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ABSTRACT In recent years, point cloud based data analysis has attracted lots of attentions of researchers
from many different fields because of its simplicity and effectiveness. As a fundamental research, point
cloud representation and recognition plays an important role. Although existing works achieved some good
performances, they still cannot take full use of the information hidden in training data. This paper revisits
the problem of point cloud representation and recognition from the viewpoint of data augmentation without
incorporating additional data or more annotations. Different from existing works on 1D or 2D data, our
proposed approach deals with a more complicated problem in three dimensional space for point cloud
representation and recognition by mixing various training data from different object categories, which could
help the classifier to better optimize the data-driven parameters. To validate the performance of our proposed
approach, the popular used ModelNet40 dataset is employed as the standard benchmark. By carrying out
comprehensive experiments under many different conditions, the experimental results show that our mixture

method works positively towards improving the recognition performance of point cloud.

INDEX TERMS Point cloud, deep learning, point cloud mixture, feature mixture.

I. INTRODUCTION

With the development of three dimensional scanner devices,
the amount of 3D models has increased a lot. Because
3D models contain much more (intuitive) information than
text and image, they have attracted increasing attention of
researchers and their application becomes widespread in vari-
ous fields, such as robot, games and medicine. In recent years,
the importance of point cloud has increased a lot because: (1)
it is simple by using a collection of 3D points in Euclidean
space without considering point relations; and (2) it can avoid
the combinatorial irregularities and complexities of building
meshes [1]-[3]. However, it is a challenging problem by
directly working with such representation because there are
limited information available [4], [5].

In literature, there are two ways for 3D shape representa-
tion according to the methods for modeling [3], [S]-[12]. One
is the traditional hand-craft methods based on pre-defined
models, while the other is the recent deep learning (DL)

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Wang

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

algorithm which is based on a data-driven modeling process.
In the early years, most of the researchers pay attention to
the model-based global and local shape descriptors, where
the global descriptors only deals with the holistic shape
description while the local keypoint descriptors could per-
form partial shape description and the bags-of-word (BOW)
model is usually used with local descriptors for vector quan-
tization [13], [14]. However, one significant defect of tra-
ditional methods is that they usually lack of flexibility for
model selection and parameter determination (e.g. the BOW
model is limited to the roughly pre-defined dictionary), which
may lead to the low effectiveness for shape representation
[13]-[15]. In contrast, the recent deep learning technique is
more suitable for data-driven model learning by providing
labeled training data. One typical example is the convo-
lutional neural network (CNN) based deep network which
has significantly boosted the performance of object recogni-
tion [16]-[20]. As a result, new 3D deep methods were pro-
posed for object analysis and recognition (e.g. classification
and segmentation), which can be put into two classes [5]:
(a) new deep CNNs for end-to-end 3D data learning, such
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FIGURE 1. Demonstration of between class learning for data mixture. Top
line: the mixture of two images. Middle line: the mixture of two 3D
surface shapes. Bottom line: the mixture of two point cloud shapes.

as 3D volumetric CNN [12], [16], 3D graph CNN [8], [21]
and PointNet [3]; (b) data transformation (e.g. multi-view
images or feature vectors) based DL methods, such as the
multiview CNN (MVCNN) [12], heat diffusion LSTM (HD-
LSTM) [22] and deep geodesic moments (DeepGM) [18].
With the help of DL, the recent works have witnessed sig-
nificant performance gain on shape recognition. But, there
is still room to improve. For example, when building the 3D
volumetric CNNs [3], [16], much complicated deep networks
are used and the resolution of the constructed voxels is usually
low for shape representation.

Data augmentation is widely applied for deep network
training to improve the effectiveness of the resulting model,
but traditional methods usually create new training sam-
ples from the original data [3], [23], [24], such as random
cropping, image clipping, adding noise, data jittering and
rotation. Recently, some pioneering works show that data
augmentation by mixture of training examples can improve
the learning performances [23], [25]-[27]. Although this kind
of mixed data may not be realistic from the viewpoint of
human perception, the computer algorithms can understand
the data in some latent forms (e.g. waveform [26]) and can
grasp more discriminative information for representational
feature learning, such as the top line of Figure 1. The advan-
tages of this approach lies in three points: (1) higher level of
data variation; (2) better constrains on data distributions (e.g.
gaussian); and (3) less dependency of CNN networks on large
numbers of labeled training data. However, existing works
only focus on dealing with the recognition problem of sound
or image, but it is unclear: (1) if the data mixture method also
works for 3D shape recognition; and (2) how to perform data
mixture in 3D space.

