number of
subtours in a given class/group and N is the size of the graph.
For example, N = 3 and ℵ = 20 if the graph G contains

twenty subtours Sk , each with exactly 3-edges, N = 6 and
ℵ = 50 if G contains fifty subtours Sk , each with exactly
6-edges, etc. This example clearly shows that the param-
eters N and ℵ are to be determined for each class/group
of subtours Sk . As already mentioned above, this can be
done/achieved through the use of existing classical methods
and concepts [50], [51].
Let’s note that matrix S is determined/defined for each

class/group of subtours. The columns of matrix S corre-
spond to the edges of the graph under investigation and the
lines/rows of matrix S correspond to the subtours Sk , which
are identified in a given class/group of subtours. This remark
is essential as it clearly shows that different matrices S are
obtained, each of which corresponds to a specific class/group
of subtours Sk .
As generalization of the constraint (13d) the case of ℵ

subtours, belonging to a given group of subtours with exactly
N edges is modeled by (13e). As already explained the size
of S depends on ℵ (dimension of rows) and N (dimension
of columns). Further the elements (‘‘0’’ / ’’1’’) in S depend
on N.

g5k,l (Ex) = SEx◦ (SEx − 1)◦ . . .◦ (SEx − N+ 1) = 0 (13e)

It is worth mentioning here that the constraint g5k,l (Ex) in
Eq. (13e) is defined/determined for each class/group of sub-
tours Sk . Thus (13e) is a general expression/formulation
applicable to all classes/groups of subtours Sk . The expres-
sion (13e) is consequently written for each class/group of
subtours Sk .

2) EXPRESSION OF THE LAGRANGE FUNCTION AS TOTAL
ENERGY OF THE SYSTEM AND DERIVATION OF THE
MATHEMATICAL MODEL OF THE NEURO-PROCESSOR
FOR TSP SOLVING
We now substitute constraints (10) to (13) into (7) to
obtain the Lagrange function in (14) as total energy of the
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system.

L̃
(
Ex, Eλ, Eϕ, Eγ , Eω, Eµl

)
=

N∑
i=1

cixi+
M∑
j=1

λj ·

 N∑
i=1
i6=j

xi ∗ aij


+

∑M

j=1
ϕj ·

(∑N

i=1
i6=j

xi − 2
)

+

∑N

i=1
γi · [xi (xi − 1)]+

∑N

i=1
γ ∗i · [xi (xi − 1)]2

+

∑N
2

i=1
ωi · [(x2i−1 + x2i) (x2i−1 + x2i − 1)]

+

∑n

l=1

∑ℵ

k=1
µk,l .

[∏(N−1)

i=0

(∑N
j=1
xjεSk

xj − i
)]
(14)

In (14), the quantities ci, xi, λj, ϕj, γi, γ ∗i , ωi, and µk,l are
components of vectors EU , Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω and Eµl respec-
tively. These vectors, respectively with dimensions N , N ,
M ,M ,N ,N ,N/2 and ℵ are defined as follows:

EU = [c1, c2, . . . ,cN−1, cN ]T ; Ex= [x1, . . . ,xN−1, xN ]T ;
Eλ= [λ1, λ2, . . . ,λM−1, λM ]T ; Eϕ= [ϕ1, . . . ,ϕM−1, ϕM ]T ;
Eγ = [γ1, γ2, . . . ,γN−1, γN ]T ; Eγ ∗=

[
γ ∗1 , . . . ,γ

∗

N−1, γ
∗
N
]T
;

Eω =
[
ω1, . . . ,ωN/2−1, ωN/2

]T
;

Eµl =
[
µ1,l, . . . ,µℵ−1,l, µℵ,l

]T
.

The Lagrange function L̃
(
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl

)
in (14)

is now substituted into the expression of BDMM in (8).
Performing the partial derivatives in all directions (or in all
components) of the dependent variables Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω and
Eµl leads to the derivation of (15). More details concern-
ing the calculation of all partial derivatives can be found
in [49]. Equation (15) is themathematical model of the neuro-
processor based TSP solver concept developed in this paper.

In Equation (15g) the parameter β5,l corresponds to a given
class/group of subtours (e.g., β5,1 for subtours in group-1;
β5,2 for subtours in group-2; β5,n for subtours in group-n).
Therefore (15g) is written for each class/group of subtours.

dEx
dt
= −α

{
AT Eλ+ A+T Eϕ + (2Ex − 1) ◦ Eγ

+

(
4Ex3−6Ex2+2Ex

)
◦ Eγ ∗+

(
2DTDEx − 1

)
◦DT Eω+ EU

+

n∑
l=1

[(
ST SEx

)◦ (
ST SEx−1

)◦
. . .◦

(
ST SEx−N+1

)]
×

[(
ST SEx

)−1
+

(
ST SEx−1

)−1
+ . . .+

(
ST SEx − N+ 1

)−1]
◦ ST Eµl

}
(15a)

dEλ
dt
= β1

[
AEx
]

(15b)

d Eϕ
dt
= β2

[
A+Ex − 2

]
(15c)

d Eγ
dt
= β3Ex ◦ (Ex − 1) (15d)

d Eγ ∗

dt
= β∗3

[
Ex4 − 2Ex3 + Ex2

]
(15e)

d Eω
dt
= β4

[
DEx ◦ (DEx − 1)

]
(15f)

d Eµl
dt
= β5,l

[
SEx◦ (SEx − 1)◦ . . .◦ (SEx − N+ 1)

]
(15g)

The fundamental parameters of (15) are the coefficients
defined as follows: the matrix A and its transpose AT ; the
absolute value of A denoted by A+ and its transpose A+T ; the
matrix D and its transpose DT ; the matrices S (each of which
corresponds to a specific class/group of subtours Sk ); the
transpose of matrices S denoted by ST . As already explained
above thematrix S is defined for each class/group of subtours.

3) GENERAL APPLICABILITY OF THE MATHEMATICAL MODEL
(15) OF THE NEURO-PROCESSOR TO ANY GRAPH NETWORK
For any graph of known topology (architecture) the funda-
mental parameters A, AT , A+, A+T , D, DT , S and ST of (15)
are easily obtained. The procedures leading to the determi-
nation of the fundamental parameters have been explained
above. These fundamental parameters are essential as they
are used to solve the model of the neuro-processor TSP solver
in (15). This strong point of the neuro-processormodel in (15)
underscores the flexibility and also the general applicabil-
ity of (15). Further the parameters/coefficients of (15) are
expressed in matrix-form and, this witnesses the scalability
potential of (15). In (15), the matrices,D, and S are expressed
in general forms applicable to any graph as shown in (15h).
The dimensions are defined as follows: dim (A) = M × N ,
dim (D) =

(N
2

)
× N , dim (S) = ℵ× N .

In the incidence matrix A, rows correspond to nodes (N1,
N2, . . .NM ) and columns correspond to edges (x1, x2, . . .xN ).
Therefore M and N are respectively the magnitude and size
of the graph. In matrix D, the rows correspond to pairs of
parallel edges (D1, D2, . . .DN/2) and columns correspond
to edges (x1, x2, . . . xN ). Therefore N/2 and N are respec-
tively the number of pairs of parallel edges and size of the
graph. In matrix S (defined for each class/group of subtours),
rows correspond to edges forming a given class/group of
subtours (S1, S2, . . . Sk ) and columns correspond to edges
(x1, x2, . . . xN ). Therefore ℵ and N are respectively the total
number of subtours in a given class/group of subtours and size
of the graph.

The connectivity of each edge is expressed in the matrix
A by a value chosen in the set {−1, 0, 1}. These values
express a specific connectivity between nodes through edges
as follows:

1) The values ‘‘ − 1’’ and ‘‘1’’ in the first column of A
(see rows 1 and 2) show that nodes N1 and N2 are
connected through the edge x1, which is in-going to N1
and out- going from N2. This connectivity is depicted
as N2

x1
H⇒N1.

VOLUME 8, 2020 42307



J. C. Chedjou et al.: Efficient, Scalable, and Robust Neuro-Processor-Based Concept for Solving Single-Cycle TSP

2) The values ‘‘1’’ and ‘‘− 1’’ in the second column of A
(see rows 1 and 2) show that the edge x2 connects N1
and N2. The edge x2 is in-going to N2 and out-going
from N1. The connectivity of N1 with N2 through x2 is
N1

x2
H⇒N2.

3) According to 1) and 2), x1 and x2 are parallel edges.
4) The elements ‘‘0’’ in the third row of A ((see columns

1 and 2) show that x1 and x2 are not connected to
node N3.

The description provided through the four points above is
applicable to any type of graph under investigation in order
to obtain the incidence matrix of the graph denoted A in
(15h). The derivation of D and S has been already explained
above.

IV. STABILITY ANALYSIS AND CONVERGENCE OF THE
NEURO-PROCESSOR BASED TSP SOLVER
Our aim in this section is to investigate the local stabil-
ity of the mathematical model of the neuro-processor tsp
solver in (15). The motivation for investigating the local
stability is to derive fundamental analytical expressions to
ensure (or guarantee) the convergence of the neuro-processor
to the exact/true TSP solution. The analytical expressions
derived are very important for a systematic control and mon-
itoring of both stability and convergence properties of the
neuro-processor.

