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ABSTRACT A rapid change of channels in high-speed mobile communications will lead to difficulties
in channel estimation and tracking but can also provide Doppler diversity. In this paper, the performance
of a multiple-input multiple-output system with pilot-assisted repetition coding and spatial multiplexing is
studied.With minimummean square error (MMSE) channel estimation, an equivalent channel model and the
corresponding system model are presented. Based on random matrix theory, asymptotic expressions of the
normalized achievable sum rate of the linear receivers, such as the maximal ratio combining (MRC) receiver,
MMSE receiver and MRC-like receiver, are derived. In addition, according to the symbol error rate of the
MRC-like receiver, the maximum normalized Doppler diversity order and the minimum coding gain loss
can be achieved when the repetition number and signal-to-noise ratio tend to infinity, and the corresponding
conditions are derived. Based on the theoretical results, the impacts of different system configurations and
channel parameters on the system performance are demonstrated.

INDEX TERMS Doppler diversity, MIMO, deterministic equivalent, high-mobility wireless communication
system.

I. INTRODUCTION
With the popularization of high-speed data services,
the demand for high-performance wireless communication
on high-speed trains (HSTs) is also increasing. However, as a
typical application of 4G/5G, the wireless data throughput on
an HST is still a short board in cellular communication sys-
tems [1]–[3]. For high-mobility communications, theDoppler
spread will far exceed the value considered in the design of
traditional mid- and low-speed communication systems. Fast
changing small-scale fading and a short coherence time will
make it difficult to accurately estimate and track channel
parameters with pilot signals. An increase in the channel
estimation error can, in turn, result in a degradation in the
system performance.

Diversity technology is commonly used antifading tech-
nology in wireless mobile communications [2]. Since the
probability that statistically independent channels experience
deep fading at the same time is extremely low, the same
signal can be transmitted over different channels to achieve
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diversity gain. In a high-mobility scenario, considering the
fast change of the channel and adding redundancy across
different time slots, such as with repetition coding, Doppler
diversity can be exploited; therefore, the system performance
can be improved. In [4], joint multipath-Doppler diversity
with perfect channel state information (CSI) was proposed,
and the validity of the Doppler diversity was proven. In high-
mobility scenarios, the channel estimation error will not be
negligible. For a fast fading channel with a short coherence
time, the channel estimation performance could be worse,
while higher Doppler diversity could be exploited [5]. In [6],
the performance of Doppler diversity in the case of imperfect
channel estimation was studied, and the trade-off between the
channel estimation error and Doppler diversity was derived.
In [7], the results were further extended to single-input
multiple-output systems.

Currently, research on Doppler diversity is mainly focused
on a single transmit antenna system. Multiple-input multiple-
output (MIMO) technology could fully utilize the spatial
resources and then increase the spectral efficiency with-
out additional transmission power. MIMO technology has
become a key technology of many wireless communication
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standards. By using large-scale antenna arrays at the base
station, which is also known as a massive MIMO system,
the performance could be further improved [8]–[10]. In [11],
a channel model for a millimeter-wave massive MIMO sys-
tem was presented, and the simulation results showed that
the spatial-domain resources could be exploited with massive
antennas. Currently, massive MIMO techniques have been
adopted by the 5G NR standard. In [12] and [13], channel
estimation techniques for massive MIMO systems with high
mobility were studied. Reference [14] studied how to over-
come the Doppler effect with a massive MIMO system in
high-mobility scenarios. In [15], the combination of a mas-
sive MIMO system and general orthogonal precoding was
proposed to utilize full diversity in doubly selective channels.
Other coding methods, such as the Alamouti code, can also
be combined with repetition code to get more performance
gains. The application of Doppler diversity technology in an
MIMO system could improve the throughput and reliability
of high-mobility wireless communications. However, in the
case of imperfect CSI, the performance of an MIMO system
using Doppler diversity has not been studied.

In this paper, we investigate the performance of
high-mobility MIMO communications with Doppler diver-
sity under imperfect CSI. For the convenience of anal-
ysis, we adopt simple repetition coding. To improve the
spectral efficiency, we consider spatial multiplexing with
repetition coding. The major contributions of this paper
include:

1) For an MIMO system with pilot-assisted repetition
coding and spatial multiplexing, an equivalent channel
model of the MIMO time-varying channel with imper-
fect channel estimation is established. The model can
be regarded as a more general form of [6], [7].

2) For maximum ratio combining (MRC) and MRC-like
linear receivers, an asymptotic expression of the SINR
of the system under Doppler diversity is derived. The
deterministic equivalent of the normalization rate for
the minimum mean squared error (MMSE) receiver
is presented. The results show that the method can
obtain a good approximation of the normalization rate
even when the antenna size is small and the number of
repetitions is small.

3) The performance of theDoppler diversity, including the
diversity order and minimum coding gain loss for an
MRC-like receiver, is derived. An explicit relationship
between the Doppler diversity gain, coding gain loss
and system parameters is revealed.

The rest of this paper is organized as follows: Section II
provides the signal model, channel model, channel esti-
mation and equivalent model of an MIMO system using
pilot-assisted repetition coding. Section III studies the cor-
responding SINR performance of three different receivers in
the presence of imperfect CSI. Section IV derives the Doppler
diversity order and coding gain loss of an MRC-like receiver
based on the average symbol error rate (SER). Section V

FIGURE 1. Pilot-assisted MIMO system with repetition coding (NT = 2).

presents the numerical results, and Section VI draws the
conclusion of the paper.

