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ABSTRACT Polarimetric synthetic aperture radar (PolSAR) image classification is one of the most
important study areas for PolSAR image processing. Many kinds of PolSAR features can be extracted
for PolSAR image classification, such as the scattering, polarimetric or image features. However, it is
difficult to improve the classification accuracy of PolSAR images by using all these low-level features
directly, since they may conflict with each other for classification. Hence, how to joint learn these low-
level features to obtain high-level discriminating features is a challenging task. To solve this problem,
a novel fast multi-feature joint learning method(fMF-JLC) is proposed for PolSAR image classification.
The proposed method extract three kinds of low-level features of PolSAR data at first. Then, a multi-
feature joint sparse representation model(MF-JSR) is proposed by designing joint sparse constraints on
the extracted features above. Moreover, the joint sparse features are further compressed to overcome the
dimension curse and acquire semantic features by the topic model. By this way, the low-level features are
fused and discriminating high-level features are acquired. However, the pixel-wise feature learning method
is time consuming. To speed the proposed method, a superpixel-based fast learning method is designed by
involving the contextual relationship. Experiments are taken on three sets of real PolSAR data with different
sensors and bands, and several comparedmethods are used to verify the effectiveness of the proposedmethod.
The experimental results illustrate that the proposed method can obtain better performance than the state-of-
art methods, especially for the heterogenous areas.

INDEX TERMS Polarimetric SAR classification, joint multi-feature sparse representation, joint multi-
feature learning, fast classification method.

I. INTRODUCTION
Polarimetric synthetic aperture radar (PolSAR) terrain clas-
sification is the key of PolSAR image interpretation. Pol-
SAR terrain classification has attracted many researchers’
attention since it can provide more scattering characteristics
and polarimetric information than the SAR data. Abundant
PolSAR classification methods have been proposed and
achieved superior performance. However, there are still some
challenges for PolSAR terrain classification. Firstly, speckle
is one of the main factors that causes misclassification.
In addition, the heterogenous areas, such as the urban area, are
difficult to be classified into semantic homogenous regions,
since pixels within the heterogenous terrain object have
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obvious intensity variations, and the corresponding low-level
features are great different. It is the gap between the low-level
feature and the high-level semantic.

To suppress the speckle noises, many PolSAR classifi-
cation approaches have been proposed, which are mainly
categorized into three types: 1) statistical distribution-based
methods [1], [2], which assume the PolSAR speckle data as
Gaussian or non-Gaussian distribution. Specifically, under
the homogeneity assumption, the scattering matrix obeys
Gaussian distribution, such as the Wishart-based classifica-
tion method [3] and the improved Cloude-Pottier decompo-
sition method [4]. However, the homogeneity assumption is
not satisfied for high-resolution and heterogeneous PolSAR
images any more. So, some non-Gaussian modeling methods
[5], [6] were proposed, such as K-Wishart, G0 and KummerU
distributions. 2)statistical and scattering information based
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methods, which added the scattering information to improve
the classification accuracy, such as Cloude decomposi-
tion [7], Freeman decomposition [8], Huyen decomposi-
tion [9] and so forth. These approaches can obtain a fine
classification result by considering polarimetric information,
but produce an salt-and-pepper classification map without
the structural and spatial information. References [10], [11]
3)image feature-based PolSAR classification methods
[12]–[14], which include approaches based on textural
modeling [15], such as gray level co-occurrences matrices
(GLCM) and Gabor or wavelet features [16], and approaches
with regularization criterion, such as Markov Random
Field(MRF) [17], [18] and contour criterion [19]. Compared
with classificationmethods without spatial information, these
approaches can achieve more homogenous classification
results by considering the local spatial dependency in an
image.

These methods above are mainly based on a certain kind of
features for PolSAR image classification. However, the Pol-
SAR image include various terrain types, and many kinds of
features can be extracted from different perspectives. It is
difficult to classify all the terrain types well with a single
feature. Multiple kinds of features [20] can provide more dis-
criminating information for PolSAR classification, since they
can describe the PolSAR image from different viewpoints.
However, how to combine these features to improve classi-
fication accuracy has been an important issue for PolSAR
image classification.