We now consider the local stability analysis namely
the stability of equilibrium points also called fixed
points. The equilibrium points E

(
Exe, Eλe, Eϕe, Eγe, Eγ ∗e , Eωe, Eµle

)

A =



x1 x2 x3 x4 · · · xi · · xN
−1 1 0 0 · · · 1 · · −1 N1
1 −1 1 −1 · · · 0 · · 0 N2
0 0 −1 1 · · · 1 · · 1 N3
· · · · · · · · · · · ·

· · · · · · · · · · · ·

1 0 −1 · · · · 1 · 0 · Nj
· · · · · · · · · · · ·

· · · · · · · · · · · ·

0 −1 1 · · · · · · −1 · · 1 NM


v×k

D =



x1 x2 x3 x4 · · · · · · xN−1 xN
1 1 0 0 · · 0 0 0 0 0 0 D1
0 0 1 1 · · 0 0 0 0 0 0 D2
0 0 0 0 · · 0 0 0 0 0 0 D3

· · · · · · · · · · · ·
...

· · · · · · · · · · · ·
...

· · · · · · · · · · · ·
...

0 0 0 0 · · 1 1 0 0 0 0
...

0 0 0 0 · · 0 0 1 1 0 0
...

0 0 0 0 · · 0 0 0 0 1 1 DN
2



S =



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 · · · xN

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
... s1

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 · · ·
... s2

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 · · ·
... s3

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 · · ·
... s4

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 · · ·
... s5

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 · · ·
... s6

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 · · ·
... s7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... · · ·
...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... · · ·
... S40

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · SK



(15h)

42308 VOLUME 8, 2020



J. C. Chedjou et al.: Efficient, Scalable, and Robust Neuro-Processor-Based Concept for Solving Single-Cycle TSP

of (15) are obtained as solutions of (16) as
follows:

AT Eλe + A+
T
Eϕe

+ (2Ex − 1) ◦ Eγe +
(
4Ex3e − 6Ex2e + 2Exe

)
◦ Eγ ∗e

+

(
2DTDExe − 1

)
◦ DT Eωe + EU

+

∑n

l=1

[(
ST SExe

)◦ (
ST SExe − 1

)◦
. . .◦

(
ST SExe − N+ 1

)]
×

[(
ST SExe

)−1
+

(
ST SExe − 1

)−1
+ . . .+

(
ST SExe − N+ 1

)−1]
◦ST Eµle

}
= 0 (16a)

AExe = 0 (16b)

A+Exe − 2 = 0 (16c)

Exe ◦ (Exe − 1) = 0 (16d)(
Ex4e − 2Ex3e + Ex

2
e

)
= 0 (16e)

DExe ◦ (DExe − 1) = 0 (16f)[
SEx◦e (SExe − 1)◦ . . .◦ (SExe − N+ 1)

]
= 0 (16g)

According to the equilibriums P1(x = 0) and P2(x = 1)
depicted/shown in Figure 2, the general solutions of (16) are
split up into two sets as it is clearly expressed in (17) and (18).

Exe1 = 0

AT Eλe1 + A+
T
Eϕe1 − Eγe1 − DT Eωe1 + EU + η1ST Eµle1 = 0

η1 =
∑n

l=1

([∏N−1

i=0

(
ST SExe1 − i

)]
×

[∑N−1

i=0

(
ST SExe1 − i

)−1])
(17)

Exe2 = 1

AT Eλe2 + A+
T
Eϕe2 + Eγe2 + DT Eωe2 + EU + η2ST Eµle2 = 0

η2 =
∑n

l=1

([∏N−1

i=0

(
ST SExe2 − i

)]
×

[∑N−1

i=0

(
ST SExe2 − i

)−1])
(18)

According to (17) and (18) the equilibrium points
E
(
Exe, Eλe, Eϕe, Eγe, Eγ ∗e , Eωe, Eµle

)
are split up into two sets. The

first set defined by E
(
Exe1, Eλe1, Eϕe1, Eγe1, Eγ ∗e1, Eωe1, Eµle1

)
is

obtained as solution of (17). This set encompasses/comprises
components, which do not belong to the TSP solu-
tion. The second set E

(
Exe2, Eλe2, Eϕe2, Eγe2, Eγ ∗e2, Eωe2, Eµle2

)
is

obtained as solution of (18). This set encompasses/comprises
components, which do belong to the TSP solution.

It is worth mentioning that the results in (17) and
(18) can be easily verified and validated through the
direct numerical simulation of (15). Indeed, our vari-
ous numerical simulations of system (15) have revealed
that when (15) converges to the exact TSP solution,

the results
[
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl

]T
obtained as solution

of (15) are also solutions of (17) and (18). In fact,
it has been observed/obtained numerically that the solutions[
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl

]T
of (15) when Ex converges to ‘‘0’’

are equal to E
(
Exe1, Eλe1, Eϕe1, Eγe1, Eγ ∗e1, Eωe1, Eµe1

)
and the solu-

tions
[
Ex, Eλ, Eϕ, Eγ , Eγ ∗, Eω, Eµl

]T
of (15) when Ex converges to

‘‘1’’ are equal to E
(
Exe2, Eλe2, Eϕe2, Eγe2, Eγ ∗e2, Eωe2, Eµe2

)
.

We now perturb system (15) around the equilibrium points
E
(
Exe, Eλe, Eϕe, Eγe, Eωe, Eµle

)
as follows:

Ex = Exe + Ex0
Eλ = Eλe + Eλ0; Eϕ = Eϕe + Eϕ0; Eγ= Eγ e + Eγ0

Eγ ∗ = Eγ ∗e + Eγ
∗

0 ; Eω = Eωe + Eω0; Eµ = Eµle + Eµl0

(19)

where Ex0, Eλ0, Eϕ0, Eγ0, Eγ ∗0 , Eω0 and Eµl0 are small perturbations
expressed as Ex0→ 0,Eλ0→ 0, Eϕ0 → 0, Eγ0 → 0, Eγ ∗0 →
0 Eω0→ 0, and Eµl0 → 0. Substituting (19) into (15) and
ignoring high-order perturbations (e.g. Ex0Eλ0 = 0, Ex0 Eω0 = 0,
Ex20 = 0, Ex30 = 0, (SEx0)

2,
(
ST SEx0

)2, and (S Eµl0) (ST SEx0),
etc.) leads to the variational equation expressed in compact
(or matrix) form as illustrated in (20a).

d
dt

[
Ex0, Eλ0, Eϕ0, Eγ0, Eγ ∗0 , Eω0, Eµl0

]T
= [MJ ]

[
Ex0, Eλ0, Eϕ0, Eγ0, Eγ ∗0 , Eω0, Eµl0

]T
(20a)

The variational matrix MJ (also called Jacobian matrix)
in Eq. (20a) is defined in Eq. (20b), as shown at the next
page. In Eq. (20b), the quantities F(Exe), G(Exe), and H (Exe) are
defined as follows:

F(Exe)

=

[∏N−1

i=0

(
ST SExe − i

)]
×

[∑N−1

i=0

∑N−1

j=0

(
ST SExe − i

)−1 (
ST SExe − j

)−1]
×

(
ST Eµe

)
ST S(i 6= j) (20c)

G(Exe)

=

[∏N−1

i=0

(
ST SExe − i

)]
×

[∑N−1

i=0

(
ST SExe − i

)−1]
ST

(20d)

H (Exe)

=

[∏N−1

i=0
(SExe − i)

]
×

[∑N−1

i=0
(SExe − i)

−1
]
S (20e)

According to (17) and (18) the matrixMJ can be expressed
into the simplified form (21), as shown at the next page.
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MJ =



−2α Eγe − α(12Ex2e − 12Exe + 2) Eγ ∗e − 2α(DT Eωe)DTD−αF(Exe)
β1A
β2A+

β3(2Exe − 1)
β∗3 (4Ex

3
e − 6Ex2e + 2Exe)

β4 (2DExe − 1)D
β5,lH (Exe)

−αAT

0
0
0
0
0
0

−αA+T

0
0
0
0
0
0

−α (2Exe − 1)
0
0
0
0
0
0

−α(4Ex3e − 6Ex2e + 2Exe)
0
0
0
0
0
0

−α
(
2DTDExe − 1

)
DT

0
0
0
0
0
0

−αG(Exe)
0
0
0
0
0
0


(20b)

MJ =



−2α Eγe − 2α Eγ ∗e − 2α(DT Eωe)DTD−αF(Exe)
β1A
β2A+

β3(2Exe − 1)
0

β4 (2DExe − 1)D
β5,lH (Exe)

−αAT

0
0
0
0
0
0

−αA+T

0
0
0
0
0
0

−α (2Exe − 1)
0
0
0
0
0
0

0
0
0
0
0
0
0

−α
(
2DTDExe − 1

)
DT

0
0
0
0
0
0

−αG(Exe)
0
0
0
0
0
0


(21)

MJ1 =



−2α Eγe1 − 2α Eγ ∗e1 − 2α(DT Eωe1)DTD− αη5(ST Eµe1)ST S
β1A
β2A+

−β3
0
−β4D
β5,lη3S

−αAT

0
0
0
0
0
0

−αA+T

0
0
0
0
0
0

α

0
0
0
0
0
0

0
0
0
0
0
0
0

αDT

0
0
0
0
0
0

−αη1ST

0
0
0
0
0
0


(22)

MJ2 =



−2α Eγe2 − 2α Eγ ∗e2 − 2α(DT Eωe2)DTD− αη6(ST Eµe2)ST S
β1A
β2A+

β3
0
β4D
β5,lη4S

−αAT

0
0
0
0
0
0

−αA+T

0
0
0
0
0
0

−α

0
0
0
0
0
0

0
0
0
0
0
0
0

−αDT

0
0
0
0
0
0

−αη2ST

0
0
0
0
0
0


(23)

Where : η3 =
[∏N−1

i=0
(SExe1 − i)

]
×

[∑N−1

i=0
(SExe1 − i)

−1
]
, η4 =

[∏N−1

i=0
(SExe2 − i)

]
×

[∑N−1

i=0
(SExe2 − i)

−1
]
,

η5 =

[∏N−1

i=0

(
ST SExe1 − i

)]
×

[∑N−1

i=0

∑N−1

j=0

(
ST SExe1 − i

)−1 (
ST SExe1 − j

)−1]
,

η6 =

[∏N−1

i=0

(
ST SExe2 − i

)]
×

[∑N−1

i=0

∑N−1

j=0

(
ST SExe2 − i

)−1 (
ST SExe2 − j

)−1]
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Considering (21), the Jacobian matrices MJ1 and MJ2 rep-
resenting the first set (see (17)) and the second set (see (18))
are expressed in (22) and (23), as shown at the previous page,
respectively.