The symbols used in this paper are described below. Bold
lowercase letters and bold uppercase letters represent vectors
and matrices, respectively. IM denotes the unit matrix with
dimensions of M × M . | · | represents the absolute value
of a scalar. [·]T and [·]H represent vector or matrix trans-
poses and conjugate transposes, respectively.Rm×n and Cm×n
represent the set of m × n-dimensional real and complex
matrices, respectively. E [·] and cov [·] represent mathemat-
ical expectation and covariance, respectively. Tr [·] is the
trace of a matrix. diag (x) represents a diagonal matrix with
x as the main diagonal value. CN (0, σ 2) denotes a circu-
lar symmetric complex Gaussian (CSCG) distribution with
zero mean and variance σ 2.

a.s.
−−→ denotes almost sure (a.s.)

convergence.

II. SYSTEM MODEL
A. SYSTEM DESCRIPTION
Consider anMIMOwireless communications systemwithNT
transmit antennas and NR receive antennas. Assume that the
terminal is moving at high speed, and the maximum Doppler
spread is fD. At the transmitter, the modulated symbols are
converted from series to parallel to produce multiple data
blocks and are then mapped to different transmit antennas.
To obtain the CSI, pilot signals are inserted between duplicate
data blocks. To avoid interference between the antennas,
different transmit antennas use orthogonal pilots. For conve-
nience, each transmit antenna transmits the pilot signals at
different slots.

As shown in Fig.1, the pilot and data symbols are repeat-
edly transmittedN times in a frame. Let pi denote the i-th pilot
symbol and st,k denote the k-th data symbol transmitted by
the t-th transmit antenna. The time interval between adjacent
pilot slots is TP = (NT+K )T , where T is the symbol interval
time of the channel. The energies allocated to each pilot sym-
bol and data symbol are EP and EC, respectively. According
to proposition 2 in [16], as long as the pilot interval satisfies
(NT + K )T ≤ 0.5/fD , an accurate channel estimation can
be obtained.

B. CHANNEL MODEL
Let ht,r (n) denote the n-th discrete-time channel coeffi-
cient between the t-th transmit antenna and the r-th receive
antenna. The channels between different antenna pairs are
assumed to be independent, experiencewide-sense-stationary
uncorrelated scattering (WSSUS) and undergo Rayleigh fad-
ing, from [7]

E
[
ht1,r1 (m) h

∗
t2,r2 (n)

]
=0, r1 6= r2 or t1 6= t2, (1)
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where ht,r (n) is a symmetric complex Gaussian process with
zero mean; according to [7],

E
[
ht,r (m) h*t,r (n)

]
= J0 (2π fD|m− n|T ) , (2)

where J0 (�) is the zeroth-order Bessel function of the first
kind. Here, it is assumed that fD is known, and the estimation
of fD is described in [17].

C. PILOT SIGNAL MODEL
Denote the timing indices of the n-th pilot symbol from the
t-th transmit antenna in a transmission frame as:

it,n = t + (n− 1)(NT + K ), n = 1, · · · ,N .

According to [7], the pilot symbols received by the r-
th receive antenna from the t-th transmit antenna can be
expressed as:

yP,t,r =
√
EPXPhP,t,r + zP,t,r , (3)

where

yP,t,r =
[
yr
(
it,1
)
· · · yr

(
it,N

)]T
∈ CN×1,

XP = diag
([
p1 · · · pN

])
∈ CN×N ,

hP,t,r =
[
ht,r

(
it,1
)
· · · ht,r

(
it,N

)]T
∈ CN×1,

zP,t,r =
[
zr
(
it,1
)
· · · zr

(
it,N

)]T
∈ CN×1,

are the received pilot signal vector, transmitted pilot matrix,
channel vector and additive white Gaussian noise (AWGN)
vector, respectively. It is assumed that the noise vector is
a zero-mean CSCG random vector with covariance matrix
σ 2IN .

D. MMSE CHANNEL ESTIMATION
The timing indices of the k-th data symbol from the t-th
transmit antenna in a transmission frame can be expressed
as:

kn = NT + k + (n− 1)(NT + K ), n = 1, · · · ,N .

Then, the vector of all channel coefficients corresponding to
the k-th data symbol between the t-th transmit antenna and
the r-th receive antenna is

ht,r,k =
[
ht,r (k1) · · · ht,r (kN )

]T
.

With the received N slot pilot signals and the known chan-
nel statistics and according to the principle of the MMSE,
the channel estimation of ht,r,k can be expressed as [6],

ĥt,r,k =
√
EPRP,t,kXH

P

(
EPXPRPXH

P + σ
2IN

)−1
yP,t,r , (4)

where

RP = E
[
hP,t,rhHP,t,r

]
∈ RN×N ,

is a Toeplitz matrix, and its first column is given by

rP =
[
ρ0 · · · ρN−1

]T
, ρn = J0 (2π fD |n|TP) .

