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ABSTRACT Plane clustering methods, typically, k plane clustering (kPC), play conclusive roles in the
family of data clustering. Instead of point-prototype, they aim to seek multiple plane-prototype fitting planes
as centers to group the given data into their corresponding clusters based on L2 norm metric. However, they
are usually sensitive to outliers because of square operation on the L2 norm. In this paper, we focus on robust
plane clustering and propose a L1 norm plane clustering method, termed as L1kPC. The leading problem
is optimized on the L1 ball hull, a non-convex feasible domain. To handle the problem, we provide a new
strategy and its relatedmathematical proofs for L1 norm optimization. Compared to state-of-the-art methods,
the advantages of our proposed lie in 4 folds: 1) similar to kPC, it has clear geometrical interpretation; 2) it
is more capable of resisting to outlier; 3) theoretically, it is proved that the leading non-convex problem is
equivalent to several convex sub-problems. To our best knowledge, this opens up a new way for L1 norm
optimization; 4) the k fitting planes are solved by k individual linear programming problems, rather than
higher time-consuming eigenvalue equations or quadratic programming problems used in the conventional
plane clustering methods. Experiments on some artificial, benchmark UCI and human face datasets show its
superiorities in robustness, training time, and clustering accuracy.

INDEX TERMS L1 norm, plane clustering, eigenvalue problem, linear programming.

I. INTRODUCTION
As an important data analysis tool, clustering analysis is
usually employed in understanding raw data, especially for
unknown distribution. For a variety of purposes, people have
proposed many methods in literatures, which were mainly
divided into four categories [1]: hierarchical methods [2], [3],
partitioning algorithms [4], [5], overlapping clustering proce-
dures [6] and ordination techniques [7]. For instances, parti-
tion clusteringmethods, including k-means [8], k-median [9],
fuzzy c-means [10] and some clustering ensemble methods
(variants of those point-prototype clustering [40]–[42]), are
widely studied with the fixed number of clusters [11]–[13].
They all take so-called point-prototype as cluster centers,
and group the data into clusters by the similarities between
data and their centers. For example, for a fixed number
of clusters, k , k-means partitions n points into k clusters
by the L2-norm point-to-point distance (typically, Euclidian
distance) between points and k point-prototype centers.
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To distinguish them with the following plane clustering ones,
hereafter we call them point-prototype clustering.

Instead of point-prototype, plane clustering methods take
plane-prototype as cluster centers, which go back to k-Plane
Clustering [14] (kPC). There have been increasing interests
in plane clustering [15] in the last decade. Compared to
k-means, kPC aims to seek k planes by minimizing the
sum of the L2-norm distance between planes and their
corresponding points. The leading problem is solved by k
eigenvalue equations. In the line of kPC, Proximal Plane
Clustering (PPC) [16] fuses inter-cluster information into
optimization, and assigns a point to the cluster correspond-
ing nearest plane and far away from the other planes. With
heuristic selection for initial cluster centers, kernel PPC [17]
(kPPC) discusses the problem in feature space by so-called
kernel tricks. To improve the performance for clustering
the points located at the plane-overlapped area, unsuper-
vised transfer learning (but not clustering) [43] and Local
kPPC [18] (LkPPC) introduce cost functions and add local-
ized terms to their objectives, respectively. In doing so they
expect to relieve overlapped-cluster errors caused by plane
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infinite extensibility. Obviously, LkPPC has to cope with
heavier training burden occurred in cluster centers initial-
ization from constructing Laplacian graph and selecting ker-
nel functions and kernel parameters. Furthermore, it also
confronts the matrix singularity problems in the objective
functions because of the difference between inter-cluster and
intra-cluster Gram matrixes.

Unlike the aforementioned, another branch relaxes the
constraint of kPC, and borrows ideas from supervised
learning methods, including Support Vector Machine
(SVM) [19], Proximal Support Vector Machine via Gen-
eralized Eigenvalue (GEPSVM) [20] and TWin SVM
(TWSVM) [21]. For binary classification, for example,
TWSVM aims at seeking two fitting planes such that each
plane is closer to one of the two classes and is as far as
possible from the other. The constraints in TWSVM require
the plane to be at a distance of at least 1 from the other
class (similar constraints in SVM). Inspiring by TWSVM,
Twin Support Vector Clustering (TWSVC) [22] absorbs the
foresaid constraints into plane clustering, and aims to make
inter-cluster separable by setting the planes far away at
least at a distance of 1 from the points of other clusters.
Hence, its k fitting/clustering planes are solved by k quadratic
programming (QP) problems. To speed training TWSVC,
Fuzzy Least Squares TWSVC (F-LS-TWSVC) [23] relaxes
the inequality constrains with equalities, and introduces fuzzy
membership into the objective, thus it is analytically solved
by linear equations.