The quantities η1 and η2 are defined in (17) - (18). All
ηi (i = 1, 2, 3, 4, 5, 6) are positive integers calculated at
equilibrium. Thus, the Jacobian matrix MJ1 corresponds
to equilibrium points E

(
Exe1, Eλe1, Eϕe1, Eγe1, Eωe1, Eµle1

)
in the

first set obtained as solution of (17). Similarly, MJ2 corre-
sponds to equilibrium points E

(
Exe2, Eλe2, Eϕe2, Eγe2, Eωe2, Eµle2

)
in the second set obtained as solution of (18). Using (22)
the characteristic equation also called eigenvalues equation
is expressed in (24) from which the stability of equilibrium
points E

(
Exe1, Eλe1, Eϕe1, Eγe1, Eωe1, Eµle1

)
is analyzed. Similarly,

(23) is used to express (or define) the characteristic equation
in (25). This equation is further used to analyze the stability
of equilibrium/fixed points E

(
Exe2, Eλe2, Eϕe2, Eγe2, Eωe2, Eµle2

)
.

det [MJ1 − λId] = 0 (24)

det [MJ2 − λId] = 0 (25)

The quantity λ represents the eigenvalue from which the
stability of equilibrium/fixed points is deduced. Specifically,
an equilibrium point is stable if all real parts of λ are negative.
Otherwise, the equilibrium/fixed point is unstable [49].

An expansion of (24) leads to the characteristic equation in
(26). This is a quadratic algebraic equation.

λ2 + 2α
[
Eγe1 + (DT Eωe1)DTD+

1
2
η5(ST Eµle1)ST S

]
λ

+α
[
β1ATA+ β2A+TA+ + β4DTD+ β5,lη1η3ST S

]
= 0

(26)

Similarly, an expansion of (25) leads to the characteristic
equation in (27).

λ2 + 2α
[
Eγe2 + (DT Eωe2)DTD+

1
2
η6(ST Eµle2)ST S

]
λ

+α
[
β1ATA+ β2A+TA+ + β4DTD+β5,lη2η4S

T S
]
= 0

(27)

The solutions of (26) are expressed in (28).

λ1

= −α

[
Eγ ∗e1 + Eγ e1 + (DT Eωe1)DTD+

1
2
η5(ST Eµle1)ST S

]

+

√√√√√α2
[
Eγ ∗e1 + Eγ e1+(D

T
Eωe1)DTD+ 1

2η5(S
T
Eµle1)ST S

]2
−α

[
β1ATA+β2A+TA++β4DTD+β5,lη1η3ST S

]
(28a)

λ2

= −α

[
Eγ ∗e1 + Eγ e1 + (DT Eωe1)DTD+

1
2
η5(ST Eµle1)ST S

]

−

√√√√√α2
[
Eγ ∗e1 + Eγ e1+(D

T
Eωe1)DTD+ 1

2η5(S
T
Eµle1)ST S

]2
−α

[
β1ATA+ β2A+TA++β4DTD+β5,lη1η3ST S

]
(28b)

An important comment, which is worth mentioning, is that in
(28), the quantities Eωe1, Eγe1, Eγ ∗e1, and Eµle1 are known vectors
of real numbers obtained as solutions of (17). The equilibrium
points E

(
Exe1, Eλe1, Eϕe1, Eγe1, Eωe1

)
are stable if all real parts of

the eigenvalues λ1 and λ2 in (28) are negative [49]. As already
mentioned, (see in Section III. b) the quantities α and βi
represent the step sizes for updating decision- and multiplier-
variables respectively. Also, these quantities are positive real
numbers. Thus, a condition to obtain negative values for all
real parts of λ1 and λ2 in (28) can be expressed by (29)
(α > 0; βi > 0). The condition (29) ensures the stability
of E

(
Exe1, Eλe1, Eϕe1, Eγe1, Eωe1

)
.

[
Eγ ∗e1 + Eγ e1 + (DT Eωe1)DTD+

1
2
η
5
(ST Eµle1)ST S

]
> 0

α

[
Eγ ∗e1 + Eγ e1 + (DT Eωe1)DTD+

1
2
η5(ST Eµle1)ST S

]2
−
[
β1ATA+ β2A+TA+ + β4DTD+ β5,lη1η3ST S

]
< 0

(29)

Similarly, the solutions of Eq. (27) are expressed in (30).

λ1

= −α

[
Eγ ∗e2 + Eγ e2 + (DT Eωe2)DTD+

1
2
η6(ST Eµle2)ST S

]

+

√√√√α2
[
Eγ ∗e2 + Eγ e2+(D

T
Eωe2)DTD+ 1

2η6(S
T
Eµle2)ST S

]2
−α

[
β1ATA+ β2A+TA++β4DTD+β5,lη2η4S

T S
]

(30a)

λ2

= −α

[
Eγ ∗e2 + Eγ e2 + (DT Eωe2)DTD+

1
2
η6(ST Eµle2)ST S

]

−

√√√√α2
[
Eγ ∗e2+ Eγ e2+(D

T
Eωe2)DTD+ 1

2η6(S
T
Eµle2)ST S

]2
−α

[
β1ATA+β2A+TA++β4DTD+β5,lη2η4S

T S
]

(30b)

According to (30), one can derive (31) as a fundamental
condition to obtain negative values for all real parts of λ1 and
λ2 (α > 0; βi > 0). Thus, condition (31) ensures the stability
of equilibrium points E

(
Exe2, Eλe2, Eϕe2, Eγe2, Eωe2

)
.

[
Eγ ∗e2 + Eγ e2 + (DT Eωe2)DTD+

1
2
η
6
(ST Eµe2)ST S

]
> 0

α

[
Eγ ∗e2 + Eγ e2 + (DT Eωe2)DTD+

1
2
η6(ST Eµle2)ST S

]2
−
[
β1ATA+ β2A+TA+ + β4DTD+ β5,lη2η4ST S

]
< 0
(31)
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Comments on analytical conditions (29) and (31):

1) The analytical conditions (29) and (31) correspond
both to the properties of ‘‘positive definiteness’’ and
‘‘negative definiteness’’. When these properties are
simultaneously fulfilled (according to (29) and (31)),
the neuro-processor model in (15) always converges to
the true/exact TSP solution. Therefore (29) and (31)
are key conditions used in this paper to control and
ensure/guarantee convergence of the neuro-processor
to the exact/true TSP solution/tour

2) For a given graph under investigation, the matrices
A, D, and S are obtained and are further used to
check/verify the analytical conditions (29) and (31)
through numerical simulations. The aim of the numer-
ical simulation here is to obtain several sets of param-
eters (α, β1, β2, β4, β5,l) that simultaneously fulfil the
conditions in (29) and (31). Using the sets of param-
eters (α, β1, β2, β4, β5,l) obtained in the frame of the
numerical solving of the neuro-processor model in
(15), various numerical simulations are performed to
obtain the solution Ex from which the edges belonging
to the exact/true TSP tour are depicted.

3) Let’s note that the traditional/classical methods, con-
cepts and algorithms for TSP solving (e.g. GA [30],
(SA) [28], EA [14], ACO [36], PSO [41], ANN [29],
etc.) do not provide such a systematic analytical frame-
work to ensure/guarantee convergence to the exact TSP
solution. Thus, the analytical expressions established
in (29) and (31) appear as a contribution which could
significantly enrich the state-of-the-art regarding TSP
solving in dynamically reconfigurable graph-networks.

4) The conditions (29) and (31), which are derived to
ensure/guarantee convergence to the exact TSP solu-
tion depend on: (a) the step size α of decision variables
(also called decision neurons); (b) the step size ofmulti-
plier variables/neurons β1, β2, β4 and β5,l ; (c) the inci-
dence matrix A of graphG; (d) the matrixD expressing
parallel edges inG; (e) the matrix S describing subtours
of G.

The analytical results obtained in Sections III and IV are
validated in the next section (Section V) through various
numerical simulations, which are carried out to solve TSP
for two recently published case-study examples (see [11]
and [26]), this for both validation and benchmarking pur-
poses.