Sparse representation is a promising method to fuse multi-
ple features, which has attracted many researchers. Sparse
representation model [21] has been widely used in face
recognition [22], hyperspectral image classification [23] and
object detection [24]. Sparse learning [25] assumes the input
signal can be approximately represented by a linear com-
bination of atoms in a dictionary. The sparse constraints
promise that many of coefficients are zero since the dictio-
nary is over-complete. Later, sparse representation methods
were extended to dealing with multi-feature representation
based classification, and some multi-feature joint sparse
representation methods [26]–[28] were proposed. In 2015,
Zhang et al. [27] proposed a fast multi-feature joint sparse
representation method for hyperspectral image classification.
In 2017, Yang et al. [28] proposed a joint multi-feature
dictionary learning method for face recognition. These meth-
ods can fuse multiple features effectively and improve clas-
sification accuracy. However, all these methods are used
for optical images, which are totally different from Pol-
SAR images. Considering polarimetric characteristics [29],
in 2015, an improved PolSAR classification method [30]
is proposed by using multi-feature combination. In 2017,
a nearest-regularized subspace classification method(NRS-
MRF) [31] was proposed for PolSAR images by using
polarimetric feature vector and spatial information. In 2018,
a spatial multi-attribute graph was constructed for PolSAR
classification [32]. Recently, a multi-level feature extraction
method [33] was proposed for PolSAR image classification.

All these methods can combine multiple kinds of PolSAR
features well. However, the joint sparse coefficients are
obtained by stacking different features, which will cause
dimension curse. Moreover, without considering semantic
information, they are difficult to classify the heterogenous
areas into the same class, such as the urban area. It is because
that pixels within them have obvious bright-dark intensity
changes. These intensity changes are mainly caused by their
imaging characteristics. For low-resolution images, the inten-
sity change is caused by the scattering wave of the object and
the ground nearby. For high-resolution images, it is produced
by scattering waves of ground objects and their shadows. This
variation makes two pixels nearby produce different sparse
feature representation. And different features will produce
different classes within the heterogenous area. Therefore,
higher-level features [34], [35] should be exploited to obtain a
semantically consistent region within the heterogenous area.

Topic model [36] is an efficient tool to establish a bridge
between the low-level features and high-level semantic ones.
High-level semantic is learned by a multi-level generative
model in a latent space. In 1990, a latent semantic analysis
(LSA) [37] model is proposed. Later, Hofmann extended it
into probabilistic LSA (pLSA) [38], which assumes that a
document and a word are conditionally independent from the
topic given. However, it always causes overfitting and is dif-
ficult to assign probability to a previously unseen document.
In 2003, the latent Dirichlet allocation (LDA) model [39] is
proposed, which induces hidden random variable to reduce
overfitting. The LDA is formulated by a three-level Bayesian
model and variation inference is used to estimate parameters.

Inspired by the sparse representation and topic model,
in this paper, a novel multi-feature joint learning method
is proposed for the PolSAR image classification. Compared
with the conventional classification methods, the proposed
method has three characteristics as follows: 1) A joint multi-
feature sparse learning method is proposed to combine three
types of features, which are the polarimetric data, scattering
characteristics and image contextual features respectively.
2)According to the learned joint sparse features, higher-level
features are acquired by the topic model to suppress the
dimension curse. 3) A superpixel-based fast learning method
is exploited to involve spatial information and reduce com-
puting time. Experimental results illustrate the effectiveness
of the proposed method.

The rest of this paper is organized as follows. In Section II,
the PolSAR data is introduced. In Section III, the proposed
method is described in detail. The experimental results are
shown and discussed in Section IV. Finally, the conclusion is
drawn in Section V.

II. POLAREIMTERIC SAR DATA
A. POLSAR DATA REPRESENTATION
PolSAR data is the scattering echo waves of radar sys-
tem. The electromagnetic waves are transmitted and received
by two ways: horizonal and vertical. Under the reciprocal

30492 VOLUME 8, 2020



J. Shi et al.: Novel Multi-Feature Joint Learning Method for Fast Polarimetric SAR Terrain Classification

TABLE 1. The target information for nine elements of Huyen decomposition.

backscattering condition, PolSAR data can be represented by
the scattering vector k [40] in the linear basis as:

k = [ Shh
√
2Shv Svv ]

T (1)

where Shh is the scattering element by horizontal transmitting
and horizontal receiving polarization, and the other three ele-
ments are similarly defined.

√
2 is used to keep the computing

consistency of the total power.
According to the scattering vector k , polarimetric SARdata

can also be expressed as a covariance matrix C :

C = kk∗T (2)

where the superscript ∗ is the complex conjugate.
In addition, polarimetric information can be represented

by a coherency matrix T which can describe the scattering
procedure of terrain objects well. It is obtained by the lin-
ear transformation of the covariance matrix C . Generally,
the diagonal elements of T are used as RGB channels respec-
tively to illustrate the PolSAR PauliRGB image.

B. TARGET DECOMPOSITION OF POLSAR DATA
Multiple of target decomposition methods have been pro-
posed for decades. We will introduce the Cloude and Pottier,
Freeman and Durden and Huyen decomposition respectively
in this section.