Note that the foresaid methods are all based on L2 norm.
It is well known that, to make the problems easier to
be solved, people usually adopt square loss function or
square operator on L2 norm to avoid square root problem.
However, such square operation also exponentially amplifies
the adverse effect on the data, especially for outliers. Inspiring
by the successes of L1 norm based learningmachines, besides
feature extractors (typically, principal component analysis),
they have been achieved more robustness than L2 ones in
literatures [24], [25], [46], [47]. However, different from
L2 norm optimization, it is a bigger challenge for solving
L1 norm problem because of the its non-differentiability,
especially in data clustering. Relaxing the fitting planes,
Hyperplane clustering via dual principal component pur-
suit (HC-DPCP) [48], [49] aims to seek multiple projection
planes, in view of (orthogonal) subspaces learning, by min-
imizing the projection distance with L2 norm constraint.
Following the line of data fitting, another L1 norm plane
clustering is our Fast Robust TWSVC (FRTWSVC) [26],
which adopts TWSVC-like constraints, and incorporates
inter-cluster information into the objective. The leading prob-
lems and its approximate version with equality constraints
are solved by QP and linear equations, respectively. As for
inter-cluster information used in PPC and TWSVC-like data
clustering methods, is it indeed helpful for data clustering? In
the view of data clustering, we know that, in the processing of
data clustering, the relationship between a point and its cluster
to which it temporarily belongs may be changed in the next

updating steps. That is, such relationship is not fixed until
data clustering terminated, whereas it is quite different from
supervised learning, where the relationship (label) between
for a given point and its class is fixed before training clas-
sifier. Intuitionally, once incorrect inter-cluster information,
generated from wrong relationships between points and their
clusters, is absorbed into clustering in the training phase,
it may result in more time-consuming, even failure for data
clustering. Furthermore, the cost in doing so is to lose original
geometry of plane clustering methods: clustering the data to
its cluster byminimizing distance of the data to and its nearest
cluster plane.

In this paper, inheriting the geometrical interpretation
of kPC, we propose a novel L1 norm k Plane Cluster-
ing (L1kPC). The leading problem is also a non-convex
optimization. We provide an equivalent strategy that
non-convex problem is decomposed into a series of convex
sub-problems, it is solved by k linear programming (LP).
In summary, the main contributions of our work are as
follows.

L1kPC is a robust learning machine, owing to adopting
L1 norm metric to characterize the plane clustering method.
In addition, it also has clear geometrical interpretation.

The leading problem is solved by LP which leads to
low-complexity.

It opens up a new way for solving L1 norm non-convex
optimization problem. Different from the aforesaid plane
clustering methods, the feasible region of L1kPC is
non-convex, which makes the leading optimization
non-convex. To handle the problem, an equivalent strategy is
proposed. That is, it can be decomposed into several convex
sub-problems. Besides, such equivalence proofs are provided
in Section III.

Compared to state-of-the-art plane clustering methods,
experiments on artificial and benchmark datasets demonstrate
that L1kPC achieves better performance in robustness, train-
ing time and clustering accuracies.

The remainder of this paper is organized as follows.
Section II briefly reviews related work. The L1kPC is
described in Section III, including geometrical interpreta-
tion, model optimization, solutions and theoretical proofs.
Experimental simulation and comparison are reported in
Section IV. The conclusion is arranged in Section V.

II. RELATED WORK
In this section, we first review some related work about plane
clustering methods.

A. NOTATIONS
For convenience, the symbols used in this paper are reported
in table 1.

B. KPC: K-PLANE CLUSTERING
kPC aims to seek k planes as centers to fit k cluster samples.
The k planes are defined as below:

Pi = {x|wTi x+ γi = 0}, i = 1, 2, · · · , k (1)
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The foresaid kPC leads to the following non-convex
optimization:

k∑
i=1

min
wi,γi

1
2
||Aiwi + γie||22

s.t. ||wi||22 = 1, i = 1, 2, · · · , k (2)

With random initialization for the plane parameter pairs
(wi, γi), i = 1, 2, · · · , k , kPC alternatively run two pro-
cedures: cluster assignment and plane update. For the i-th
cluster, Ai, under the constraint ||wi|| = 1, the expression
||Aiwi + γie||2 in formula (2) is just a sum of square distance
between the points of Ai and its corresponding plane wTi x +
γi = 0.

C. PPC: PROXIMAL PLANE CLUSTERING
PPC addresses the fitting planes by fusing inter-cluster
and intra-cluster information, which leads to the following
optimization:

min
(wi,γi)

||Aiwi + γiei||22 − C||Aiwi + γiei||
2
2

s.t. ||wi||22 = 1, i = 1, 2, · · · , k (3)

where Ai denotes the difference set X − Ai, and
C is a regularization parameter. Since the quadratic
matrix in the objective is a difference of two positive
semi-definite matrixes respectively derived from intra-cluster
and inter-cluster samples, it is not always to be positive.
That is, when facing indefinite quadratic matrix problem,
the objective function of (3) is non-convex, and thus its
solution would miss theoretical support.