The goal of this paper is to recognize 3D shapes in
the format of point clouds by addressing two issues:
(1) if existing data mixture methods (e.g. between class
learning [26]) work for point cloud without any apparent
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structure information (e.g. the bottom line of Figure 1); and
(2) how to mix inter-class point cloud data to obtain reli-
able network input for discriminative deep feature learning.
In the experimental part, we validate our method on the
ModelNet dataset and the results have revealed the superior
performances of our approach on point cloud recognition.
Then, we summarize the main contributions of the paper as
follows:

o We first explore if the traditional between class learn-
ing method can improve the performance of point
cloud recognition by directly mixing pairwise inter-class
shapes.

« We develop a random point sampling based mixture
method for data augmentation and perform ablation
study by imposing different mixing settings.

« Beyond the raw point cloud, we further investigate
the possibility of mixing the internal features of
the deep networks for more discriminative feature
learning;

o We perform experimental tests on ModelNet dataset
to validate the effectiveness of the studied approaches
for improving the performance of point cloud
recognition.

Il. RELATED WORK

Retrieving similar 3D objects from the same category as with
the query has become an increasing important issue, where
shape representation and retrieval is one of the most popular
way for addressing this problem. The main difficulty of shape
representation lies in the large inter-class similarity and the
large intra-class variance, which makes it difficult for design-
ing effective algorithms to grasp discriminative information
[6], [28]. On the one hand, although some objects have the
same function, like sitting, they have quite different shapes
(e.g. bench vs. armchair). On the other, although some objects
belong to different categories, they share similar shapes (e.g.
microwave oven vs. square box) [12], [16]. Thus, how to
support effective shape representation is quite challenging
for machine learning by developing effective algorithms to
capture object properties that could distinguish shapes from
different categories. Over the past decades, many different
trials were proposed to deal with the problem. At first,
the traditional hand-craft features attracted more attention
of researchers for 3D shape representation. But, recently,
the deep learning techniques have further boosted the per-
formance of 3D shape recognition in an end-to-end fashion
so that researchers do not need to manually design models,
and the shape representation problem becomes to design-
ing an effective network and preparing sufficient number
of raw training data. In this paper, we mainly focus on 3D
point cloud which is a fundamental form of 3D shapes and
which is also much easier to capture compared with the
other data forms (e.g. 3D mesh) [3], [16]. Next, we present
some of the most related works on point cloud recognition
and some related works on data augmentation by using data
mixture.
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FIGURE 2. The basic configuration of PointNet [3] network which takes n-sized 3D point cloud as input, going through five convolutional (Conv) layers,
one MAX pooling layer, two fully connected (FC) layers and one FC-based classifier layer.

A. TRADITIONAL POINT CLOUD DESCRIPTORS

As stated in previous works [1], [2], [4], each point cloud
object only consists of a set of points, but it lack of struc-
ture information, which would make it more difficult for
feature learning. In the early years, the traditional hand-craft
methods are popular for point cloud recognition and there
were limited number of works focusing on this topic. In [6],
Funkhouser et al. presented a typical shape distributions
method to describe shapes using the statistical histogram of
pairwise point distances and it has already been proved to
be a robust method for shape description [5], [9]. In [1],
the diffusion distance [29] was employed for 3D point cloud
recognition by borrowing the idea of heat diffusion for shape
description. In [2], Limberger et al. organized a track to
retrieve the point cloud toys and many different methods were
proposed and compared to find a good solution for point
cloud [8]. Although point cloud representation and recog-
nition received some progress by using traditional methods,
most of them cannot provide flexible models for obtaining
discriminative features and are limited to empirical design for
feature extraction.

B. DEEP LEARNING ON 3D SAPES

The development of deep learning has promoted the per-
formance of 3D shape recognition by creating lots of new
algorithms [5], [11], [19], [30]. In [16], a deep 3D volu-
metric approach was proposed by denoting a 3D object as a
probability distribution of 3D voxel grid. In [30], the authors
proposed a multi-view CNN approach for 3D shape classi-
fication and the result was superior to that of 3D volumet-
ric approach. In [18], a DeepGM approach was proposed
by studying geodesic moments (GM) and stacked sparse
auto-encoder. In [22], a HD-LSTM method was proposed
by integrating the heat distribution and LSTM for shape
description. Although prior works have some achievements,
they suffer from different drawbacks and most of the up-to-
date deep learning algorithms focus on 3D meshes instead
of point clouds [5]. Recently, Qi et al. [3] designed a point
cloud based CNN network that receives an unordered set
of 3D positions and labels, but it neglected the latent spatial
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relations between pairwise points. Similarly, a dynamic graph
CNN approach was presented in [21] by incorporating the
k-nearest neighbor elements to discover the spatial relations
for learning features and classifiers.