RP is not related to t and r . Because of the symmetry, the first
column is the same as the first row. In (4),

RP,t,k=E
[
ht,r,khHP,t,r

]
∈ RN×N ,

is also a Toeplitz matrix. Because the zeroth-order Bessel
function of the first kind J0 (x) is even when x is real, the first
column and the first row can be written as[
τt,0 τt,−1 · · · τt,−N+1

]T
,
[
τt,0 τt,1 · · · τt,N−1

]
,

where

τt,n = J0 (2πT [NT + k − t − n (NT + K )]) ,

is not related to r . When orthogonal pilot sequences are used,
that is, XPXH

P = IN , by using the following matrix inversion
equation,

CD (A+ BCD) =
(
C−1 + DC−1B

)−1
DA−1,

(4) can be rewritten as

ĥt,r,k =
√
EPRP,t,k

(
EPRP + σ

2IN
)−1

XH
P yP,t,r . (5)

Define the channel estimation error as

h̃t,r,k = ht,r,k − ĥt,r,k .

Then, according to the MMSE estimation principle,
the covariancematrices for the estimated channel vector ĥt,r,k
and the error h̃t,r,k can be expressed as [18]

R̂t,k = RP,t,k

(
RP +

1
γP
IN

)−1
RH
P,t,k , (6)

R̃t,k = Rk − RP,t,k

(
RP +

1
γP
IN

)−1
RH
P,t,k , (7)

respectively, where γP = EP/σ 2 is the pilot signal-to-
noise ratio and Rk = E

[
ht,r,khHt,r,k

]
. According to the frame

structure and the properties of the Bessel function, Rk = RP.

E. EQUIVALENT SYSTEM MODEL
In this subsection, we establish a signal model for the
pilot-assisted repetition precoding MIMO system in the pres-
ence of imperfect CSI. Let

yk = [yT1,k , · · · , y
T
NR,k ]

T
,

denote the collection of N slot received signals for all of the
receive antennas corresponding to the k-th data vector sk . yk
can be expressed as

yk =
√
ECHksk + zk , (8)

where the channel matrix Hk is denoted as:

Hk =
[
HT

1,k · · · HT
NR,k

]T
,

Hr,k =
[
h1,r,k · · · ht,r,k · · · hNT,r,k

]
.

According to the definition of the channel estimation error,
the channel matrix can be expressed as

Hk = Ĥk + H̃k . (9)
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Then, (8) can be rewritten as

yk =
√
ECĤksk + ẑk , (10)

where

ẑk =
√
ECH̃ksk + zk .

Define

R̃k
1
= INR ⊗

( NT∑
t=1

R̃t,k +
1
γC
IN

)
,

where γC = EC/σ 2 . With (7), we have

cov
(
ẑk , ẑk

)
= ECR̃k . (11)

Moreover, the covariance matrix of the t-th column of Ĥk can
be expressed as

cov
(
ĥt,k , ĥt,k

)
= INR ⊗ R̂t,k . (12)

III. CAPACITY ANALYSIS OF MRC, MMSE AND MRC-LIKE
RECEIVERS
Next, we study the spectral efficiency of the system repre-
sented in formula (10) with different receivers. We first study
the MRC receiver and present its asymptotic rate analysis.
Then, the deterministic equivalent for the SINR of theMMSE
receiver is studied. Finally, the asymptotic rate of MRC-like
receivers is analyzed.

A. ASYMPTOTIC ACHIEVABLE SUM RATE OF MRC
DETECTION
When the system uses the MRC receiver, the detection of
the k-th data symbol from the t-th transmit antenna can be
expressed as

ŝMRC,t,k = ECĥ
H
t,k ĥt,kst,k + EC

NT∑
l=1,l 6=t

ĥ
H
t,k ĥl,ksl,k

+

√
ECĥ

H
t,k ẑk . (13)

Therefore, the corresponding SINR can be expressed as [19]

γMRC,t,k =

∣∣∣ĥHt,k ĥt,k ∣∣∣2
ĥ
H
t,k

(
Ĥ [t],kĤ

H
[t],k + R̃k

)
ĥt,k

, (14)

where Ĥ [t],k is the result of Ĥk removing the t-th column.
Theorem 1: For the MRC receiver, when NNR → ∞,

there is

γMRC,t,k
a.s.
−−→ γ̄MRC,t,k , (15)

where γ̄MRC,t,k is given at the bottom of next page and
γC = EC/σ 2 is the data signal-to-noise ratio.

Proof: See Appendix A.
Since repetition coding requires multiple time slots to

transmit the same data block, we define the normalized

achievable sum rate as follows to better reflect the spectral
efficiency of the system:

RMRC,k =
1
N

NT∑
t=1

log2
(
1+ γMRC,t,k

)
. (17)

From Remark 5 of [20], by the control convergence theorem,
the following equation is satisfied:

RMRC,k −
1
N

NT∑
t=1

log2
(
1+ γ̄MRC,t,k

) a.s.
−−→ 0, (18)

when NNR → ∞. According to this asymptotic result,
we can obtain an approximate expression of the normalized
sum rate of MRC.

B. ASYMPTOTIC ACHIEVABLE SUM RATE OF MMSE
DETECTION
In this section, we analyze the SINR of the MMSE receiver
in the presence of imperfect CSI and present a method to
calculate the normalized achievable sum rate of the system
based on the deterministic equivalent.

When linear MMSE detection is used, the output SINR
of the k-th symbol from the t-th transmit antenna can be
expressed as [21]

γMMSE,t,k = ĥ
H
t,k

(
Ĥ [t],kĤ

H
[t],k + R̃k

)−1
ĥt,k . (19)

Let

h̆t,k =

INR ⊗

( NT∑
t=1

R̃t,k +
1
γC
IN

)− 1
2

 ĥt,k ,
H̆k =

[
h̆1,k · · · h̆NT,k

]
.