D. TWSVC: TWIN SUPPORT VECTOR CLUSTERING
TWSVC fuses inter-cluster information by inequality
constraints generated from TWSVM [21]. For the i-th plane,
it leads to the following optimization:

min
(wi,γi)

||Aiwi + γiei||22 + Ce
T ξi

s.t. |Aiwi + γiei| + ξ i ≥ ei, ξ i ≥ 0 (4)

where ξ i is a non-negative slack vector. The i-th constraint,
|Aiwi+γiei|+ξi ≥ ei, means that the i-th plane is away at least
at a distance of 1 from the points of other clusters, Ai, when
ξi = 0. Different from kPC and PPC, TWSVC describes
intra-cluster compactness by minimizing ||Aiwi + γiei||22.
Without the constraint ||wi||2 = 1, ||Aiwi + γiei||22 cannot
be interpreted by point-to-plane distance.

To attain the fast robust version TWSVC, the FRTWSVC
replaces the L2 norm term in the objective of formula (4) and
inequality constraint with L1 norm and equality constraint.
Our discussed is obviously different from robust principal
components analysis (PCA) [44], [45], which aims to seek
multiple principle components by maximizing the projec-
tions, instead of the foresaid objectives, i.e. minimization
of the sum of point-to-plane distance. They are suitable for
coping with point cloud data [50], [51] rather than multiple
plane-shaped data. The foresaid plane clustering methods,

TABLE 1. List of symbols used in the manuscript.

kPC, PPC and TWSVC, are all based on L2 norm.
Among them, both kPC and PPC can be interpreted by
point-to-plane distance, while TWSVC and FRTWSVC relax
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such geometrical interpretation. In consideration of geomet-
rical meaning and training time, in this paper, we propose a
novel L1kPC method.

III. L1KPC
Based on our previous work [29], the infinite norm
point-to-plane distance derived from its dual L1 norm, it
motivates us to design L1 norm plane clustering algorithm.
Likewise, it is also helpful for maintaining the geometric
interpretation, as described in the kPC. That is, L1kPC also
aims to seek k planes by minimizing the sum of the infi-
nite norm distance, rather than L2 norm between planes
and points of their corresponding clusters. Obviously, it is
a genuine point-to-plane distance derived from the infinite
norm, as described in Eq. (5). For the i-th cluster, suppose
the corresponding fitting plane is derived from the following
problem:

min
wi,γi
||Aiwi + γie||1

s.t. ||wi||1 = 1 (5)

Obviously, the feasible region of (5), called a L1 ball hull, is
non-convex. So the optimization problem is also non-convex.

A. GEOMETRICAL INTERPRETATION OF L1KPC
According to the definition of L1 norm, L1 norm of a given
vector is equals to the sum of its absolute components. Thus,
by substituting ||wi||1 = 1 into the objective, we rewrite (5)
as below.

mi∑
j=1

|A(i)
j wi + γi|

||wi||1
(6)

whereA(i)
j denotes the j-th row ofAi, corresponding to the j-th

sample of the i-th cluster. The j-th term |wTi A
(i)
j + γi|/||wi||1,

is just equal to the infinite norm distance between the point
A(i)
j and the plane wTi x+ γi = 0. That is, the objective of (5)

is to minimize the sum of the infinite-norm distance, which
is described in Theorem 1.
Theorem 1: For a given point v ∈ Rd and a hyperplane

wT x + γ = 0, the point-to-plane distance based on infinite
norm is

|wT v+ γ |
||w||1

(7)

The proof for Theorem 1 refers to our previous work [29].
As foresaid, due to non-convex feasible region of the problem
(5), it is difficult to directly solve the optimization in the
cluster updating procedure. Next, we will introduce a strategy
to handle it. That is, this non-convexity is transformed into a
series of convex sub-problems.

B. TRANSFORMATION STRATEGY
Geometrically, the constraint of formula (5), ||wi||1 = 1,
is a L1 ball hull. Fig.1 illustrates a toy for the L1 hulls in
2-dimensional (Fig.1a) and 3-dimensional (Fig.1b) cases.
The points, marked red stars, stand for convex vertexes,
and the borders surrounded by blue solid line segments are
called L1 ball hull. Here the hull is just a surface of L1 ball,

FIGURE 1. L1 ball hull. (a) and (b) stand for 2 and 3 dimensional hull,
respectively.

not convex L1 ball. Obviously, the 2-dimensional L1 hull
is just a square composed of 4 line segments, while for the
3-dimensional hull, it consists of 8 equilateral triangles. On
each sub-region (line segment in Fig. 1a or triangle in Fig. 1b)
of the L1 hull, it is convex. Thus, non-convex L1 hull in
formula (5) is divided into multiple convex sub-region.