1) CLOUDE AND POTTIER DECOMPOSITION
According to the Cloude and Pottier decomposition, the scat-
tering entropyH ,the anti-entropyA and the average of scatter-
ing angles α are obtained by the eigenvalue decomposition of
coherencymatrix T . The details can be found in reference [7].

2) FREEMAN AND DURDEN DECOMPOSITION
Freeman and Durden decomposition can divide the covari-
ance matrix into surface, double-bounce and volume scat-
tering. So, the powers of three scattering categories can
be calculated respectively. The details can be found in
reference [8].

3) HUYEN DECOMPOSITION
Huyen decomposition [9] can represent the coherency matrix
as 9 independent elements {A0,B0,B,C,D,E,F,G,H}.
Their target information is given in Table 1.

III. PROPOSED METHOD
For considering the spatial relationship and semantic infor-
mation, a fast multi-feature joint sparse learning method is
proposed for the PolSAR image classification. The main pro-
cedure is illustrated in Fig. 1. Firstly, three types of features
are extracted, which includes features from the original data,
target decomposition and the PolSAR image. Secondly, based
on the three types of features, a joint multi-feature sparse
representation method is proposed by constructing three sets
of codewords. This method mainly includes that a dictionary
is formulated by combining these codewords, and the joint
sparse features are extracted from the dictionary. Thirdly,
to reduce computing time, superpixels are extracted by the
simple linear iterative cluster(SLIC) method, and sparse rep-
resentation is obtained for each superpixel by adding the
similar sparse constraint in the superpixel. Then, topic model
is used to learn superpixels’ high-level features. Finally, based
on the learned high-level features, the SVM method is used
to classify the PolSAR image.

A. FEATURE EXTRACTION
The PolSAR features can be extracted from various perspec-
tives, such as polarimetric features, scattering information
and image contextual features. Each feature can provide help-
ful information for PolSAR image classification. However,
traditional classification methods don’t make full use of all
the features. It is because some features are contradictory
to each other for classification, and it may reduce the clas-
sification performance by simply connecting them together.
In this paper, we propose a joint multi-feature sparse learning
method to utilize different features. Firstly, three types of
features, which can provide complementary information for
image classification, are extracted from PolSAR images. One
type of feature is extracted from the original PolSAR data
named Feature 1 in Fig. 1. The second one is extracted from
the target decomposition named Feature 2, and the last one
is extracted from the PolSAR images named Feature 3, such
as the textural and contour features, which can describe the
heterogenous area effectively.

1) FEATURES FROM ORIGINAL DATA (16 FEATURES)
The first type of feature, named Feature 1, is extracted from
the scatteringmatrix, the coherencymatrix and the SPANdata
respectively.
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FIGURE 1. Procedure of the proposed fast multi-feature joint learning method for PolSAR terrain classification.

Scattering matrix elements(6 features):

{real(Shh), imag(Shh), real(Shv), imag(Shv),

real(Svv), imag(Svv)} (3)

Coherency matrix elements(9 features):

{T11,T22,T33, real(T12), imag(T12), real(T13),

imag(T13), real(T23), imag(T23)} (4)

Features from SPAN data(1 feature):

span = |Shh|2 + 2|Shv|2 + |Svv|2 (5)

2) FEATURES FROM TARGET DECOMPOSITION
(17 FEATURES)
According to the target decomposition of PolSAR data, three
types of decomposition parameters and two polarimetric
parameters are extracted as Feature 2.

Cloude and Pottier decomposition(3 features): the
entropy H , the anti-entropy A and the average of scattering
angle α.
Freeman decomposition (3 features): the surface,

double-bounce and volume scattering power.
Huynen decomposition(9 features):

{A0,B0,B,C,D,E,F,G,H} (6)

Polarimetric parameters(2 features):
co-polarization ratio:

ro =

〈
SvvS∗vv

〉〈
ShhS∗hh

〉 (7)

where 〈·〉 is an operator of multi-look processing, and ro
measure the difference between Svv and Svv.
cross-polarization ratio:

rx =

〈
ShvS∗hv

〉〈
ShhS∗hh

〉 (8)

where rx is sensitive to the volume scattering.

3) FEATURES FROM POLSAR IMAGE(20 FEATURES)
According to the PolSAR image, the texture and contour
features are extracted as Feature 3.

a: TEXTURE FEATURES (4 FEATURES)
Gray-level co-occurrence matrix (GLCM) [16] is an effective
tool to describe the texture of the SAR images by calculating
the local spatial relationship of an image. It can reflect the
orientation, space and variation mode in a local area. Based
on GLCM, four textural features are defined as:

Contrast: It measures the local variation of the image. The
stronger the local variations, the larger the contrast value.
A higher contrast reflects the texture is clearer. So, the con-
trast reflects the clarity of the texture [41].

con =
∑
i

∑
j

(i− j)2P(i, j) (9)

where P(i, j) is the GLCM value between pixel i and j.
Energy: It measures the stability of image texture, and

reflects the distribution of image intensity.