Then, we have

γMMSE,t,k=h̆
H
t,k

(
H̆ [t],kH̆

H
[t],k + INNR

)−1
h̆t,k .

H̆ [t],k is a submatrix of H̆k that removes column t . Note that

cov
(
h̆t,k , h̆t,k

)
= INR

⊗

( NT∑
l=1

R̃l,k +
1
γC
IN

)- 12

R̂t,k

( NT∑
l=1

R̃l,k +
1
γC
IN

)- 12
 .

According to Theorem 3.4 of [22], when NNR→∞:

1
NNR

γMMSE,t,k
a.s.
−−→ mB,Q,t,k . (20)

Define

Bt,k , H̆ [t],kH̆
H
[t],k ,

Qt,k , cov
(
h̆t,k , h̆t,k

)
,

mB,Q,t,k ,
1

NNR
Tr
[
Qt,k

(
Bt,k + INNR

)−1]
.
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According to Theorem 1 of [20]:

mB,Q,t,k
a.s.
−−→ mo

B,Q,t,k . (21)

In (21),

mo
B,Q,t,k =

1
NNR

Tr
(
Qt,kT t,k

)
, (22)

T t,k =

 NT∑
l=1,l 6=t

8l,t,k

1+ el,t,k
+ INNR

−1, (23)

8l,t,k = cov
(
h̆l,k , h̆l,k

)
, (24)

where l in (24) is not equal to t and el,t,k is the only solution
to the following equation:

el,t,k=Tr
(
8l,t,kT t,k

)
. (25)

The matrix T t,k can be obtained by iterative calcula-
tions using (23)(25). The specific algorithm is presented in
Appendix B. Then, the deterministic equivalent of γMMSE,t,k
can be obtained without knowing the exact value of ĥt,k .
With (20)-(22), we can obtain the asymptotic value of the nor-
malized achievable sum rate of theMMSE receiver according
to the control convergence theorem [20], that is,

RMMSE,k −
1
N

NT∑
t=1

log2
(
1+ Tr

(
Qt,kT t,k

)) a.s.
−−→ 0. (26)

C. ASYMPTOTIC ACHIEVABLE SUM RATE OF THE
MRC-LIKE RECEIVER
To further improve the performance of the MRC receiver,
we also consider an MRC-like receiver. To detect the k-th
data symbol from the t-th transmit antenna, we first perform
whitening of the interference-plus-noise with the statistics of
the CSI before the MRC receiver. Rewrite (10) as

yk =
√
ECĥt,kst,k + z̆k , (27)

where

z̆k =
√
EC

NT∑
l=1,l 6=t

ĥl,ksl,k + ẑk .

The operation for performing whitening of the interference-
plus-noise is denoted as

ȳk = RW,t,kyk , (28)

where

RW,t,k
1
=

INR ⊗

EC NT∑
l1=1,l1 6=t

R̂l1,k

+EC

NT∑
l2=1

R̃l2,k + σ
2IN

− 1
2

.

The signal model is then rewritten as:

ȳk =
√
ECH̄k s̄k + z̄k , (29)

where H̄k = RW,t,kĤk . Then, the estimated data symbols are
given by

ŝMRC-like,t,k =
√
ECh̄

H
t,k ȳk . (30)

The SINR of the MRC-like receiver can be expressed as (31),

γMRC-like,t,k =

∣∣∣h̄Ht,k h̄t,k ∣∣∣2
h̄
H
t,k

(
H̄ [t],kH̄

H
[t],k + RW,t,k R̃kRH

W,t,k

)
h̄t,k

.

(31)

Similar to the MRC receiver (see Appendix A), by using
Theorems 3.4 and 3.7 of [22], we have

γMRC-like,t,k
a.s.
−−→ γ̄MRC-like,t,k , (32)

where

γ̄MRC-like,t,k

= NRTr
((

R̂t,k
) 1

2

×

 NT∑
l1=1,l16=t

R̂l1,k+
NT∑
l2=1

R̃l2,k +
1
γC
IN

-1(
R̂t,k

) 1
2

. (33)
Define

RMRC-like,k =
1
N

NT∑
t=1

log2
(
1+ γMRC-like,t,k

)
. (34)

Additionally, by the control convergence theorem,

RMRC-like,k −
1
N

NT∑
t=1

log2
(
1+ γ̄MRC-like,t,k

) a.s.
−−→ 0. (35)

We will show in the simulations that when N is large, the per-
formance of the MRC-like receiver will approach that of the
MMSE receiver.

IV. DOPPLER DIVERSITY ORDER AND CODING GAIN
LOSS OF THE MRC-LIKE RECEIVER
In this section, we first obtain the average SER expression
when the system uses the MRC-like receiver. Then, based
on the SER expression, we study the maximum Doppler
diversity order and the minimum coding gain loss that can
be achieved in this case.

γ̄MRC,t,k =
NRTr2

(
R̂t,k

)
NT∑

l1=1,l1 6=t
Tr
(
R̂l1,k R̂t,k

)
+ Tr

(
R̂t,k

(
NT∑
l2=1

R̃l2,k +
1
γC
IN

)) . (16)
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A. AVERAGE SER OF MRC-LIKE DETECTION
For the convenience of analysis, we assume that the specific
CSI corresponding to other transmit antennas is unknown
when estimating the data symbols from the t-th antenna and
that ŝMRC-like,t,k obeys a Gaussian distribution with st,k and
h̄t,k as conditions. The conditional mean and conditional
variance of the decision variable can be given by

uŝ|h̄,s,t,k = ECh̄
H
t,k h̄t,kst,k ,

σ 2
ŝ|h̄,s,t,k = ECh̄

H
t,k h̄t,k .