Without loss of generalization, let us discuss the hull in
d-dimensional linear space. Suppose a L1 hull in linear space
Rd , its vertex set consists of d pairs of vertexes, whose coordi-
nates are noted by {(±1, 0, · · · , 0), (0,±1, · · · , 0), · · · · · · ,
(0, 0, · · · ,±1)}. A subset is composed by d vertexes sam-
pling from d pair of vertexes. The vector group corresponding
to such subset is linearly independent, and the space spanned
by the subset is a subspace. In the spanned subspace, as illus-
trated in Fig.1, the bounded sub-region generated by vertex
subsets of L1 hull is just convex. The points in sub-region are
linearly represented by convex combination of the vertexes of
the L1 hull.

To reach the goal of foresaid transformation, there exist
two problems to be solved: how many subspaces are there
in the d-dimensional L1 hull and how to rule a search order
for these subspaces? The main processes for above problems
are divided into three parts: 1) there exists a one-to-one map
between convex vertex set and so-called growth function set
(see Definition 1); 2) the number of subspaces equals to
growth function quantity (Definition 2); 3) a search order
for subspaces is equivalent to solve a power set for growth
function set.
Definition1: For a binary sample setX = {x1, x2, · · · , xn},

the set H (n) = {(h(x1), h(x2), · · · , h(xn))|h ∈ H} on X
is called Growth function set, where H denotes hypothesis
space.
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FIGURE 2. Illustration for pseudo subspace and subspace.

Definition 2: A quantity for growth function set defined as
BH (n) = max

X
|H (n)| is called growth function quantity.

For instance, for any given two-class data set X =

{x1, x2, · · · , xn} drawn from a distribution D, if any sub-
sets of X is scattered by H , then growth function quantity
BH (n) = 2n.
The first question, i.e., the number of subspaces,

is answered by the above definitions. Before replying to
the second question, a search order for subspaces, we review
the conceptions about affine set and pseudo subspace in
Definition 3 and 4.
Definition 3: A set V is called affine set, if a group of

vectors x1, x2, · · · , xd ∈ V and satisfy
∑d

i=1 θi = 1, then
the linear combination y =

∑
i θixi also belongs to V .

Definition 4: An affine set L is called pseudo
subspace [30], for any fixed point x0 belongs to L(∀x0 ∈ L),
where L − x0 is a subspace.

For any point in the pseudo subspace, spanned by lin-
early independent hull vertexes, is linearly represented by
those vertexes. Thus, in the strict sense, the foresaid convex
sub-region is not a subspace but a pseudo one, as illustrated
in Fig.1, because it has no zero elements. If it is traversing
through the origin of the coordinates, it is a subspace, Here
L − x0 is to make such translation operation, as illustrated in
Fig.2, where the blue dash line above coordinate origin (0,0)
is a so-called affine set L. For a given fixed point x0 (∈ L) and
the pseudo subspace L, the set {x − x0|x ∈ L} is a subspace
(shortly L − x0), located at the line marked red dash through
the origin. Geometrically, it is just a translation between L
and L − x0, where x− x0 acts as zero point when x = x0.
To answer the second question, we conclude the above in

the following theorems, including how to rule an order for
searching pseudo subspaces.
Theorem 2: The vector group composed of those d vertexes

is a normal orthogonal basis for the d dimensional linear
space.
Theorem 3: A convex combination L spanned by d linearly

independent L1 hull vertexes is a pseudo subspace, and the
total of pseudo subspaces spanned by a normal orthogonal
basis of d-dimensional linear space Rd is at most 2d .
Theorem 4: An order for searching 2d pseudo subspaces

is equivalent to solve a power set of a set composed of d
elements.

Algorithm 1 Convex Set Search Algorithm
Input: Index set I = {1, 2, · · · , d}, set default z with zi =
−1, and initial objective value M = g(z/d)
Output: The center of pseudo subspace z0
Step 1. Compute the power set P(I ) and set z0 = z/d
Step 2. For i = 1 to |p(I )|
2.1 Reset all components of z with -1
2.2 If the indexes of I belong to the i-th element of P(I ),
then set the corresponding components of z to 1 and recal-
culate g(z/d)
2.3 If M > g(z/d), then compute M = g(z/d) and let
z0 = z/d
// repeat 2.1∼2.3, until the all components in z turn into
element 1
Step 3. Return z0