Asm =
∑
i

∑
j

P(i, j)2 (10)
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Entropy: It measures the information randomness. Large
entropy means more complex intensity distribution.

Ent = −
∑
i

∑
j

p(i, j) log p(i, j) (11)

Relativity: It measures the similarity of the image intensity.

Corr =

[∑
i

∑
j
((i, j)p(i, j))− µxµy

]/
σxσy

(12)

b: CONTOUR FEATURES (16 FEATURES)
In this paper, three channels and SPAN images are used to
compute the contour energy values respectively. To calculate
contour accurately, anisotropic Gaussian kernel filters are
used, which ensure pixels along the edge have more weights.
Filters with three scales and 18 orientations are designed to
obtain the contour features. In addition, a ratio operator is uti-
lized to compute edge-line energy. Since the diagonal terms
of the coherency matrix have been proved to be multiplicative
noise model [40], the ratio operator can suppress the speckle
noises of the three channels’ and SPAN data. Hence, the edge
and line energies [42] are defined as:

Eedge =

(
1
n

n∑
i=1

wixi

)/(
1
m

m∑
j=1

wjxj

)
(13)

Eline = min{E ijedge,E
jk
edge} (14)

where xi and xj are the intensity values in pixel i and j
respectively. n and m are pixel numbers in two regions of a
filter respectively, and wi is the anisotropic Gaussian kernel.
In Equation 14, i,j and k are the three adjacent regions in
a line filter, and j is the middle region. E ijedge stands for the
edge energy between regions i and j. This equation means
that a line can be detected when two strong edges with very
close distance appear simultaneously. Edge and line energies
are computed with 3 scales and 18 orientations, and then
maximum energy is selected as the the contour feature for
each pixel.

B. MULTI-FEATURE JOINT SPARSE REPRESENTATION
Three types of features have been extracted from PolSAR
images. However, how to fuse them effectively to improve
the classification performance is an important issue. To solve
this problem, a multi-feature joint sparse representation
method(MF-JSR) is proposed for PolSAR image clas-
sification. In addition, a superpixel-based fast MF-JSR
method(MF-SJSR) is proposed to reduce the computation
time.

1) MULTI-FEATURE JOINT SPARSE REPRESENTATION
Sparse representation is based on the assumption that a sig-
nal can be linearly combined by a set of atoms in a given
dictionary [43]. Due to its excellent performance, the sparse
learning methods have attracted many researchers’ attention

and been widely applied to face recognition, image classifi-
cation and SAR image processing. It is noted that the sparse
representation model can be expressed as: min

α
‖y− Dα‖22 +

λ‖α‖0. The first and second terms are the residual and the
sparseness terms respectively. Here, y is the test data, D is
the given dictionary, and α is the sparse coefficients. ‖α‖0
is the 0-norm sparseness, which makes sure the obtained
coefficients are sparse. In addition, λ is the scalar constant.
According to the sparse representation model, a multi-

feature visual dictionary is needed to formulate. Firstly,
the extracted feature descriptors for each category are for-
mulated as a feature vector f k . It is noted that the feature
vectors should be normalized to make sure the same value
range. Second, for each kind of feature, visual codewords are
extracted by random sampling for each class of the image.
Finally, a multi-feature dictionary is formulated by combin-
ing three set of visual dictionaries extracted from three types
of features.

Based on the multi-feature visual dictionary, the joint
sparse representation method is derived for each pixel.
According to the multi-feature case, we suppose each pixel
can extract K different kinds of features. For each pixel,
the feature vector is defined as y = [y1, y2, . . . , yK ], and
yk ∈ <f

k
is the kth kind of feature vector, and f k is the

dimension number of the kth kind of feature vector. The
dictionary is composed as D = [D1,D2, . . . ,DK ], and
Dk = [Dk1,D

k
2, . . . ,D

k
C ] is the subdictionary for the kth

feature(Dkc ∈ <
f s×Nc , c = 1, . . . ,C). Here,C is the num-

ber of classes in an image. Dkc is the cth class atom set
in the subdictionary Dk , and Nc is the number of atoms
inDkc . Therefore, the multi-feature joint sparse representation
model(MF-JSR) is defined as:

min
α

K∑
k=1

(∥∥∥yk − Dkαk∥∥∥2
2
+ λ‖α‖0

)
(15)