V. NUMERICAL SIMULATIONS AND PROOF OF
CONCEPTS OF THE NEURO-PROCESSOR DEVELOPED
A. APPLICATION EXAMPLE 1A: COMPUTATION OF ‘‘THE
TSP TOUR’’ IN A CITY GRAPH (RESULTS PUBLISHED
IN [11]): BENCHMARKING WITH THE NEURO-PROCESSOR
DEVELOPED
The application example published in [11] computes the tsp
tour in the city graphwith distance weights in figure 3. For the
sake of simplifying notations in figure 3, the weights values

FIGURE 3. A city graph with distance weights: Case study published
in [11]. Nodes are pair-wisely connected by bi-directional edges. The
optimal TSP tour is obtained as numerical solution of (15).

of all edges in figure 3 are defined as follows: The cost of the
edge C1→2 connecting node 1 and node 2 is denoted by c1
(c1→2 = c1), c2→1 is denoted by c2 (c2→1 = c2), c1→3 = c3,
c3→1 = c4, c1→4 = c5, c4→1 = c6, c1→5 = c7, c5→1 = c8,
c1→6 = c9, c6→1 = c10, c2→3 = c11, c3→2 = c12, c2→4 =

c13, c4→2 = c14, c2→5 = c15, c5→2 = c16, c2→6 = c17,
c6→2 = c18, c3→4 = c19, c4→3 = c20, c3→5 = c21, c5→3 =

c22, c3→6 = c23, c6→3 = c24, c4→5 = c25, c5→4 = c26,
c4→6 = c27, c6→4 = c28, c5→6 = c29, c6→5 = c30. The state
of connectivity Ex of edges in Figure 3 is expressed through
components xi defined as follows: the state of edge x1→2
connecting nodes 1 and 2 is denoted by x1 (x1→2 = x1),
x2→1 connects nodes 1 and 2 (in reverse direction) and is
denoted by x2 (x2→1 = x2). Thus x1 and x2 are parallel edges.
Similarly, x1→3 = x3, x3→1 = x4, x1→4 = x5, x4→1 = x6,
x1→5 = x7, x5→1 = x8, x1→6 = x9, x6→1 = x10, x2→3 = x11,
x3→2 = x12, x2→4 = x13, x4→2 = x14, x2→5 = x15,
x5→2 = x16, x2→6 = x17, x6→2 = x18, x3→4 = x19,
x4→3 = x20, x3→5 = x21, x5→3 = x22, x3→6 = x23,
x6→3 = x24, x4→5 = x25, x5→4 = x26, x4→6 = x27,
x6→4 = x28, x5→6 = x29, x6→5 = x30. The belonging of an
edge to the TSP- solution is expressed by xi = 1; otherwise
xi = 0.

The values of edges used in [11] to compute the TSP tour/
solution in Figure 3 are: c1 = c2 = 111.4; c3 = c4 = 211;
c5 = c6 = 219; c7 = c8 = 165.7; c9 = c10 = 85.4;
c11 = c12 = 131.6; c13 = c14 = 185.6; c15 = c16 = 153.4;
c17 = c18 = 76.5; c19 = c20 = 94.4; c21 = c22 = 110.1;
c23 = c24 = 128; c25 = c26 = 56.8; c27 = c28 =
138.1; c29 = c30 = 90.7. The values of costs of edges
above were used in [11] to compute the optimal TSP tour.
As reported in [11], the total cost obtained for the optimal
TSP solution/tour is L̃ = 570.3.
For the sake of benchmarking, we now use the mathemati-

cal model of the neuro-processor in (15) to compute the TSP
solution/tour in Figure 3. The 4th order Runge-Kutta algo-
rithm is implemented using the MATLAB version R2019a.
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FIGURE 4. (a) Numerical solution Ex of (15). The components of Ex are
binary values which are used to detect the TSP solution/tour in Figure 3.
(a) first TSP solution in form of subtours

(
S1,S2

)
detected in the range

4 < t < 20.
(
b
)

second TSP solution in form of subtours
(
S3,S4

)
detected

in the range 25 < t < 35. (c) Oscillatory solutions Ex detected in the range
36 < t < 46.

(
d
)

Final TSP solution in form of a single-cycle detected for
all t > 50. This latter solution Ex of (15) is stable as it remains unchanged
for all t > 50. (b) A zooming of the solution Ex in Fig. 4a in the range
46 < t < 52. This range overlaps the range of oscillatory dynamics
(36 < t < 46) and the range of permanent dynamics (t > 50). The zooming
clearly illustrates the convergence of Ex to binary variables ‘‘0’’ and ‘‘1’’.
When t increases further (t > 50) all solutions Ex merge into two lines:
Line 1: x1 = x10 = x11 = x19 = x25 = x29 = 1 and Line 2: All other
‘‘24 components’’ of Ex are equal zero (xi = 0). This witnesses the
binarization of solutions Ex of (15).

For the case-study in Figure 3, thematricesA,D, S are defined
in (15h). The vector of the costs of edges U is defined by the
weights values ci. Further N = 3 and ℵ = 40. Additional
coefficients used for the numerical solving of (15) are defined
as follows: α = 5; β1 = 100; β2 = 100; β3 = 180;
β∗3 = 170; β4 = 100; β5 = 0.01; h = 0.000125 (step size).
These values of coefficients are chosen according to stability
conditions (29) and (31). The procedure of using (29) and (31)
to obtain the values of βi has already been explained above
(see comments on analytical conditions (29) and (31)).

Using the values assigned to coefficients, the numeri-
cally solving of (15) has led to results depicted/displayed in
Figure 4a. Figure 4a shows the temporal evolution of the
vector of decision variables Ex = [x1, x2, . . . ,x30]T obtained
as numerical solution of (15). As it appears in Figure 4a,
the solution Ex of (15) converges to a first TSP solution

FIGURE 5. TSP tour obtained according to the numerical solution Ex
in Fig. 4a. Depending on the initial conditions used to solve (15), the TSP
tour detected is x1 = x10 = x11 = x19 = x25 = x29 = 1 (in one direction)
and also x1 = x10 = x11 = x19 = x25 = x29 = 1 (in reverse direction) as
the graph in Fig. 3 is bidirectional. In both directions the total cost of TSP
tour is L̃ = 570.3.

expressed by subtours (S1, S2) in the range 4 < t < 20.
S1 corresponds to x2 = x9 = x18 = 1 and S2 corresponds
to x20 = x21 = x26 = 1. The remaining coefficients of
vector Ex are equal zero. The total cost of subtours (S1, S2) is
L̃ = 534.6. As the variable t increases, a second TSP solution
is detected and expressed by subtours (S3, S4) in the range
25 < t < 35. S3 corresponds to x1 = x10 = x17 = 1 and
S4 corresponds to x19 = x22 = x25 = 1. The total cost of
subtours (S3, S4) is L̃ = 534.6. The oscillatory state of the
solution Ex of (15) is also depicted in the range 36 < t < 46.
As the variable t increases further, say t > 50, the numerical
solution Ex of (15) converges to a stable solution characterized
by x1 = x10 = x11 = x19 = x25 = x29 = 1. In this
case, the other/remaining coefficients of vector Ex are equal
zero. These binary values of Ex are obtained from Figure 4a.
The values obtained from Figure 4a correspond to a TSP
solution made-up of a single-cycle as depicted in Figure 5.
The total cost of the single-cycle TSP tour is L̃ = 570.3. This
is the optimum TSP-solution with a single-cycle that exists
in Figure 3 for the specific values assigned to the costs of
edges (see above). It is worth mentioning that identical result
is also reported in [11].

A comparison between method 1 (i.e. the one published
in [11]) andmethod 2 (i.e. our neuro-processor concept devel-
oped in (15)) is performed in TABLE 1.

B. APPLICATION EXAMPLE 1B: TOUR- STABILITY
ANALYSIS OF A ‘‘PREVIOUSLY COMPUTED OPTIMAL TSP
TOUR’’ (RESULTS PUBLISHED IN [11]): BENCHMARKING
WITH THE NEURO-PROCESSOR DEVELOPED
1) RESULTS OF THE STABILITY ANALYSIS IN [11]
This application example (published in [11]) investigates the
stability of a ‘‘previously computed traveling salesman tour’’.
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TABLE 1. Benchmarking results for application example 1: comparison of
method 1 in [11] with method 2 (the concept developed in Eq. (15)).

The integer linear programming (ilp) relaxation method is
used in [11] for the needed ‘‘tour’’-stability analysis. The
overall procedure for analyzing the stability of a ‘‘previously
computed traveling salesman tour’’ conducted in [11] can be
summarized through the following steps:
Step 1. Assignment of fixed weights values (or constant

costs) to all edges of a graph network and computation of
a corresponding optimal TSP solution/tour. This tour is the
‘‘target TSP tour’’ (see TSP tour in Figure 5).
Step 2. Variation of the costs of an arbitrary number of

edges (of the graph) through perturbations (denoted1cij) and
re-computation of TSP (‘‘newly computed TSP tours’’). The
stability criterion consists of comparing the cost of the ‘‘target
TSP tour’’ with the costs of ‘‘newly computed TSP tours’’.
Step 3. Use of the procedure in step 2 to compute regions

of ‘‘stability’’ and regions of ‘‘instability’’ according to fol-
lowing statements:

1) If the ‘‘previously computed TSP tour’’, here the
‘‘target TSP tour’’, remains the optimal/best solution
(meaning the solution with smallest total cost) com-
pared to a set of ‘‘newly computed TSP tours’’, then the
‘‘previously computed TSP tour’’ is said to be stable.

2) If a ‘‘newly computed TSP tour’’ is discovered with
a total cost less than the total cost of the ‘‘previously
computed TSP tour’’, then the ‘‘previously computed
TSP tour’’ is said to be unstable.