Theorem 4 says that, when a search order is fixed, the
optimization for sub-problems is finished in a linear time,
at most 2d searches, where 2d is the total number of sub-
spaces. The algorithm is described as below in d-dimensional
linear space Rd . Define an index set I = {1, 2, · · · , d} and
note its power set as p(I ). The function g(·) denotes the
objective of (5). A vector z = (z1, z2, · · · , zd )T (zi ∈ {−1, 1})
denotes a normal orthogonal basis corresponding to a pseudo
subspace. Firstly set the default value to each component
of z with zi = −1, i = 1, 2, · · · , d , then change some
components to 1 by the search order of the power set p(I ).
That is, if the index j belongs to the element of p(I ), we set
corresponding component zj to 1. Simultaneously, to avoid
solving 2d convex sub-problems in corresponding pseudo
subspaces, we need to estimate objective values by the centers
of pseudo subspaces z/d . Algorithm 1 is described as below.

After once traversal, algorithm 1 returns a pseudo subspace
center z0, corresponding to the minimum value estimation of
objective function. Taking the signs of z0 by sgn(z0), it is
easy to know which pseudo subspace is used for further
optimization, where sgn(·) denotes the sign function.

C. SOLUTION FOR L1kPC
From Algorithm 1, we obtain the corresponding normal
orthogonal basis, and note them as a group of vectors
(p1, p2, · · · , pd ). Assume the following optimization is on the
i-th subspace, Qi, a feasible sub-region of the problem (5),
spanned by basis vectors. Qi is defined as below,

Qi = {w =
d∑
j=1

αjpj|αj ≥ 0,
∑

αj = 1} (8)

Recalling the feasible region � in formula (5), obviously,
the expression � = ∪Qi holds. Thus, the formula (5) are
rewritten as

min
wi,γi
||Aiwi + γie||1

s.t. wi ∈ ∪
j
Qj (9)

According to the order provided by the theorem 4, the opti-
mization (5) is solved by a series of convex sub-problems
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Algorithm 2 Training L1 k PC
Input: Data points X and initial k random planes (wi, γi),
i = 1, 2, . . . k .
Output: (wi, γi)
Step1. Assign X into k clusters by L1-norm point-to-plane
distance.
//Cluster assignment
Step2. For i = 1 to k
// Plane update
2.1 Call Algorithm 1 to get subspace center z0, and its
corresponding normal orthogonal basis p according to the
formula (8)
2.2 CalculateB andD by formula (11) to obtain LP solution
η.
2.3 According to the formula (8), updating the i-th plane
(wi, γi).
//repeat Step1∼ Step2
Until terminal condition is satisfied.

corresponding to the sub-region Qi. To simplify the problem,
let the fitting plane passing through the i-th cluster center
m, i.e., γi = −mwi. For each sub-problem, substituting it
and formula (8) into the optimization problem (5), we ignore
some subscripts for describing problem under without caus-
ing ambiguity, and have the following optimization:

min
α
||(A− em)Pα||1

s.t. α ≥ 0

eTα = 1 (10)

Theorem 5: The solution of problem (10) is equivalent to
that of the following LP

min
η
hT η

s.t. Dη ≥ 0

eTBη = 1 (11)

where B = [(A− em)P]+ [I − I], D =
[
B
I

]
, and I denotes

identity matrix at appropriate size.
The above procedure is concluded in Algorithm 2.
In usual, the terminal conditions lie in 3-fold: 1) the fitting

planes tend to be stable, popularly measured by L1 norm like
||wt+1i −w

t
i ||1 < ε, where t means the t-th iteration and ε is a

tolerance factor. 2) the membership between points and their
clusters is unchanged any more. 3) maximum iteration is set
to avoid lower convergence rate, especially for ‘‘bad’’ random
initialization. In the next experiment section, we adopt both
1) and 3) as terminal conditions.

IV. EXPERIMENT
In order to evaluate the performance of L1kPC, in this section,
we conduct some experiments to validate our method on the
artificial and benchmark datasets [31]. To report comparison,
we take foresaid data clustering methods kPC, PPC, TWSVC

FIGURE 3. Illustration for clustering results of two clusters, (a) original
data distribution, (b) kPC, (c) PPC, (d) TWSVC, (e) FRTWSVC, and (f) L1kPC.

and FRTWSVC as base line. All methods were implemented
on theMATLAB 2015b platform running on the PCwith Intel
2.60 GHz CPU and 4GB RAM. The clustering accuracy is
defined in (12) as described in Refs [17], [32]. The symbols,
G and Q, denote predict label set and ground-true label set,
respectively.

accuracy =
f11 + f00

f11 + f10 + f01 + f00
(12)

where f11 is the cardinality of the set of G ∩ Q, i.e., f11 =
|G∩Q|, and ∩means set intersection. Similarly, we set f10 =
|G ∩ Q̄|, f01 = |Ḡ ∩ Q|, and f00 = |Ḡ ∩ Q̄|, where Q̄ stands
for complementary set of Q.