Theorem 2: Under the above conditions, the average sym-
bol error rate of the system is

P̄e,t,k =
1
π

∫ 2

0

[
det

(
IN +

CM
sin2θ

At,k

)]−NR
dθ, (36)

where 2=π−π/M,CM = sin2 (π/M), and

At,k = R̂t,k

 NT∑
l1=1,l1 6=t

R̂l1,k +
NT∑
l2=1

R̃l2,k +
1
γC
IN

-1

. (37)

Proof: See Appendix C.

B. DOPPLER DIVERSITY ORDER OF MRC-LIKE DETECTION
Based on Jensen’s inequality and the fact that sin2θ ≤ 1,
the upper and lower bounds of log

(
P̄e,t,k

)
can be obtained.

ηU = log v− NR log[det(IN + CMAt,k )], (38)

ηL = log v−
NR

πv

∫ πv

0
log[det(IN +

CM
sin2θ

At,k )]dθ, (39)

where v = 1− 1/M . The proof is similar to Lemma 1 in [6].
From Lemma 2 of [23], when NNR→∞:

At,k
a.s.
−−→ UH

NDUN . (40)

UN is an N -dimensional unitary discrete Fourier transform
matrix, and D is a diagonal matrix with

(D)n,n

=

NT − 1

+

(
3PP

2(2π n−1
N )

NT
γP
3PP(2π n−1

N )+ 1
γC
3PP(2π n−1

N )+ 1
γPγC

)−1−1,
3PP(�)

=

2rect( �
4π fDTP

)√
(2π fDTP)2 −�2

, −π ≤ � ≤ π.

It can be found thatD is not related to t and k , and the average
SER at this time is P̄e. Define the energy required to transmit
a coded data symbol as

E0 = (1/K )EP + EC,

and the corresponding SNR as γ0 = E0/σ 2. Define

9t,k (γ0) = det(IN + cAt,k ),

where c is a constant. Let

δ = 2π fDTP, γt = NTγC + γP, γP = b(γC)ξ ,

where b and ξ are constants. According to Appendix D of [6],
it can be inferred that:

lim
N→∞

log
(
9t,k (γ0)

)
N

=
δ

π
log (4γPγCc)−

δ log (2δ)− 2δ
π

−
δ log (2γt)

π
−

γt −
√
4γ 2

t − δ
2

2


−

√
4γ 2

t − δ
2

π
arctan

(√
δ2

4γ 2
t − δ

2

)
. (41)

Consider the definition of the normalized Doppler diversity
order in [6]:

D = − lim
γ0→∞
N→∞

log
(
P̄e
)

NTP log (γ0)
. (42)

(38) and (39) are substituted into (42) to calculate the upper
and lower bounds of the order of the Doppler diversity DU
and DL. Let c be CM in the upper bound and CM/sin2θ in
the lower bound, and combine the results with formulas (40)
and (41). As in [7], we obtain

DU = DL = − lim
γ0→∞
N→∞

NR log
(
9t,k (γ0)

)
NTP log (γ0)

=

{
2fDNRξ, ξ ≤ 1
2fDNR

1
ξ
, ξ > 1.

(43)

Then, D can be obtained by the clamping theorem. Observ-
ing (43), we know that when ξ = 1, themaximum normalized
Doppler order is reached, and the maximum value is 2fDNR.

C. CODING GAIN LOSS IN MRC-LIKE DETECTION
In this subsection, the coding gain loss caused by imperfect
CSI in MRC-like detection is derived, and the corresponding
energy allocation scheme of minimum coding gain loss is
obtained. As seen from [7], the coding gain in logarithmic
form is:

logC = − lim
γ0→∞
N→∞

(
log

(
P̄e
)

NTPD
+ log γ0

)
. (44)

Let ξ = 1, combine (38) and (39) and simplify to obtain the
lower and upper bounds in the presence of imperfect CSI:

logCL = log 2CM + log
(

Kb
(K + b) (NT + b)

)
+ 1

− log 2δ, (45)
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logCU = logCL −
1

2fDTPπv

∫ πv

0
2 log (sin θ) dθ. (46)

In the case of perfect CSI, channel estimation is not required,
γ0 = γC,

(D)n,n =
(
NT − 1+3−1PP (2π

n− 1
N

)
)−1

,

corresponding to

lim
N→∞

log
(
9 ′t,k (γ0)

)
N

=
δ

π
log (2cγC)−

δ log 2δ − δ
π

. (47)

The upper and lower bounds in the presence of perfect CSI
are:

logC ′L = log (2CM )+1− log 2δ, (48)

logC ′U = logC ′L −
1

2fDTpπv

∫ πv

0
2 log (sin θ) dθ. (49)

According to the definition of [7],

ϒLoss(dB) = 10log10C
′

U-10log10CU

= 10log10C
′

L-10log10CL

= 10log10

[
(K + b)(NT + b)

Kb

]
. (50)

The contents in the brackets are NT/b+b/K+ (NT + K ) /K .
It can be seen from the definition that all values are greater
than 0. When NT/b = b/K , that is, b =

√
NTK , the min-

imum value of (50) is achieved and the minimum value
is 20log10

(
1+
√
NT/K

)
dB. Combining the above results,

the maximum normalized Doppler diversity order is deter-
mined by the maximum Doppler spread fD and the number
of receive antennas NR. The minimum coding gain loss is
determined by the number of transmit antennas NT and the
number of data symbols in a block K .