The two key statements above are used in [11] to analyze
the stability of the ‘‘previously computed TSP tour’’. The
edges subject to perturbations are expressed as1cij+cij (1cij
is the strength/amplitude of perturbation applied on edges cij).
In essence, the stability analysis in [11] consists of perturbing
the edges c1→2 (edge connecting nodes 1 and 2) and c1→5
(edge connecting nodes 1 and 5) in Figure 3. The edges c1→5
(with cost c7), c5→1 (with cost c8), c1→2 (with cost c1), and
c2→1 (with cost c2) are subject to perturbations denoted by
1c15 and 1c12 and their resulting costs are expressed as
follows: c7 +1c15, c8 +1c15, c1 +1c12, and c2 +1c12.

Findings/results of the stability analysis published in [11]
are depicted in Figure 6. As it appears in Figure 6, the mon-
itoring of strengths of perturbations (of edges) in ranges
−200 ≤ 1c15 ≤ 1200 and 200≤ 1c12 ≤ 1200 has led to
the computation of regions of stability (see area with grey
color in Figure 6) as well as regions of instability (see area
with white color in Figure 6 surrounding the area of stability).
A specific perturbation (1c12,1c15) = (+50,−50) is also

FIGURE 6. Results of the stability analysis (in Figure 3) in terms of 1c12
and 1c15. This figure is published in Ref. [11]. Stability region (grey color);
a specific point of instability (red star); all comments and concluding
remarks formulated on Figure 6 are reported in [11].

considered in [11] and the computation of new TSP solution
with edges subject to aforementioned specific perturbations
has led to the discovery of a ‘‘new best/optimal TSP tour’’
when compared with the ‘‘target TSP tour’’ computed using
(1c12,1c15) = (+50, 0). Thus, the ‘‘target TSP tour’’, here
the ‘‘previously computed traveling salesman tour’’, is said
to be unstable. The point at which the ‘‘previously computed
TSP solution/tour’’ is said to be unstable is materialized by a
red star located in Figure 6 with coordinates (1c12,1c15) =
(+50,−50) .

Overall, as it appears in Figure 6, when the perturbations
1c12 and 1c15 (applied to costs of edges) increase, the pre-
viously computed tour may remain stable (see region in grey
color) or may become unstable (see region in white color).

2) BENCHMARKING OF RESULTS IN [11] WITH RESULTS
PROVIDED BY THE NEURO-PROCESSOR MODEL IN (15)
The stability analysis is now conducted using the numerical
simulation of (15). This is the mathematical model of the
neuro-processor based TSP solver developed. In order to
facilitate the benchmarking we used exactly same/identical
values of parameters as reported in [11].

We now use the neuro-processor model (15) to investigate
the stability of the ‘‘previously computed traveling salesman
tour’’ as reported in [11] (see Figure 6 published in [11]).
Similarly to study in [11], we perturb the costs of edges as
follows: c1 (c1+1c12), c2 (c2+1c12), c7 (c7+1c15) and c8
(c8 +1c15). The perturbed edges are used as control param-
eters between the ranges 1200 ≤ 1c12 ≤ 200 and −200 ≤
1c15 ≤ 1200. The main objective here is to demonstrate that
the analysis of stability using the neuro-processor in (15) is
straightforward/easy and also leads to results of high accu-
racy, and good robustness. As in previous analysis, the results
provided by the neuro-processor are obtained as numerical
solutions of (15). The values of parameters A, U , D, S, α, β1,
β2, β3, β∗3 , β4, and β5 used to solve (15) are identical/same as
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TABLE 2. Extension of results published in [11]: results of the stability analysis of the ‘‘previously computed traveling salesman tours’’ using the
neuro-processor based concept developed in this paper. Black numbers represent the total costs of the ‘‘previously computed traveling salesman tours’’
while the total cost of the ‘‘newly computed traveling salesman tours’’ are white numbers. Red cell-colors correspond to instability.

in Figure 4a. The direct numerical simulation of (15) is now
performed for different combinations of (1c12,1c15). The
3D stability analysis conducted here consists of solving (15)
numerically for each combination of (1c12,1c15). TABLE 2
reports sample results of the 3D stability analysis. For each
combination of perturbations 1c12 and 1c15, the total costs
of the ‘‘previously computed traveling salesman tours’’ (see
black numbers in brackets in TABLE 2) and corresponding
total costs of the ‘‘newly computed traveling salesman tours’’
(see white numbers) are calculated. The total costs are cal-
culated according to (9) using the numerical solutions Ex of
(15) for different combinations of (1c12,1c15). Full results
of the 3D stability analysis are depicted in Figure 7. A specific
solution Ex of (15) is obtained at coordinate (1c12,1c15) =
(+50,−50) (see circle surrounding a red star in Figure 7).
At this coordinate the ‘‘newly computed TSP’’ is x9 →
x18→x11 → x19→x25 → x8 with total cost ctotal = 560.4
(L̃ ≈ 560.4).

We have also used (15) to obtain the ‘‘previously com-
puted TSP tour’’ (or ‘‘target TSP tour’’) at coordinate
(1c12,1c15) = (+50, 0). The solution obtained is x9 →
x18→x11 → x19→x25 → x8 with total cost ctotal =
610.4 (L̃≈ 610.4). Comparing the total costs of the ‘‘pre-
viously computed TSP tour’’ with the total cost of the
‘‘newly computed TSP’’ it clearly appears that the ‘‘pre-
viously computed TSP tour’’ is unstable at coordinate

FIGURE 7. Results (obtained by the neuro-processor) of the stability
analysis (in Fig. 3) in terms of 1c12 and 1c15. This figure is obtained
through the numerical solving of (15). Stability region (blue stars); a
specific point of instability (see circle surrounding a red star); several
other points of instability are found in the area surrounding the region of
stability. These results complete those in Fig. 6 (say in [11]) by providing
area of instability.

(1c12,1c15) = (+50,−50) . Further we have extended the
results of stability published in [11] by computing the area
of instability of the previously computed TSP tour/solution.
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Sample points of instability are reported in TABLE 2 along
with values of the total costs of their corresponding TSP
tours/solutions. The points at which the ‘‘previously com-
puted TSP tour’’ is unstable are reported in red cells of
TABLE 2. These points are also depicted/represented with
red stars in Figure 7. Overall, comparing the results pub-
lished in [11] (see Figure 6) with results obtained using
the neuro-processor solver model in (15) (see Figure 7) a
very good agreement is obtained between them. This agree-
ment validates and witnesses the effectiveness of the neuro-
processor based TSP solver concept modeled by (15).

C. BIFURCATION ANALYSIS AND CONVERGENCE TO THE
OPTIMAL TSP SOLUTION OF THE NEURO- PROCESSOR
DEVELOPED
The aim of this section is to demonstrate that a suitable
(or appropriate) choice of the internal parameters α, β1,
β2, β4, and β5,l of the neuro-processor based TSP solver
modeled by system (15) can guarantee optimality of the TSP
solution. The core objective here is to demonstrate that it is
possible to configure internal processor parameters such that
the neuro-processor remains stable and always-converging
towards the exact TSP tour for any input graph network.
Therefore, the concept of bifurcation analysis (with regards
to the neuro-processor internal parameters α, β1, β2, β4,
and β5) is introduced as a systematic and appropriate frame-
work that can be used to perform a suitable choice of val-
ues and windows/ranges of the key internal parameters of
(15) in order to guarantee the optimality of the obtained
TSP solution. Hereby, after a stable values-range of inter-
nal processor parameters has been selected, various changes
of the inputs graphs are considered (say, changes in arc
weights and or graph dimensions (size, magnitude, topol-
ogy)); thereby numerically/experimentally check if the con-
vergence to the exact TSP solutions is always obtained.

The general applicability of the above mentioned bifur-
cation concept is practically illustratively demonstrated (or
proven) through consideration of the following scenarios:
(a) original graph network with unperturbed costs of edges;
(b) graph network subject to random perturbation of costs of
edges; (c) modification of graph topology (e.g. suppression
of edges, addition of edges, etc..); (d) case of huge size
graph network, etc. For all above scenarios, we use same
(or identical) ranges/windows of neuro-processor internal
parameters α, β1 for investigation. These two parameters
are used as bifurcation control parameters. The outcome of
investigation reveals that, in the proposed windows/ranges of
α and β1, the neuro-processor developed always converges
to the optimal TSP solution when considering each scenario.
This witnesses the guaranty of sure convergence to the opti-
mal TSP tour when performing in appropriate windows of
α and β1.

a. Scenario 1, reference scenario: Bifurcation analysis
in a graph network with unperturbed costs of edges
(constant costs of edges)

FIGURE 8. Results of the 2D bifurcation analysis in terms of α (step size
of decision neurons) and β1 (step size of multiplier neurons). TSP
solutions with different total costs L̃ are shown. (a)
Flat area with blue color: This is the domain of sure convergence to the
global minimum (̃L = 570.3). This corresponds to the optimal TSP
solution. (b) Area with pulses: This is the domain of convergence to local
minima. Several local minima are detected (L̃ = 610.4; L̃ = 629.4;
L̃ = 633.4; L̃ = 731.6; L̃ = 774.5; L̃ = 884.9). This plot witnesses the
necessity of controlling optimality of TSP solution in order to avoid local
minima and ensure convergence to the global minimum.