This sparse representation model can obtain multi-feature
joint sparse coefficients. However, it fails to consider the rela-
tionship of sparse coefficients for different kinds of features.
Since each kind of feature is extracted to construct the subdic-
tionary Dk , and different features should achieve the similar
discriminate result for the same pixel. So, it is reasonable
that the nonzero coefficients should share some similarity.
Specifically, we assume that the positions of nonzero coef-
ficients tend to be the same. While, due to great differences
between different kinds of features, the sparse coefficients
need not to be identical. To achieve this similarity, the lrow,0-
norm penalty is utilized to enforce joint sparsity constraints
across multiple features. This regularization encourages the
coefficients to share a common sparsity pattern, which can
preserve the cross-feature information. By this way, the joint
sparse model is modified as a squared reconstruction error
term and a sparse lrow,0-norm regularization term. Thus,
different features can not only vote the same class, but
also provide additional complementary information. Under
this assumption, the multi-feature joint sparse representation

VOLUME 8, 2020 30495



J. Shi et al.: Novel Multi-Feature Joint Learning Method for Fast Polarimetric SAR Terrain Classification

model (MF-JSR) can be modified as:

min
A

K∑
k=1

(∥∥∥yk − Dkαk∥∥∥2
2

)
+ λ‖A‖row,0 (16)

where A =
[
α1, α2, . . . , αK

]
. The first term is trying to

reduce the representation errors for multiple features, and
the second one can not only make sure the sparseness for each
feature, but also preserve the similar sparse pattern for differ-
ent features. However, the lrow,0-norm optimization problem
is a NP-hard problem. Here, we use l2,1-norm instead of the
lrow,0-norm for optimizing conveniently. We can use greedy
algorithms, such as the orthogonal matching pursuit(OMP)
method [44], to approximately work out this function. The
OMP method has been widely used to solve the sparse
optimization problem since it has strong convergence charac-
teristics for optimization. In addition, the OMP method can
reduce the computational complexity, since it can only select
parts of dictionaries for computation to avoid the large matrix
inverse operation. Therefore, we select the OMP algorithm to
optimize the MF-JSR problem.

2) SUPERPIXEL-BASED MULTI-FEATURE JOINT SPARSE
REPRESENTATION
The proposed MF-JSR method is an effective tool to fuse
the multiple types of features. However, the sparse coeffi-
cients will be computed for each pixel, and this pixel-wised
method is time-consuming. In addition, without considering
the neighborhood relationship of pixels, the MF-JSR method
is also sensitive to speckle noises and easily causes mis-
classification. Therefore, the use of contextual information
are necessary. Traditional neighbor-based joint sparse repre-
sentation methods [45] always use the fixed neighborhood
window. However, pixels in the fixed neighborhood window
not always share the same class label, especially for the edge
area. In this paper, we extract the superpixel as the adaptive
neighborhood to learn the joint sparse feature. So, to speed
the feature learning procedure, a superpixel-based fast feature
learning method(MF-SJSR) is proposed for PolSAR image
classification. Considering spatial information, we assume
all the pixels in a superpixel have the same class label,
and their sparse coefficients share the same sparse pattern.
By this way, we can learn a superpixel’s sparse representation

simultaneously for one time, and the computational complex-
ity is reduced greatly.

Superpixels are regions obtained by the initial segmenta-
tion of PolSAR image. To obtain superpixels [46], an ini-
tial over segmentation is required to partition the SPAN
image into a lot of homogenous regions. Many low-level
segmentation methods such as watershed [47], mean-shift
algorithm [48], SLIC method [49], level set method [50] can
be used in this step. Here we choose the SLIC method for
initial segmentation since it can produce superpixels with
similar size and obtain better edge preservation. For detail
information about SLIC, please refer to [49], [51], [52].
To suppress speckle noises and reduce computation time,
a superpixel-based joint sparse feature representation is
extracted as the initial features of the topic model. Each
superpixel can extract a joint sparse representation by the
MF-SJSR method.

C. TOPIC MODEL-BASED HIGH-LEVEL FEATURE
LEARNING
The joint sparse representation can describe the terrain fea-
tures well. However, adjacent superpixels may produce great
different feature representations within the heterogenous
area, such as the urban area, although they represent the same
terrain type. Therefore, high-level semantic features should
be learned for describing heterogenous areas. Latent Dirich-
let allocation (LDA),also known as topic model, is a popular
feature learning method. It is based on a generative proba-
bilistic model, which is proposed for document classification
at first. The basic idea is to learn a set of latent topics, and each
document can be represented as the mixture of the topics.
In addition, topics are learned from a distribution of words
by a generative probabilistic model. Recently, LDA has been
used for the scene classification of the natural images. In this
paper, we propose a topic model-based multi-feature learn-
ing method for PolSAR terrain classification. It is proposed
to learn high-level semantic features for complex terrain
types, such as the urban area or the forest. The topic model-
based multi-feature learning procedure is illustrated in Fig. 2.
Firstly, joint sparse representation features are obtained for
each superpixel by the proposed MF-SJSR method. Then,
the LDA model is utilized to learn the high-level features for
each superpixel. Furthermore, the topic model can reduce the
sparse feature dimension effectively.