A. ARTIFICIAL DATA
To validate the robustness of our L1kPC, we com-
pared our proposed with related plane clustering methods
(kPC, PPC, TWSVC and FRTWSVC) on artificial datasets
named NoiseData and cross3D. Fig.3 illustrates a toy on the
NoiseData, drawn from two-class linear-shaped distribution
plus several outliers, and marked red ‘‘o’’ and blue ‘‘o’’,
respectively. Each class consists of 69 points including 3 out-
liers, marked ‘‘outliers’’ in Fig. 3a.

The fitting planes and their corresponding clusters generate
from five plane clustering methods, kPC, PPC, TWSVC,
FRTWSVC and L1kPC, as illustrated in Fig.3 (b-f), respec-
tively. kPC, PPC and TWSVC obtain 97.22%, 95.83%
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FIGURE 4. Clustering results of five methods on the cross3D dataset.
(a) original distribution, (b) kPC, (c) PPC, (d) TWSVC, (e) FRTWSVC and
(f) L1kPC.

and 94.44% while FRTWSVC and L1kPC achieve 100%
clustering accuracies respectively. For kPC, its fitting plane
for cluster2 (blue solid line) almost correctly reflects the
linear tendency of class1 data, while the plane for clus-
ter1 has heavily deviated from the data distribution of the
class2 data. Benefiting from L1 norm, FRTWSVC assigns
points to correct clusters, its corresponding plane does not fit
data well while the two fitting planes of L1kPC are capable
of reflecting data original distribution, and the points in each
class are assigned into the corresponding cluster. The result
is in line with our expectations, because squared L2 norm in
kPC exaggerates the effect of outliers.

The cross3D is from three-class plane-shaped distributions
plus 10 percentage of uniform noise, where one plane is
separate from the other two planes orthogonal to each other,
as illustrated in Fig.4a. Points of each class consist of 100
samples, marked red ‘‘+’’, blue ‘‘o’’ and magenta ‘‘I’’. The
parameter C in PPC, TWSVC and FRTWSVC is selected
from the values {2i|i = −5,−4, · · · , 4}. The clustering
results are displayed in Fig.4.

Fig.4 reports that L1kPC, kPC, PPC, TWSVC and
FRTWSVC obtain 99.67%, 98.00%, 59.00%, 60.91% and
71.67% clustering accuracies respectively. Compared with
PPC, TWSVC and FRTWSVC, both L1kPC and kPC are
more capable of closing to the original distribution of the
dataset. While for PPC, TWSVC and FRTWSVC, due to

TABLE 2. UCI data information.

adding inter-to cluster information to cluster points which
corresponds nearest planes and simultaneously far away from
the other planes, it is difficult to assign points located at
overlapped area to their correct clusters.

B. UCI DATASETS
In this subsection, we further compared kPC, PPC, TWSVC,
FRTWSVC and L1kPC on eighteen UCI datasets. The details
of UCI datasets briefly described in Table 2. The aver-
age results of clustering performance (Test Acc), training
time (Train Time), standard deviation (std) and p-value are
reported in Table 3, where the highest accuracy is bold. The
symbol ‘‘-’’ in the cell of table 3 means unavailable results,
where training time is at least beyond 24 hours. To further
validate them, the paired t-test between our L1kPCwith other
four methods are listed in Table 3. The threshold for t-test is
set to 0.05. The p-value for each test is the probability of the
observed or a greater difference occurring between the Train
Time of the two methods, under the assumption of the null
hypothesis that there is no difference between the Train Time
distributions. Hence, the smaller the p-value, the less likely it
is that the observed different resulted from datasets. The Train
Time means CPU time (in seconds) for training five plane
clustering methods, and clustering accuracies are reported by
percentage (%) according to the formula (12).

The two groups of clustering methods are averaged
in Table 3, without inter-cluster and with inter-cluster infor-
mation, marked Without-Avg and With-Avg. Divide five
clustering methods into two groups: one is to seek k fitting
planes only by intra-cluster information, such as kPC and
L1kPC. The other is fusing inter-cluster and intra-cluster
information, including PPC, TWSVC and FRTWSVC to
seek fitting planes. Table 3 reports L1kPC achieves higher
clustering accuracies on 10 out of 16 datasets. For instance,
on the dataset Hab, L1kPC achieves 75.00%, while for kPC,
PPC, TWSVC and FRTWSVC, achieve 54.57%, 60.95%,
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TABLE 3. Comparison among five plane clustering methods on UCI datasets.