The bifurcation analysis is performed using constant values of
costs of edges U =

[
c1, c2, . . . , c29, c30]T as defined in the

text (see case of Figure 3). Coefficients α, β1 of (15) are used
as control parameters (also called bifurcation parameters).
Following parameters with constant values are also used for
bifurcation analysis: β2 = 100, β3 = 100,β∗3 = 100,
β4 = 10, and β5 = 0.1. Step-size used for numerical solving
of (15) is h = 0.0025. Remaining parameters A, D, and S
of (15) are deduced from graph topology in Figure 3 accord-
ing to general expression (15h). The bifurcation analysis is
performed numerically by monitoring control parameters in
ranges 0 < α ≤ 1.5 and 0 < β1 ≤ 150. Results obtained
as numerical solution of (15) are depicted in Figure 8. As it
appears in Figure 8, a TSP solution with smallest total cost
L̃ = 570.3 is obtained in a wide/large region/domain of
variation of α and β1 (see region with blue color in Figure 8).
The TSP solution obtained (with total cost L̃ = 570.3)
corresponds to the optimal TSP tour. Figure 8 also reveals that
optimality of the TSP solution is not obtained (or preserved)
for some specific values of control parameters α, β1. This
is clearly illustrated by pulses depicted in Figure 8. These
pulses express several other (alternative) TSP solutions with
total costs L̃ = 610.4, L̃ = 629.4, L̃ = 633.4, L̃ = 731.6,
L̃ = 776.3, and L̃ = 899.4, etc. This witnesses the fact that a
suitable (or appropriate) choice of key parameters of (15) is
of necessary importance to guarantee optimality of the TSP
solution.

The issue related to a sure convergence to the optimal TSP
tour/solution is addressed in next case studies (in Sections (b),
(c) and (d)) through various numerical simulations.

An important remark can be expressed concerning results
of the bifurcation analysis in Figure 8. Indeed, it appears from
Figure 8 that a suitable choice of values of parameters for the
numerical solving of (15) can guarantee/ensure optimality of
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TABLE 3. Values of perturbations applied to four arcs weights
in Figure 3 and results of the optimal TSP tours obtained for each set as
numerical solutions of the neuro-processor model in (15).

TABLE 4. Perturbation of height arcs weights in Figure 3 and results of
the optimal TSP tours obtained/detected as numerical solutions of the
neuro-processor model in (15).

the TSP solution/tour. Therefore, the main objective of the
analysis carried out in the next sections (see below) is to
demonstrate numerically that a suitable choice of parameter-
values in (15) can guarantee optimality of the TSP solu-
tion/tour for any input graph, independently of its related
parameters (i.e. size, magnitude, topology, and arc weights
values). We demonstrate through various numerical simu-
lations the existence of neuro-processor solver parameter
values-ranges (windows) under which the optimality of the
TSP solution is guaranteed (ensured). A related stress-testing
is performed through examining various scenarios envisaged
as case-studies. The first scenario considers a graph net-
work with several edges subject to random perturbations (see
TABLES 3, 4 and 5). The second scenario is concerned with
the variation of the graph topology. In all these scenarios
envisaged it is demonstrated, while using the same (or iden-
tical) value-ranges of internal neuro-processor parameters
of (15), that the neuro-processor solver always detect the
optimal TSP tour. The results confirming the optimality of
the TSP tour detected are depicted in Figures. 8, 9, 10, 11,
15, 19, and 22.
b. Scenario 2: Bifurcation analysis for a graph network

subject to a random perturbation of costs of edges and
optimality of the TSP solution/tour

The bifurcation analysis is now performed for the case of
a graph network subject to perturbations of selected arc
weights. The coefficients α, β1 of (15) are used as control
parameters defined in the respective ranges 1 ≤ α ≤ 5

TABLE 5. Perturbation of twelve arcs weights in Figure 3 and results of
the optimal TSP tours obtained/detected as numerical solutions of the
neuro-processor model in (15).

FIGURE 9. Results of the 2D bifurcation analysis in terms of α (step size
of decision neurons) and β1 (step size of multiplier neurons). Seven sets
of perturbations (1c12,1c21, 1c15, 1c51) are used as reported in TABLE
3. For each set, it clearly appears that the total cost (L̃i ) of the TSP tour
detected remains constant for all values of α and β1 selected in windows
1 ≤ α ≤ 5 and 10 < β1 ≤ 50. Further, it has been found that each value L̃i
corresponds to the global minimum as each L̃i corresponds to the
smallest cost. This guarantees optimality of the TSP solution for 1 ≤ α ≤ 5
and 10 < β1 ≤ 50.

and 10 ≤ β1 ≤ 50. The following values of parameters are
used for numerical simulations of (15): β2 = 100,β3 =
150,β∗3 = 50, β4 = 10, β5 = 0.045, and h = 0.00025.
The bifurcation analysis considers three different cases; case
1- perturbation of four edges of the graph (see TABLE 3);
case 2- perturbation of eight edges of the graph (see TABLE
4); case 3- perturbation of twelve edges (see TABLE 5).
Considering case 1. Four edges of Figure 3 are perturbed
as follows: c1→2 (c1 +1c12), c2→1 (c2 +1c21), c1→5 (c9 +
1c15), c5→1 (c10 + 1c51). We use seven different strengths
of perturbations denoted by Set i = (1c12,1c21,1c15,1c51)
(i = 1, . . . , 7). The values of all Set i are reported in TABLE3.
The numerical solving of (15) is performed and results are
depicted in Figure 9. It clearly appears from Figure 9 that each

VOLUME 8, 2020 42317



J. C. Chedjou et al.: Efficient, Scalable, and Robust Neuro-Processor-Based Concept for Solving Single-Cycle TSP

FIGURE 10. Results of the 2D bifurcation analysis in terms of α (step size
of decision neurons) and β1(step size of multiplier neurons). Seven sets
of perturbations (1c12,1c21, 1c15, 1c51, 1c46,1c64, 1c14, 1c41) are
used as reported in TABLE 4. For each set, it clearly appears that the total
cost (L̃i ) of the TSP tour detected remains constant for all values of α and
β1 selected in windows 1 ≤ α ≤ 5 and 10 < β1 ≤ 50. Further, it has been
found that each value L̃i corresponds to the global minimum as each L̃i
corresponds to the smallest cost. This guarantees optimality of the TSP
solution for 1 ≤ α ≤ 5 and 10 < β1 ≤ 50.

set of perturbation (Set i) leads to a constant value of the total
cost L̃ of the TSP tour detected. It also clearly appears from
Figure 9 that for each set of perturbation Set i (in TABLE 3)
the value of L̃ remains constant and optimal for all parameter
ranges 1 ≤ α ≤ 5 and 10 ≤ β1 ≤ 50. The constant value
of L̃ obtained for each set corresponds to the smallest TSP
cost. This justifies the convergence of the neuro-processor
developed to the respectively optimal TSP solution.

Considering case 2. Eight edges of Figure 3 are perturbed
as follows: c1→2 (c1 + 1c12), c2→1 (c2 + 1c21), c1→5
(c9 + 1c15), c5→1 (c10 + 1c51), c4→6 (c25 + 1c46), c6→4
(c26+1c64), c1→4 (c7+1c14), and c4→1 (c8+1c41). We use
seven different strengths of perturbations denoted by Set i =
(1c12,1c21, 1c15, 1c51, 1c46, 1c64, 1c14,1c41) (i =
1, 2, . . . , 7). The values of all Set i are reported in TABLE
4. The numerical solving of (15) is performed and results are
depicted in Figure 10. It clearly appears from Figure 10 that
each set of perturbations (Set i) leads to a constant value of the
total cost L̃ of the TSP tour detected. It also clearly appears
from Figure 10 that for each set of perturbations Set i (in
TABLE 4) the value of L̃ remains constant for all values of α
and β1 selected in windows 1 ≤ α ≤ 5 and 10 ≤ β1 ≤ 50.
The constant value of L̃ obtained for each set corresponds to
the smallest TSP cost. This justifies the convergence of the
neuro-processor developed to the optimal TSP solution.

Considering case 3. Twelve arc weights of Figure 3 are
now perturbed as follows: edges c1→2 (c1+1c12), c2→1 (c2+
1c21), c1→5 (c9 + 1c15), c5→1 (c10 + 1c51), c4→6 (c25 +
1c46), c6→4 (c26+1c64), c1→4 (c7+1c14), c4→1 (c8+1c41),
c2→4 (c15 + 1c24), c4→2 (c16 + 1c42), c2→5 (c13 + 1c25),
and c5→2 (c14 + 1c52). We use seven different strengths of
perturbations denoted by Set i = (1c12,1c21, 1c15, 1c51,
1c46, 1c64, 1c14, 1c41, 1c24, 1c42, 1c25, 1c52).

The values of all Set i are reported in TABLE 5. The numer-
ical solving of (15) is performed and results are depicted
in Figure 11. It clearly appears from Figure 11 that each set

FIGURE 11. Results of the 2D bifurcation analysis in terms of α (step size
of decision neurons) and β1 (step size of multiplier neurons). Seven sets
of perturbations (1c12,1c21, 1c15, 1c51, 1c46,1c64, 1c14, 1c41, 1c24,
1c42, 1c25, 1c52) are used as reported in TABLE 5. For each set, it clearly
appears that the total cost (L̃i ) of the TSP tour detected remains constant
for all values of α and β1 selected in windows 1 ≤ α ≤ 5 and
10 < β1 ≤ 50. Further, it has been found that each value L̃i corresponds
to the global minimum as each L̃i corresponds to the smallest cost. This
guarantees optimality of the TSP solution for 1 ≤ α ≤ 5 and 10 < β1 ≤ 50.