FIGURE 2. The topic model-based multi-feature learning procedure.
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LDA assumes the following generative process for each
image w in a set D:

1) Choose N ∼ Poisson(ξ )
2) Choose θ ∼ Dir(α)
3) for each of the N words wn:
(a)Choose a topic zn ∼ Multinomial(θ )
(b)Choose a word wn from p(wn|zn, β), a multinomial

probability conditioned on the topic zn.
According to this assumption, an LDA model is con-

structed. Based on the probability model, the marginal dis-
tribution of an image is defined as:

p(w|α, β)=
∫
p(θ |α)

(
N∏
n=1

∑
zn

p(zn|θ )p(wn|zn, β)

)
dθ (17)

Given the probability model, the key problem is the infer-
ence and parameter estimation. The posterior distribution of
the hidden variables is denoted as:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)
p(w|α, β)

(18)

The parameter estimation is an optimization problem.
An iterativemethod [53] is used to optimize parameters. After
variation inference, parameters are updated by:

φni ∝ βiwn exp
{
Eq
[
log(θi)|γ

]}
(19)

γi = αi +
∑N

n=1
φni (20)

After the superpixel-based sparse representation, the
number of samples is greatly reduced. We take 10% of super-
pixels as the training samples to train the topic model. The
remaining superpixels are used as the test samples. The max-
imum likelihood methods are used to calculate the model’s
parameters. Thus, high-level features are learned by the latent
topic model.

D. SVM CLASSIFICATION
The support vector machines(SVM) classifier finds a hyper-
plane which separates two-class data with maximal mar-
gin [54]. The margin is defined as the distance of the closest
training point to the separating hyperplane. Given a training
set of M data points {yi, xi}Mi=1 where xi ∈ R

n is the ith input
pattern, and yi ∈ R is the output pattern. The SVM method
tries to construct a classifier defined as:

y(x) = sign

[
M∑
i=1

αiyiψ(x, xi)+ b

]
(21)

where αi is positive real constant and b is a real constant.
ψ(x, xi) has multiple of choices. If ψ(x, xi) = xTi x, it is a
linear SVM; If ψ(x, xi) = (xTi x + 1)d , it is a polynomial

SVM of degree d ; If ψ(x, xi) = exp
{
−‖x − xk‖22

}/
σ 2, it is

a RBF SVM, where σ is a constant. Since most of data do
not satisfy the linear distribution, we use the Gaussian kernel
SVM to conduct nonlinear classification in this paper. Finally,
the procedure of the proposed fMF-JLC method is illustrated
in Table 2.

TABLE 2. The algorithm procedure of the proposed fMF-JLC.

IV. EXPERIMENTAL STUDY
A. EXPERIMENTAL SETTINGS
In this section, three real PolSAR data in different bands
and sensors are used to test the effectiveness of the proposed
method. The first one is RADARSAT-2 C band San Francisco
area 4-look fully polarimetric data with the resolution of 5m.
The second one is a PolSAR image from the Flevoland
Area, which is NASA/JPL AIRSAR L-band four-look fully
polarimetric SAR data with the resolution of 8m. The last
one is the PolSAR image from the Oberpfaffenhofen area
which is 8-look L-band ESAR data. In addition, the ground
truth of each PolSAR image is given, and the classification
accuracy and the confusion matrix are calculated to measure
the performance of the proposed method.

During the experiment, 53 features are extracted from
there kinds of features in the PolSAR data, and a dictionary
with 300 atoms is formulated for each kind of features. So,
a multi-feature dictionary with 900 atoms are formulated, and
each superpixel is represented by the sparse features with
900 dimension. In addition, the number of topic is selected as
20. Therefore, the sparse features are further reduced to high-
level features with 20 dimension. Furthermore, we select 10%
of the superpixel number as the training data, and only one
pixel is selected as the training sample in each superpixel.
Therefore, only several training pixels are needed. A com-
puter with Intel Core i3 CPU and 4G RAM is used, and
all the experiments are conducted on Window7 system with
Matlab 2016a.