61.26% and 61.54%, respectively. It is almost as 14 or even
bigger percentage points higher as the other four methods.
In addition, the p-value is 1.35E-09, 5.93E-08, 1.86E-07 and
9.45E-08, respectively. The similar results can be observed on
the datasets Derm, Vow, PID, Wine and Liver. This indicates
the L1kPC has significant differences from the other plane
clustering methods. Although FRTWSVC obtains higher

accuracies than L1kPC on the datasets Tae and Waveform,
the differences between them is about 2 percentage points
and the p-value is 0.2 (>0.05) and 0.92 (>0.05), respectively.
That is, there has no significant difference between L1kPC
and FRTWSVC. However, on the datasetsWine, Iris and Zoo,
FRTWSVC is far superior to L1kPC. A reasonable explana-
tion is that inter-cluster information is helpful for FRTWSVC

29496 VOLUME 8, 2020



H. Yang et al.: Robust Plane Clustering Based on L1-Norm Minimization

FIGURE 5. Example test images of ORL and YaleB.

TABLE 4. Results of the clustering methods on face datasets.

to improve clustering performance in these cases. Thus,
we also record the accuracies of Without-Avg and With-Avg
to measure the performance of above two types plane clus-
tering algorithms. It is easily observed that Without-Avg
achieve better clustering accuracies than With-Avg on 9 out
of 16 datasets without regard to the results located in the last
two lines. So is it better for fusing inter-cluster information
into clustering objective? It is still an open problem.

C. HUMAN FACE DATA
To further verify the performance of above methods, we also
compare these methods on the face dataset ‘‘ORL’’ [35] and
‘‘Yale B’’ [36]. ORL includes total 400 face grey images from
40 classes/persons (10 images for each person) with the size
112× 92 image resolution, while YaleB includes 2414 faces
from 38 classes and each face is a grey image with the size
32×32. The rest 5 images for each class inORL andYaleB are
used for testing. Some example images are shown in Fig.5.

Table 4 shows the test accuracy of five plane clustering
methods on the face datasets. As far as the accuracy is
concerned, L1kPC is obviously better than other four plane
clustering algorithms. And the main reason is, the L1kPC has
good robustness, which avoids the effect of noise caused by
shadow in the image on recognition.

D. TIME COMPLEXITY
As far as Train Time is concerned, L1kPC runs fast on 8 out
of 16 datasets, and kPC and PPC runs fast on the rest 5 and
4 datasets, respectively. In the view of computation, the Train
Time of L1kPC is composed of two parts: one is for searching
appropriate subspaces and the other is for computing fitting
planes. The former can be finished in linear time, O(2d ),
as proved in Theorem 4, while the latter depends on LP.
The time complexity of simplex method for LP is at most
O(n2) [33]). Considering the formula (11) is also a sparse
LP problem, its time complexity is decreased to the order of
O(nq∗min(n, q)), where q denotes the number of non-zero
elements [34]. In the real world, if satisfying n � d and
n > q, the time complexity of L1kPC will be decreased to
O(nq2)+O(2d ). Both kPC and PPC need to solve eigenvalue
equation, and their time complexities are O(n3). Owing to

FIGURE 6. Train Time of sixteen UCI dataset.

TABLE 5. The average training time on 16 UCI datasets and P-values for
paired t-test of training time.

L2 norm QP optimization by interior point method, the time
complexity for TWSVC is of the order O(n3.5) [20], while the
FRTWSVC, O(tn3), where t is the total of iteration [26].

In addition, The Train Time show in Fig.6 reflects that the
real CPU time does not coincide with the foresaid time com-
plexity. The reason is that kPC, PPC and FRTWSVC can be
analytically solved by eigenvalue or linear equations, while
the other two, L1kPC and TWSVC, need to be iteratively
computed by LP or QP problems. An asterisk (∗) indicates
a significant difference from L1kPC, which corresponds to
the p-value is less than 0.05.
For example, the p-value of the t-test between L1kPC

and TWSVC is 0.046 (<0.05), while their Train Time is
6.9203s and 174.47s, respectively in Table 5. This means
that there exists a significant difference between them.
Although Table 5 that kPC and PPC run fast than L1kPC,
the p-value of the t-test between them are all higher than 0.05,
which means there is no significant difference. However, the
p-value between L1kPC vs. TWSVC is 0.046, which means
TWSVC significantly runs slower than L1kPC because of
p-value < 0.05.
In the end, we should point out that there exist two

situations to speed training L1kPC. One is in the step of
searching subspaces, where we ignore the time for repeat
searching in the same subspaces. Another is due to sparse
matrixes [52], [53] existing in the constraints of the for-
mula (11), the leading LP problemwill be speeded if combin-
ing sparse optimization methods. There have some methods
for L1 norm convex optimization methods such as Gradi-
ent Projection (GP) and Proximal Gradient (PG) [37], it is
proved that they run faster than LP. Furthermore, since the
subspace search in the power set is viewed as feature selection
problem, some heuristic strategies may be helpful to speed
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training L1kPC, including sequential forward or backward
selection [38], [39]. These will be our next work.