V. NUMERICAL RESULTS
In this section, numerical results are illustrated to investigate
the performance of theMIMO systemwith Doppler diversity.
Unless otherwise stated, the system transmission rate is 105

Sym/s, the system operates at 1.9 GHz, NT = 4, NR = 8,
K = 16, N=15, and the modulation type is 4PSK. The pilot
SNR γP and data SNR γC are both 10 dB.

A. PERFORMANCE OF THE REPETITION CODE IN
HIGH-SPEED SCENARIOS
To study the performance of the repetition code, we compare
the SER curves of the repetition code and the well-known
Alamouti space-time code in the presence of perfect CSI.
Both the transmitter and receiver ends use two antennas.
It can be seen from Fig.2 that when the Doppler spread is
small, the SER of the Alamouti code is lower than that of
the repetition code with N = 2. However, when the number
of repetition times increases to 4, the SER of the repetition
coding decreases significantly and is better than that of the
Alamouti code. When the Doppler spread becomes larger,
the SER of the Alamouti code becomes worse because of the

FIGURE 2. SER performance of the repetition code in the presence of
perfect CSI.

FIGURE 3. Normalized achievable sum rates as functions of N .

destruction of spatial orthogonality, while the SER of the rep-
etition coding improves because it can obtain higher Doppler
diversity. It can also be found from Fig.2 that for a higher
repetition time, more performance gain can be obtained from
a higherDoppler spread. Actually, the repetition code can also
be combined with the Alamouti code to exploit both Doppler
diversity and spatial diversity.

B. ASYMPTOTIC ANALYSIS RESULTS OF THE NORMALIZED
ACHIEVABLE SUM RATES
Without loss of generality, we analyze the ergodic normalized
achievable sum rates and corresponding asymptotic anal-
ysis results of the three detection algorithms for different
repetition times N . The Doppler spread is set to 200 Hz,
corresponding to a speed of 113.6 km/h. The number of
receive antennas is NR = 4. It can be seen from Fig.3
that the MMSE receiver has the best performance. As N
increases, the normalized sum rate of each receiver decreases.
This result means that the spectral efficiency of the system
will decrease with an increase in the number of repetitions.
By comparing the achievable sum rates of the three receivers,
it is found that the performance gap narrows gradually with
an increase in the repetition time. On the other hand, it can
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FIGURE 4. Normalized achievable sum rates as functions of the SNR at
low speed.

also be seen that the ergodic results are in good agreement
with the corresponding analytical asymptotic results, which
proves the correctness of the derivations in Section III.

C. INFLUENCE OF THE PARAMETERS ON THE
NORMALIZED ACHIEVABLE SUM RATES
In this subsection, the influence of various parameters on
the spectral efficiency in the presence of imperfect CSI is
analyzed based on the numerical results.

Fig.4 shows the change in the normalized sum rates with
the SNR at low mobile speed. Since the correctness of the
analytical results is verified above, the analytical results are
directly used here for the calculation. The Doppler spread
of the system is 200 Hz. The analytical results of the three
receivers with different SNRs when NT = 4 and NT = 8 are
calculated. Selecting the number of receive antennas as NR =

8 ensures the normal operation of the space multiplexing
receiver. As can be seen from the figure, when each transmit
antenna transmits different code words, the system can obtain
greater spatial multiplexing gain and a higher achievable
sum rate when the number of transmit antennas increases.
By comparing the three receivers, we can also find that the
normalized sum rate of the MMSE receiver increases with an
increase in the pilot and data symbol SNR for any NT, while
the achievable rate of the MRC receiver hardly changes when
the SNR increases to a certain extent; this result is due to
the poor ability of the MRC receiver to suppress interference,
and the interference will limit the performance of the system
when NNR is limited and fixed. Considering the interference
from other antennas, the sum rate of the MRC-like receiver
can keep increasing with an increase in the SNR, and the
performance is between the performances of the other two
receivers.

To study the system at high speed, we keep the other
parameters unchanged in Fig.5 and increase the Doppler
spread to 1000 Hz to obtain the achievable sum rates of the
three receivers in high-mobility scenarios. As can be seen
from the figure, since the pilot interval still satisfies the
requirement of (NT + K )T ≤ 0.5/fD , the system can still

FIGURE 5. Normalized achievable sum rates as functions of the SNR at
high speed.

FIGURE 6. Normalized achievable sum rates as functions of fD.

operate normally. Similar to the low speed case, the achiev-
able rates of the three receivers increase with the number of
transmit antennas. Moreover, similar to the low speed case,
the achievable sum rates of the three receivers increase with
the number of transmit antennas, the performance of the
MMSE receiver steadily increases with an increase in the
SNR, the performance of the MRC receiver is limited by the
interference, and the performance of theMRC-like receiver is
between the performances of the other two receivers. By com-
paring Fig.4 and Fig.5, we find that MIMO systems with
repetition coding can achieve a higher rate in high-mobility
scenarios, because at the same sampling rate, the correlation
of the channel information corresponding to the repetitive
coded data is weakened.