To evaluate the effectiveness of the proposed method, five
methods are used to compare their performance. The first
one is a multi-feature SVM method, shorted for 3F + SVM,
which is conducted by extracting the proposed three types
of features, and then followed by the SVM classification.
The second one is the learned joint sparse features-based clas-
sification method, noted by 3F + JSR. This is a pixel-wised
classification method. The third one is the superpixel-based
joint sparse feature learning method, shorted by 3F + SJSR.
This method is designed to verify the ‘‘fast’’ characteristic
of the proposed method by involving superpixel. The time
reduction can be seen by comparing running time between
3F + JSR and 3F + SJSR, which are pixel- and superpixel-
wised classification methods respectively. The three methods
above extract low- and mid-level features of the proposed
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FIGURE 3. Classification results on Flevoland area. (a) Pauli image of Flevoland area. (b) Ground truth of (a).
(c) Classification result by the 3F + SVM method. (d) Classification result by 3F + JSR method. (e) Classification
result by 3F + SJSR method. (f) Classification result by the Wishart MRF method. (g) Classification result by the
NRS-MRF method. (h) Classification result by the proposed method. (i) Corresponding terrain objects for different
labels.

method for classification, and aim to verify the effect of the
low-, mid- and high-level features in the proposed method
by ablation experiments. The fourth method is the Wishart
MRF method [3], which uses the MRF to involve the spatial
information to reduce the speckle noises. The last one is
a nearest-regularized subspace based MRF method, noted
by NRS-MRF [31], which applies the nearest-regularized
subspace method to extract the sparse representation of mul-
tiple features, and obtain initial classification result. Then,
theMRF is used to optimize the classification result. To make
it fair, all the methods use the proposed three types of features
as the initial multi-features.

B. EXPERIMENTAL RESULTS OF FLEVOLAND DATA SET
The PauliRGB image of Flevoland area is shown in Fig. 3(a)
with the image size of 300 × 270. The PauliRGB image is
obtained by considering |Shh − Svv|,|Shh + Svv| and

√
2 |Shv|

as RGB channels. The ground truth is given in Fig. 3(b).
The ground truth is labeled by referring the ground truth map
from Ref. [55]. There are 6 categories of crops labeled with
different colors in the ground truth map. They are peas, pota-
toes, wheat, barley, beet and bare soil respectively as shown
in Fig. 3(i). During calculating the classification accuracy,
the white area is not taken into account due to the lack of
true labels in these areas.

The experimental results by five compared and proposed
methods are illustrated in Figs. 3(c)-(h) respectively. The
3F+ SJSR method in (e) can also obtain better classification
result than 3F + SVM and 3F + JSR methods. It shows
the effectiveness of the superpixel-based joint sparse feature
learning. In addition, the Wishart MRF method confuse the
potatoes and the barley classes. The NRS-MRF method also
produces a speckle-noise result. The proposed method can
obtain more homogenous regions due to the feature learning
and superpixel scheme.

To evaluate the proposed method quantitatively, the classi-
fication accuracy is calculated to measure the performance
of these methods in Table 3. It demonstrates the proposed
method can obtain better performance than other compared
methods.

Moreover, the computing time of different methods are
illustrated in Table 5. It can be shown that the 3F + SJSR
method takes less time than 3F + JSR method, and the
proposed method costs less time than the NRS-MRF method.
Furthermore, to verify the ‘‘fast’’ characteristic of the pro-
posed method, three sets of PolSAR data are conducted to
test the time reduction between 3F + JSR and 3F + SJSR
methods in Table 5.We can see 3F+ SJSR cost less time than
3F+ JSR in all the data sets. Also, the time increasing rate is
dramatically reduced with the increasing of the image size.
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TABLE 3. Classification accuracy of different methods on Flevoland Data Set(%).

TABLE 4. Computing time of different methods on Flevoland Data Set(s).

FIGURE 4. Classification results on San Francisco area. (a) Pauli image of San Francisco area. (b) Ground truth of (a).
(c) Classification result by the 3F + SVM method. (d) Classification result by 3F + JSR method. (e) Classification result by
3F + SJSR method. (f) Classification result by the Wishart MRF method. (g) Classification result by the NRS-MRF method.
(h) Classification result by the proposed method. (i) Corresponding terrain objects for different labels.

TABLE 5. Time reduction experiments of superpixel-based method on
different Data Set(s).

It mainly because the number of superpixel is not equal
proportion increasing.

C. EXPERIMENTAL RESULTS OF SAN FRANCISCO DATA SET
The PolSAR image of San Francisco area is used to test
the proposed method, and a subimage of San Francisco area

is shown in Fig. 4(a) with the image size of 512 × 512.
The corresponding ground truth is given in Fig. 4(b). The
ground truth is labeled by referring the ground truth map from
Ref. [15]. It can be seen that the PolSAR image is labeled as
3 categories as shown in Fig. 4(b). The area in blue is the sea,
the cyan color represents the forest and the yellow color is
the buildings. In addition, the other areas lacking true labels
are colored in white. To calculate the classification accuracy,
we only take the 3 categories of ground objects into account
by labeling them with different colors in the experimental
result.

The classification results by five compared methods
are shown in Figs. 4(c)-(g) respectively. Fig. 4(h) is the
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TABLE 6. Classification accuracy of different methods on San Francisco Data Set(%).