FIGURE 12. A complete graph network of magnitude ‘‘12’’ and size ‘‘132’’.
Edges are bi-directional and their costs are obtained through the
expression ci = i (i = 1,2, . . . ,132 stand for the indexes of edges). The
optimal TSP tour is obtained as numerical solution of (15). The values of
parameters used to solve (15) are defined as follows: β2 = 100,
β3 = 150,β∗3 = 50, β4 = 10,β5 = 0.045, h = 0.00025 (step size) 1 ≤ α ≤ 5
and 10 < β1≤ 50.

of perturbation (Set i) leads to a constant value of the total
cost L̃ of the TSP tour detected. It also clearly appears from
Figure 11 that for each set of perturbation Set i (in TABLE
5) the value of L̃ remains constant for all 1 ≤ α ≤ 5
and 10 ≤ β1 ≤ 50. The constant value of L̃ obtained for
each set corresponds to the smallest TSP cost. This justifies
convergence of the neuro-processor developed to the optimal
TSP solution.

The study carried out in this sub-section was related to a
numerical study of bifurcation analysis in presence of ‘‘sev-
eral edges of the graph subject to weights perturbations’’.
This study has shown/confirmed that all-over the fixed win-
dows of control parameters (1 ≤ α ≤ 5 and 10 ≤ β1 ≤ 50)
optimality of the TSP solution is always reached/ensured.

This sub-section has demonstrated that optimality of the
TSP solution (obtained using the neuro-processor model
in (15)) is preserved even in case of graph networks subject to
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FIGURE 13. (a) Numerical solution Ex of (15). The components of Ex are
binary values which are used to detect the TSP solution/tour in Figure 12.
(a) Damped oscillations in range 0 < t < 35.

(
b
)

Permanent phase
corresponding to the final TSP solution in form of a single-cycle obtained
for all t > 35. This latter solution Ex of (15) is stable as it remains
unchanged for all values of t (say t > 35). The optimality of the TSP
solution/tour obtained here is confirmed by the 2D bifurcation diagram
in Figure 15. (b) A zooming of the solution Ex in Figure 13a in the range
10 < t < 40. This range overlaps the range of damped oscillations
(0 < t < 35) and the range of permanent dynamics (t > 35). The zooming
clearly illustrates the convergence of Ex to binary variables ‘‘0’’ and ‘‘1’’.
When t increases further (t > 35) all solutions Ex merge into two lines:
Line 1: xi = 1 (i = 14, 17, 38, 39, 51, 60, 69, 74, 79, 84, 92, and 101) and
Line 2: All others 120 components are equal zero ( xi = 0). This witnesses
the binarization of solutions Ex of (15).

random perturbation of costs of edges for fixed value-ranges
of control parameters (say, 1 ≤ α ≤ 5 and 10 ≤ β1 ≤ 50),
which have been obtained/selected through various numerical
simulations from the reference scenario (see Figure 8). Sev-
eral sets of perturbations applied to costs of edges have been
considered and it has been demonstrated that optimality of the
TSP solution is always ensured in the defined/fixed ranges for
α and β1.
The next sub-section investigates the optimality of

TSP solutions in presence of graph networks of differ-
ent topologies. The main objective of our investigation
in this sub-section is to demonstrate that for a selected
parameters-values window/range for α and β1 (selected from
Figure 8) the optimality of the TSP solution regardless of
graph size, graph magnitude and graph topology is still
maintained. The investigation is focused on a bifurcation
analysis with regards to α and β1. The analysis considers
various graphs with different topologies. The aim is to show

FIGURE 14. TSP tour obtained according to the numerical solution Ex for
the graph in Figure 12. The TSP tour detected corresponds to xi = 1 (i=14,
17, 38, 39, 51, 60, 69, 74, 79, 84, 92, and 101)). The cost of an edge is taken
(in the example) equal to the edge index. Thus, using xi in (9) leads to the
following total cost of the TSP tour L̃ =

∑(
i ∗ xi

)
= 718.

that all-over that fixed windows 1 ≤ α ≤ 5 and 10 ≤
β1 ≤ 50 the optimality of TSP is always reached for all
those multiple graph-topologies. As illustrative examples,
two scenario-settings are thereby investigated. The first set-
ting considers a graph of magnitude ‘‘12’’ and size ‘‘132’’.
The second setting does consider a graph of magnitude ‘‘24’’
and size ‘‘552’’.

c. Scenario 3: Bifurcation analysis in graph networks
subject to changes in their topologies and optimality
of the TSP solution/tour

The bifurcation analysis is now performed in graphs with
different topologies. Two scenarios are considered, namely:
scenario-setting-1- a graph network of magnitude ‘‘12’’ and
size ‘‘132’’, and scenario-setting-2- a graph of magnitude
‘‘24’’ and size ‘‘552’’. For the two scenarios, our investiga-
tions use exactly the same values and same windows/ranges
of the control parameters as in the previous section (a
neuro-processor parameter-values range/window which is
selected from the reference scenario in/of Figure 8, where it is
seen that for that range/window the solution is always stable
and optimal).

Scenario setting 1. We now consider the topology of a
complete graph of magnitude ‘‘12’’ and size ‘‘132’’ (see
Figure 12). All nodes in Figure 12 are pair-wisely connected
by/through bi-directional edges. In Figure 12 the costs of
edges are obtained from the expression ci = i, where i stands
for the edge- index.

The TSP solution in Figure 13a is obtained as numeri-
cal solution Ex of (15) for the graph of Figure 12. We use
same/identical values and/or windows of the control param-
eters as in Figures 9, 10 and 11. The choice of the control
parameters α = 1 and β1 = 10 has led to results depicted
in Figures 13a and 13b. The zooming in Figure 13b shows the
convergence of ‘‘12’’ components of Ex to ‘‘1’’ and also con-
vergence of remaining ‘‘120’’ components of Ex to ‘‘0’’. This
witnesses the binarization of solutions Ex in (15). The non-zero
components of Ex are further used to obtain the TSP tour
depicted in Figure 14. The optimality of the TSP tour obtained
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FIGURE 15. Results of the 2D bifurcation analysis in terms of α and β1 in
a graph of magnitude 12 and size 132 (see Figure 12). The total cost (L̃) of
the TSP tour detected remains constant for all values of α and β1 selected
in windows 1 ≤ α ≤ 5 and 10 < β1 ≤ 50. Further, it has been found
through our various numerical simulations that L̃ corresponds to the
global minimum. Thus, an optimality of the TSP tour is ensured in
selected windows of α and β1.

FIGURE 16. A complete graph network of magnitude ‘‘24’’ and size ‘‘552’’.
Edges are bi-directional and their costs are obtained through the
expression ci = i (i = 1,2, . . . ,552 stand for the indexes of edges). The
optimal TSP tour is obtained as numerical solution of (15). The values of
parameters used to solve (15) are defined as follows: β2 = 100,
β3 = 150,β∗3 = 50, β4 = 10,β5 = 0.045, h = 0.00025 (step size) 1 ≤ α ≤ 5
and 10 < β1≤ 50.

is further addressed through a thoroughly bifurcation anal-
ysis. This analysis uses exactly same settings/windows of
the control parameters as in Figures 9, 10 and 11. The out-
come (results) of the bifurcation analysis is depicted in Fig-
ure 15. As it appears from Figure 15 the unicity of the
TSP tour is preserved in the domains of variation of control
parameters (1 ≤ α ≤ 5 and 10 < β1 ≤ 50). This confirms
the optimality of the TSP solution/tour detected using (15).

Scenario setting 2. We now consider the topology of
a complete graph of magnitude ‘‘24’’ and size ‘‘552’’
(see Figure 16). All nodes in Figure 16 are pair-wisely

FIGURE 17. (a) Numerical solution Ex of (15). The components of Ex are
binary values which are used to detect the TSP solution/tour in Figure 16.
(a) Transient phase characterized by oscillatory dynamics in range
0 < t < 20.

(
b
)

Permanent phase corresponding to the final TSP solution
in form of a single-cycle obtained for all t > 20. This latter solution Ex of
(15) is stable as it remains unchanged for all values of t (say t > 20). The
optimality of the TSP solution/tour obtained here is confirmed by
Figure 19. (b) A zooming of the solution Ex in Figure 17a in the range
20 < t < 40. This range overlaps the range of transient dynamics
(20 < t < 35) and the range of permanent dynamics (t > 35). The
zooming clearly illustrates the convergence of Ex to binary variables ‘‘0’’
and ‘‘1’’. When t increases further (t > 35) all solutions Ex merge into two
lines: Line 1: xi = 1 (i=27, 32, 84, 85, 114, 115, 151, 160, 195, 200, 230,
243, 257, 276, 303, 312, 329, 340, 350, 369, 374, 385, 412 and 413) and
Line 2: All others 528 components are equal zero ( xi = 0). This witnesses
the binarization of solutions Ex of (15).

connected by/through bi-directional edges. In Figure 16 the
costs of edges are obtained from the expression ci = i,where
i stands for the edge- index.