To obtain a more intuitive understanding of the influ-
ence of different fD on the normalized achievable sum rate,
we calculate the normalized achievable sum rates for different
fD, as shown in Fig.6. The figure shows that in the system
described in this paper, an increase in fD can significantly
improve the performance of the MRC receiver and MRC-like
receiver but has little effect on the performance of the MMSE
receiver.

In Fig.7, we calculate the analytical results of the three
receivers corresponding to different values of k and N in the
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FIGURE 7. Normalized achievable sum rates as functions of k .

FIGURE 8. Normalized achievable sum rates as functions of NT at high
speed.

high-mobility scene. From the figure, we can see that under
the simulation environment that is set up, when the other
conditions are fixed, the normalized achievable sum rates for
different values of k are basically the same.
In Fig.8, we calculate the normalized achievable sum rates

of the three algorithms at high speed. To ensure normal
operation of the system, we set the symbol transmission rate
to 3 × 105 Sym/s and let NNR = 100. As can be seen from
the figure, more spatial degrees of freedom from the increased
number of transmit antennas will help to improve the overall
performance of the system.

Fig.9 studies the normalized achievable sum rates at high
speed and for large NR. In this case, with an increase in
the number of receive antennas, the system obtains more
spatial degrees of freedom, and the system performance is
improved. When the other conditions are fixed, the per-
formance gap between the different algorithms is basically
fixed.

In Fig.10, the normalized achievable sum rates at high
speed are studied as a function of N , and NR is set to 20.
The figure shows that the normalized achievable sum rates of
different algorithms converge in the process of increasing N ,
whichmeans that the performance gap of the three algorithms
tends to disappear when N tends to infinity.

FIGURE 9. Normalized achievable sum rates as functions of NR at high
speed.

FIGURE 10. Normalized achievable sum rates as functions of N at high
speed.

FIGURE 11. SER of the MRC-like receiver as functions of N .

D. ASYMPTOTIC ANALYSIS RESULTS IN SECTION IV
In this subsection, numerical results based on the analysis in
section IV are illustrated.

The average SER of the MRC-like receiver is calculated
in Fig.11 by the Monte Carlo method and the analysis
result (36). Set NR = 4. The analytical results match the
simulation results well. In addition, as N increases, the SER
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FIGURE 12. SER of the MRC-like receiver as functions of γ0.

FIGURE 13. SER of the MRC-like receiver as functions of b.

decreases steadily, and the speed of the decrease at high speed
is faster, because the Doppler order that can be obtained at
high speed is higher.

Fig.12 shows the case where the SER changes with γ0 at
high speed whenN is finite. SetNR = 4 and b =

√
NTK . The

decreasing speed of the SER curve decreases with an increase
in γ0 but increases with an increase in N . The simulation
results for different ξ show that better performance can be
achieved with ξ = 1, which is consistent with the conclusion
achieved for the case when N tends to infinity.
Fig.13 shows the SER as a function of b at high speed in

the case of a finite N . Set NR = 4 and ξ = 1. Since there
is no need to consider the pilot and data energy allocation in
the presence of perfect CSI conditions, the SER performance
is fixed, so the best performance in the presence of imper-
fect CSI corresponds to the minimum performance loss. The
figure shows that when N is finite, the system has the best
performance when b =

√
NTK , which is also consistent with

the conclusion for the case when N tends to infinity.

VI. CONCLUSION
In this paper, the performance of an MIMO system using rep-
etition coding to achieve Doppler diversity in high-mobility
scenarios is analyzed. Based on the characteristics of MMSE

channel estimation, the equivalent system model is derived,
and asymptotic expressions of the normalized achievable sum
rates for MRC, MMSE and MRC-like receivers are obtained.
Then, the expression of the average SER of the MRC-like
receiver is derived, and the maximum normalized Doppler
diversity order, the minimum coding gain loss and the cor-
responding conditions are obtained.

The effects of different system parameters on the system
performance are studied. Increasing the number of trans-
mit and receive antennas can provide more spatial degrees
of freedom, and the system performance will be improved.
In a high-mobility MIMO system using repetition coding,
the MMSE receiver has a higher normalized achievable sum
rate than the other two receivers when N is finite. The
gap between the different receivers tends to disappear when
N tends to infinity. When the Doppler spread increases,
the average SER of the MRC-like receiver will decrease. The
larger the Doppler spread, the faster the average SER curve
decreases with N , due to the higher Doppler diversity order.

APPENDIXES
APPENDIX A
PROOFS OF THEOREM 1
Considering the numerator and denominator part of (14),
we rewrite ĥ

H
t,k ĥt,k as

ĥ
H
t,k ĥt,k

= NNR

(
1

√
NNR

_

ht,k

)H (
INR ⊗ R̂t,k

)( 1
√
NNR

_

ht,k

)
.

The elements in the vector 1
√
NNR

_

ht,k are independently and
identically distributed, the mean value is 0 and the variance
is 1

NNR
. From Theorem 3.4 of [22], when NNR→∞,

ĥ
H
t,k ĥt,k

a.s.
−−→ NNR

(
1

NNR
Tr
(
INR ⊗ R̂t,k

))
.

Considering the characteristics of the Kronecker product with
the identity matrix, the expression can be simplified to

ĥ
H
t,k ĥt,k

a.s.
−−→ NRTr

(
R̂t,k

)
. (51)

For the denominator, we first rewrite the expression as

ĥ
H
t,k

(
Ĥ [t],kĤ

H
[t],k + R̃k

)
ĥt,k

= NNR

(
1

√
NNR

_

ht,k

)H(
INR ⊗ R̂t,k

) 1
2

×

(
Ĥ [t],kĤ

H
[t],k + R̃k

) (
INR ⊗ R̂t,k

) 1
2
(

1
√
NNR

_

ht,k

)
.