FIGURE 5. Classification results on Oberpfaffenhofen area. (a) Pauli image of San Francisco area. (b) Ground truth
of (a). (c) Classification result by the 3F + SVM method. (d) Classification result by 3F + JSR method.
(e) Classification result by 3F + SJSR method. (f) Classification result by the Wishart MRF method. (g) Classification
result by the NRS-MRF method. (h) Classification result by the proposed method. (i) Corresponding terrain objects
for different labels.

classification result by the proposed method. It can be seen
that all the methods can classify the sea well. The forest and
the buildings are heterogenous areas, and low-level feature
based methods are difficult to classify them into semantic
homogenous areas. So, the Wishart MRF method in Fig. 4(f)
has many misclassifications in the forest and the buildings.
The 3F+ SVM and NRS-MRFmethods also causes misclas-
sifications without high-level features. Compared with other
methods, the proposed method can obtain better performance
in the forest and the buildings since high-level features can
be learned by the topic model.

To measure the classification performance, the classifica-
tion accuracies for each category and the average classifi-
cation accuracy are given in Table 6. The percent value is
given in this table, and the highest values are shown in bold.
It can be seen that the Wishart MRF method has 100 percent
accuracy in the sea area, while it has poor classification

TABLE 7. Confusion matrix of the proposed method on San Francisco
Data Set.

performance in both the forest and the buildings. It shows this
method can classify the homogeneous regions well, but fails
to classify the heterogeneous areas due to the lack of high-
level features. In contrast, the proposed method can show
better performance in both the forest and the buildings with
multi-feature learning. Furthermore, the confusion matrix of
the proposed method is illustrated in Table 7. It can be seen
that the main misclassification is the buildings are confused
as other classes in the proposed method.
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TABLE 8. Classification accuracy of different methods on Oberpfaffenhofen Data Set(%).

D. EXPERIMENTAL RESULTS OF OBERPFAFFENHOFEN
DATA SET
The PauliRGB image of Oberpfaffenhofen area is used to
test the effectiveness of the proposed method in Fig. 5(a)
with the image size of 1300 × 1200. The corresponding
ground truth image is illustrated in Fig. 5(b). The ground
truth is labeled by referring the satellite image from Google
Earth and the ground truth map from Ref. [16]. There are
5 categories of ground objects as shown in Fig. 5(i). They
are the forest, buildings, farmland, road and bare ground
respectively.

Fig. 5(c)-(h) are the classification results by five com-
pared and proposed methods respectively. It can be seen that
the buildings and forest are difficult to be classified well.
In addition, the road is difficult to be detected for all the
methods. Specifically, the 3F+ SVMand 3F+ JSR are pixel-
wised classification methods, which produce pepper-and-salt
noise classification results in Figs. 5(c) and (d). The 3F +
SJSR method can obtain more homogenous classification
result by involving superpixels, while it causes manymisclas-
sifications without considering the contextual information
of superpixels. The NRS-MRF method in (g) can improve
classification performance, but causes the noise classifica-
tion result. The proposed method can obtain semantically
homogenous classification result, especially in forest and
buildings. In addition, the proposed method can obtain better
detection result in road than other methods, although it is
easily confused by the bare ground class. In the future, linear
features will be involved to improve the classification accu-
racy of the road. Moreover, the classification accuracy and
kappa coefficients are calculated to measure the performance
of these methods in Table 8. It can be seen that the proposed
method can obtain better performance than other compared
methods, especially in the forest and the road which are
difficult to be distinguished in this PolSAR image.

V. CONCLUSION
In this paper, a fast multi-feature joint learning method was
presented. Traditional PolSAR image classification methods
are hardly to classify the heterogenous area into a semantic
homogenous region. In this paper, high-level features were
learned to resolve this problem from multiple low-level fea-
tures. Firstly, to better represent the terrain objects, three
types of features were extracted and further formulated a set
of visual dictionary. Secondly, a multi-feature joint sparse
representation model was proposed to fuse these features.

Finally, according to the sparse representation, higher-level
semantic features were learned by the topic model. In addi-
tion, superpixels were utilized to reduce the speckle noises
and improved the computation speed. Several experiments
were conducted on real PolSAR data, and the quantitative
measurement was given to show the effectiveness of the
proposed method.

In addition, the proposed method could combine multi-
ple of PolSAR features effectively, and addressed the dif-
ficulty of feature selection. Moreover, high-level features
were learned, and the learned features could represent the
heterogenous terrain types well. By this way, the heteroge-
nous terrain type was classified into a semantic homogenous
area. However, the numbers of visual words and topics were
given by the user. How to adaptively select the numbers
of visual words and topics will be exploited in the further
work.
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