V. CONCLUSION
Instead of point-centered, plane data clustering groups data
into clusters by seeking multiple fitting planes as its centers.
In this paper, we follow the geometry of kPC and propose
a robust plane clustering method based on L1 norm, termed
as L1kPC. To handle the non-convex L1 norm minimization
problem, a new optimization method is provided. The leading
non-convex L1 minimization problem is decomposed into
multiple convex sub-problems. Hence, the k fitting planes are
solved by k linear programming problems. In view of com-
putation, we open a new way for L1 norm minimization with
mathematical proofs. Experimental comparisons on both arti-
ficial and benchmark data indicate that, our proposed L1kPC
is more robust, comparable or even better cluster accuracies,
less training time than that of state-of-the-art plane clustering
methods.

APPENDIX
PROOFS OF DEFINITION 3 AND THEOREM 2 AND 3
Definition 3: A set V is called affine set, if a group of vectors
x1, x2, · · · , xd ∈ V and satisfy

∑d
i=1 θi = 1, then the linear

combination y =
∑

i θixi also belongs to V .
Proof: Step1. If d = 2, θ1 + θ2 = 1, according to the

definition 3, then y = θ1x1 + θ2x2 = θ1x1 + (1− θ1)x2 ∈ V
holds. Step2. Assume d = k − 1 holds. That is, there exists a

group of θi satisfying
d∑
i=1
θi = 1 and θi ≥ 0, such that yk−1 =

θ1x1 + θ2x2 + · · · + θk−1xk−1 ∈ V holds. Step3. If d = k ,
k∑
i=1
θi = 1 and θi ≥ 0, then θ1 + θ2 + · · · + θk−1 = 1 − θk .

When (1− θk ) 6= 0, y′ = θ1
1−θk

x1+ θ2
1−θk

x2+ θ2
1−θk

x2+ · · · +
θk-1
1−θk

xk−1 ∈ V , yk = θ1x1 + θ2x2 + · · · + θk-1xk-1 + θkxk =
(1−θk )y′+θkxk . According to the assumption of step 2, then
yk ∈ V . When 1−θk = 0, such that yk = θkxk ∈ V . From the
above discussion, the linear combination y = θx1 + θ2x2 +
· · · + θdxd ∈ V .
Theorem 2: The vector group composed of those d vertexes

is a normal orthogonal basis for the d dimensional linear
space.
Theorem 3: A convex combination L spanned by d linearly

independent L1 hull vertexes is a pseudo subspace, and the
total of pseudo subspaces spanned by a normal orthogonal
basis of d-dimensional linear space Rd is at most 2d .
Proof: For convenience of the reader, theorem 2 and 3 are

proved together. It is easy for the proof of pseudo subspace,
which can be directly derived from Definition 4. Suppose d
linearly independent vertexes drawn from the foresaid vertex
set S = {(±1, 0, · · · , 0), (0,±1, · · · , 0), · · · , (0, 0, · · · , ±
1)}, |S| = 2d , where each vertex corresponds to a unit vector
in Rd . Among | · | represents the cardinality of set. Obviously,
the group where each vector drawn if and only if from each
pair of vertexes is a maximum linearly independent group,
and noted as a1, a2, · · · , ad . Without loss of generality,

let ai ∈ {(0, · · · , 1, · · · , 0)T , (0, · · · ,−1, · · · , 0)T },
i.e., the i-th component of the vector ai does not equal to
zero. Thus for any two vectors ai, aj, < ai, aj >= 1 when
i = j; otherwise, < ai, aj >= 0, where < ·, · > denotes the
scalar product in the d dimensional linear space Rd . That is,
the group a1, a2, · · · , ad is a normal orthogonal basis.
Suppose the linearly independent group composed of k

vectors, a1, a2, · · · , ak , from corresponding hull vertexes.
Denote pseudo subspace V = {λ1a1 + λ2a2 + · · · +
λkak |

∑
λi = 1, λi ∈ [0, 1]}. It is obvious that any

given point in V is linearly represented by a1, a2, · · · , ak .
Especially, in d-dimensional linear space, when the pseudo
subspace is spanned by d linearly independent hull vertexes,
i.e., the foresaid normal orthogonal basis, for any point in this
subspace, it is represented by this basis. As foresaid, each
basis vector corresponds to a L1 hull vertex. There are d pairs
of hull vertexes in L1 convex hull. For the sake of linear inde-
pendence between basis vectors, each basis vector is drawn
from a pair of L1 hull vertexes, while a normal orthogonal
basis is composed of d linear independent vectors. Hence,
there are 2d pseudo subspaces respectively determined by 2d

normal orthogonal basis different to each other.
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