By Theorem 3.4 of [22], when NNR →∞, the denominator
part is

ĥ
H
t,k

(
Ĥ [t],kĤ

H
[t],k + R̃k

)
ĥt,k

a.s.
−−→ Tr

((
INR ⊗ R̂t,k

) 1
2
(
Ĥ [t],kĤ

H
[t],k + R̃k

)
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×

(
INR ⊗ R̂t,k

) 1
2
)
.

From the circular property of the trace of thematrix, the above
formula is equal to

Tr
((
INR ⊗ R̂t,k

)
Ĥ [t],kĤ

H
[t],k

)
+ Tr

((
INR ⊗ R̂t,k

)
R̃k
)
.

Use the cyclic properties of the trace on the first term, and by
the definition of the trace, the first term is

Tr
(
Ĥ

H
[t],k

(
INR ⊗ R̂t,k

)
Ĥ [t],k

)
=

NT∑
l1=1,l1 6=t

ĥ
H
l1,k

(
INR ⊗ R̂t,k

)
ĥl1,k ,

and can be further rewritten as

NNR

NT∑
l1=1,l1 6=t

(
1

√
NNR

_

hl1,k

)H(
INR ⊗ R̂l1,k

) 1
2

×

(
INR ⊗ R̂t,k

) (
INR ⊗ R̂l1,k

) 1
2
(

1
√
NNR

_

hl1,k

)
.

When NNR→∞, this term will tend to
NT∑

l1=1,l1 6=t

(
INR ⊗ R̂l1,k

) (
INR ⊗ R̂t,k

)
.

Considering the characteristics of the Kronecker product with
a unit matrix, the denominator is

ĥ
H
t,k

(
Ĥ [t],kĤ

H
[t],k + R̃k

)
ĥt,k

a.s.
−−→ NRTr

 NT∑
l1=1,l1 6=t

R̂t,k R̂l1,k+R̂t,k

NT∑
l2=1

R̃l2,k +
1
γC
IN

.
(52)

By substituting (51) and (52) into (14), (16), as shown at the
bottom of page 5, can be achieved.

APPENDIX B
CALCULATION IN DETERMINISTIC EQUIVALENT
Algorithm 1 Algorithm to Achieve T t,k
Input: Correlation matrix of the equivalent channel corre-

sponding to the l-th transmit antenna8l,t,k ; Index of the
transmit antenna currently being calculated t; Number of
transmit antennas NT; Number of receive antennas NR;
Number of repetitions N ; Computation accuracy 1;

Output: Matrix T t,k ;
1: Initialize el,t,k = 0, l = 1, · · · ,NT and l 6= t;
2: Let el,t,k ′ = el,t,k , l = 1, · · · ,NT and l 6= t;
3: Calculate T t,k by (23);
4: Calculate el,t,k , l = 1, · · · ,NT and l 6= t by (25);
5: Calculate the difference between the result of the cur-

rent iteration and that of the previous iteration 1′ =
NT∑

l=1,l 6=t

∣∣el,t,k − el,t,k ′∣∣2;
6: if 1′ ≤ 1, return T t,k ; otherwise, go to 2;

APPENDIX C
PROOF OF THEOREM 2
Following Appendix C of [6], in the polar coordinate system,
the conditional probability density function of the decision
variable can be expressed as

p
(
r, ψ |st,k , h̄t,k

)
=

r

πσ 2
ŝ|h̄,s,t,k

exp

− r2

σ 2
ŝ|h̄,s,t,k

 . (53)

The conditional error probability can be calculated as follows:

P
(
E|st,k , h̄t,k

)
= 2

∫ π− π
M

0

∫
∞

Rt,k (ψ)
p
(
r, ψ |st,k , h̄t,k

)
drdψ

=
1
π

∫ π− π
M

0
exp

[
−ĥ

H
t,k

(
ECRH

W,t,kRW,t,k

)
ĥt,k

×
sin2

(
π
M

)
sin2 (θ)

]
dθ, (54)

where

Rt,k (ψ)=
sin
(
π
M

)
sin
(
ψ + π

M

) ∣∣∣ECh̄Ht,k h̄t,kst,k ∣∣∣ .
Under MPSK modulation, the constellation points are sym-
metrical, and the probability of each symbol is the same. The
conditional error probability averaged over the transmitted
symbols is

P
(
E|h̄t,k

)
=

1
M

∑
sk∈S

P
(
E|st,k , h̄t,k

)
=P

(
E|st,k , h̄t,k

)
. (55)

Considering that the term β=ĥ
H
t,k
(
ECRH

W,t,kRW,t,k
)
ĥt,k is

the quadratic form of the zero-mean complex Gaussian ran-
dom vector ĥt,k with IN ⊗ R̂t,k as its covariance, the moment
generating function of β is

9β (µ) = E
(
eµβ

)
=

[
det

(
INNR−µ

(
IN⊗R̂t,k

)(
ECRH

W,t,kRW,t,k

))]−1
,

(56)

where µ is a dummy variable and the unconditioned average
SER P̄e,t,k = E

[
P
(
E|h̄t,k

)]
calculated using (54), (55), (56),

and (36) can be obtained.
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