The TSP solution for the graph in Figure 16 is obtained
as numerical solution Ex of (15). We use same/identical
values and/or windows/ranges of the control parameters as
in Figures 9, 10, 11 and 15. The choice of control parameters
α = 1 and β1 = 10 has led to results depicted in Figures 17a
and 17b. The zooming in Figure 17b shows the convergence
of ‘‘24’’ components of Ex to ‘‘1’’ and also convergence of
remaining ‘‘528’’ components of Ex to ‘‘0’’. This witnesses
the binarization of solutions Ex in (15). The non-zero compo-
nents of Ex are further used to obtain the TSP tour depicted
in Figure 18. The optimality of the TSP tour obtained is
further addressed through a thoroughly bifurcation analysis.
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FIGURE 18. TSP tour obtained according to the numerical solution Ex for
the graph in Figure 16. The TSP tour detected corresponds to xi = 1 (i=27,
32, 84, 85, 114, 115, 151, 160, 195, 200, 230, 243, 257, 276, 303, 312, 329,
340, 350, 369, 374, 385, 412 and 413). The cost of an edge is equal to the
edge index. Thus using values of xi in (9) leads to the total cost of TSP
tour L̃ =

∑(
i ∗ xi

)
= 5756.

FIGURE 19. Results of the 2D bifurcation analysis in terms of α and β1· in
a graph of magnitude 24 and size 552 (see Figure 16). The total cost (L̃) of
the TSP tour detected remains constant for all values of α and β1 selected
in windows 1 ≤ α ≤ 5 and 10 < β1 ≤ 50. Further, it has been found
through our various numerical simulations that L̃ corresponds to the
global minimum. Thus, an optimality of the TSP tour is ensured in
selected windows of α and β1.

This analysis uses exactly same settings/windows of the con-
trol parameters as in Figures 9, 10, 11, and 15. The out-
come (results) of the bifurcation analysis is depicted in Fig-
ure 19. As it appears from Figure 19 the unicity of the
TSP tour is preserved in the domains of variation of control
parameters (1 ≤ α ≤ 5 and 10 < β1 ≤ 50). This confirms
the optimality of the TSP solution/tour detected using the
neuro-processor model (15).

D. APPLICATION EXAMPLE 2 (PUBLISHED IN [26]):
COMPUTATION OF THE TSP TOUR, BENCHMARKING WITH
THE NEURO- PROCESSOR DEVELOPED, AND OPTIMALITY
OF THE TSP SOLUTION/TOUR
The objectives of the study in this section are twofold.
The first concern is to demonstrate that the neuro-processor
concept developed in (15) can be used to detect the TSP tour

FIGURE 20. A city graph with distance weights (this case study is
published in [26]). The costs of edges ci are defined in the text. The
corresponding total cost of the ‘‘traveling salesman tour’’ (see red lines)
is equal to ctotal = 159.

obtained in [26] and materialized by the cyclic trajectory in
red color in Figure 20. The second concern is to demonstrate
that the optimality of TSP solution is ensured (guaranteed)
by the neuro-processor. Thus a bifurcation analysis is car-
ried out to demonstrate that the parameter-values-ranges and
windows/ranges of parameters used in the previous examples
to guarantee optimality of the TSP tour can also be used
in case of the graph network in [26] (see also Figure 20).
Various numerical simulations are considered (as stress-
testing) to confirm the optimality of the TSP solution/tour
under defined/specific values and ranges/windows of system
parameters.

In order to facilitate the benchmarking between the method
in [26] and the neuro-processor concept developed in this
paper (see model (15)) we use exactly identical values
assigned to the costs of edges in [26]. The weights values
in [26] are chosen as follows: c1 = c2 = 25; c3 = c4 = 25;
c5 = c6 = 22; c7 = c8 = 25; c9 = c10 = 28; c11 = c12 =
25; c13 = c14 = 45; c15 = c16 = 45; c17 = c18 = 35;
c19 = c20 = 30; c21 = c22 = 55; c23 = c24 = 50;
c25 = c26 = 25; c27 = c28 = 50; c29 = c30 = 27. Furthers,
the values of parameters used to solve (15) numerically are
identical to the values used in Figures 9, 10, 11, 15 and 19.

Using the aforementioned values of system parameters
the numerical solving of (15) has led to results depicted in
Figure 21. The results depicted in Figure 21 correspond to the
TSP tour x3 → x5 → x25 → x29 → x17 → x11. This tour
corresponds to the optimal ‘‘traveling salesman tour’’ with
the total cost equal to ctotal = 159. This value corresponds
to the global minimum. Thus, the tour represents the ‘‘exact
traveling salesman tour’’ under the predefined fundamental
parameters of the city graph in Figure 20.

The benchmarking performed in TABLE 6 shows that the
neuro-processor based TSP solver concept developed leads
to same results as those published in [26]. Under the same
parameter settings used by the method published in [26]
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FIGURE 21. Numerical solution Ex of (15). The components of Ex are binary
values which are used to detect the TSP solution/tour in Figure 20.
A short transient phase characterized by damped oscillations is observed
in the range 0 < t < 5. When t > 5 a permanent phase corresponding to
the final TSP solution in form of a single-cycle is obtained (for all t > 5).
This latter solution Ex of (15) is stable as it remains unchanged for all
values of t ( say, t > 5). The optimality of the TSP solution/tour obtained
here is confirmed by Figure 22.

FIGURE 22. Results of the 2D bifurcation analysis in terms of α and β1 in
the graph of Figure 20. The total cost (L̃) of the TSP tour detected remains
constant for all values of α and β1 selected in windows 1 ≤ α ≤ 5 and
10 < β1 ≤ 50. Further, it has been found through our various numerical
simulations that L̃ corresponds to the global minimum. Thus,
an optimality of the TSP tour is ensured in selected windows of α and β1.

and the neuro-processor based concept, the same TSP solu-
tion/tour has been obtained.

The convergence of both methods is also reported in
TABLE 6. However, concerning the iterations to achieve
convergence, the neuro-processor has experienced (did need)
about t = 5 iterations (see also in Figure 21). The time to
convergence is not reported in [26] asmentioned in TABLE 6.

We now carry out the bifurcation analysis using identi-
cal (same) values of parameters as in Figure 21. The bifur-
cation diagram obtained in terms of α and β1 as result of
the numerical solution Ex of (15) is shown in Figure 22. This

TABLE 6. Benchmarking results for application example 2: computation
of the traveling salesman tour provided by results in Figure 21. This
traveling salesman tour is represented with red lines in Figure 20.

figure confirms the optimality of the TSP solution in the
selected windows of control parameters α and β1.

VI. CONCLUSION
This work has developed and validated a neuro-processor
based dynamically reconfigurable TSP solver concept for the
efficient and robust solving of single-cycle TSP in dynami-
cally reconfigurable network graphs. The developed concept
has been demonstrated as being capable of efficiently han-
dling single-cycle TSP in undirected graphs and in bidirec-
tional graphs, even in the case of large values (i.e. various
settings – from very small to very large) of the edge costs.
Furthers, it has been demonstrated that the developed concept
can efficiently solve single-cycle TSP even in particular cases
where several TSP paths with identical minimum total cost
are identified within the graph. This novel concept does sig-
nificantly contribute to the enrichment of the relevant state-
of-the-art regarding TSP solving, since most traditional TSP
solver concepts and algorithms cannot efficiently tackle such
last-named situations and nor always ensure thereby a sure
convergence. The efficiency in those various hard contexts is
related to the core performance criteria at stake, namely sta-
bility, robustness, and fast convergence towards the optimal
TSP solution.

One further most important contribution of this paper is
that we have carried out the (local) stability analysis of equi-
librium points and analytical conditions have been obtained
under which the equilibrium points are stable. The analyt-
ical conditions derived have been further used to guaran-
tee the sure ‘‘always’’-convergence of the neuro-processor
based TSP solver concept to the exact/true single-cycle
TSP solution. This sure convergence pending the fulfillment
of the analytical stability conditions established has been
demonstrated/validated through extensive bifurcation analy-
sis related illustrative examples.

Overall, the accuracy and the robustness/stability of the
neuro-processor developed have been proven both analyti-
cally and numerically.

In the validation process, an extensive benchmarking has
been carried out. Part of the results of this paper have
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been compared with the related results presented in [11]
and [26]. The outcomes of this comparison have confirmed
the effectiveness and correctness of the neuro-processor
based single-cycle TSP solver concept developed here to
efficiently tackle traveling salesman problems.

A series of ongoing works under consideration do relate
amongst others to the following issues: (a) The experimental
validation of the neuro-processor developed in this paper
for the efficient solving of single-cycle TSP in large-scale
and dynamically reconfigurable graph networks. The main
concern here is to use the neuro-processor to solve a series of
practical and real-world examples or real-life instances (e.g.,
standard TSP instances from TSPLIB). The validation will be
carried out in the frame of a comprehensive benchmarking
procedure consisting of comparing the results obtained by
the neuro-processor with the results obtained for TSPLIB
instances by involving some traditional and commonly used
TSP algorithms/heuristics; (b) The extension of the concept
developed (in this paper) to the case of non-additive (i.e. non-
linear) path cost (i.e. the so-called non-additive shortest path
(NASP) problem which asks for finding an optimal path that
minimizes a certain multi-attribute non-linear cost function);
(c) The extension of the neuro-processor concept developed
(in this paper) to the case of stochastic shortest path problems;
(d) Vehicle routing problems (VRP) under stochastic condi-
tions; and (e) Scheduling problems under nonlinear and/or
stochastic conditions. All these problems are extremely
challenging and do face a huge computational complexity
that can however be, in principle or potentially, signifi-
cantly alleviated by using and adapting/extending/tuning the
neuro-processor based concept developed in this paper. To the
best of our knowledge, only very few published works have
involved neurocomputing to efficiently address this type of
computationally extremely challenging discrete problems.
Thus, our neuro-processor concept does contribute to opening
the door of neurocomputing for solving challenging discrete
optimization problems under difficult settings.
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