Data Augmentation is widely used in the process of learn-
ing deep networks to deal with limited labeled training data
and avoid overfitting by enlarging the training set. In [24],
the AlexNet augmented the deep data by random sub-image
cropping, horizontal flipping and changing the intensity of
each channel, which could improve the robustness of the algo-
rithm towards translation, reflection and illumination. In [3],
the data sampling and jittering operations were employed to
enhance the robustness of the learned model. One recent rele-
vant work is to augment the training data by mixing pairwise
data in a linear way [23], [25]-[27]. Tokozume et al. [27]
first presented a between class (BC) learning method for
sound recognition by mixing a pair of sounds with a random
ratio as the input of deep network, and then they extended
this approach to deal with image classification by regarding
images as wave signals and proposed an improved version
BC+ [26]. On this basis, there appeared some follow up
works that achieved comparable results by discussing some
related mixture strategies [23], [25]. The main advantage of
BC learning is to constrain the feature distributions, which is
difficult for standard learning methods to reach and which
enables related methods to boost the performance of fea-
tures. In this paper, we extend this approach for learning 3D
point cloud features to achieve better shape recognition per-
formance. Next, we present our approach and experimental
results in different sections.

IIl. PRELIMINARY ON BETWEEN CLASS LEARNING
Between class (BC) learning was first studied for improving
the performance of sound recognition and then was success-
fully extended to images. Let (x1, /1) and (x3, /2) be two (data,
label) pairs, the main idea of BC learning is to blend one (data,
label) pair by using

x=rx1+{1 —r)x (1)

and [ = rly + (1 — r)l», where ] and [, are one-hot category
label vectors, and r € (0, 1)) is the mixture ratio which is
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FIGURE 3. A brief flowchart of our approach for 3D point cloud recognition by mixing data at different layers of the employed deep neural network: point
mixture by using the raw point coordinates, middle-level feature (MF) mixture at the intermediate layers, and high-level feature (HF) mixture at the last

few linear layers.

usually determined by random. It has been shown in [27]
and [26] that BC learning can regularize the learned feature
distributions to be more compact.

BC plus (BC+) learning interprets any data
(e.g. sounds&images) as waveform data. For any piece of
sound, it has absolute center 0 and the distance from the
center denotes the sound energy. But, for an image, it does
not have absolute center and there is no concept of energy,
which makes it hard to directly apply data mixture. To deal
with this issue, each image is divided into two parts: static
component and wave component. Before performing image
mixture, the static component is first removed and then the
mixture of pairwise data is formulated as

o= P — )+ —p)oa — pa)

VPl + (1 —p? ’

1

= o, 1=r’
1+U2* —

@

p 3

where 1 and o) denotes the mean value and variance of
image x1, respectively. The authors in [26] have verified the
effectiveness of this approach for image classification.

IV. DEEP MIXTURE SHAPE REPRESENTATION

For the general 3D shapes, they are supposed to have no back-
ground and the point coordinates are used to describe each
of the shape. Thus, each shape follows a certain point distri-
bution that would vary for shapes from different categories.
This property just follows the basic idea of BC learning by
regarding each image as some waveform data. In this section,
we wonder if data mixture still work for unstructured 3D
point cloud data because blending point cloud data becomes
much harder for humans to understand without any structure
information. For example, the mixed shape using two 3D
surface shapes in the middle line of Figure 1 is much easier
to understand for humans compared with the point cloud
mixture results in the last line. Let S = {X, y} be the point
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cloud shape, X = {x1,x2, x3,---,x,} be the point set and
y € C = {c1,c2,0c3, - ,cy} be the atom category labels,
the goal of this paper is to learn shape feature f(S) and
classifier ¢(S) by optimizing the parameter set W of a well
designed deep network IN(S|W).

Different from 2D images, point cloud has the concept of
centroid by averaging the coordinates of each shape. Thus,
we do not need to remove the static component as with [26]
did, and before apply data augmentation, we first normalize
each shape by putting it into a unit ball centered at the
origin (0, 0, 0). Given a random pair of inter-class point cloud
shapes S1 and S>, it is very important to perform data mixture
by addressing three critical issues: (1) whether data mixture
is required for all the training data; (2) what kind of data
(e.g. original point cloud or deep learned features extracted
from some layer of the learned deep network IN(S|W)) to be
used for data mixture; (3) how to mix two point cloud shapes
(e.g. average of point coordinates or mixing of data points).
As shown in Figure 3, we validate various ways of mixing
inter-class data to improve the performance of deep learned
features and classifiers. Next, we present the details of the
adopted approach.

A. RANDOM MIXTURE

In BC learning, all the input samples are mixed in a pairwise
manner. But, it may only produce limited performance gain
without explicitly training the deep network IN(S|W) using
the atom category information. According to Figure 1, it is
easy to recognize the original shape based on images and
3D meshes, but the case becomes difficult for 3D point
cloud, which is hard to recognize the original shapes after
mixing. To address this issue, we employ a random mixture
approach

s {Q(Sl,Sz), if o > th @

S, otherwise
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by feeding both the mixed data 6(S1, S2) and the original
data S according a random variable o € [0, 1] to the deep
network ]N(S' |W), where S1 and S are two randomly sampled
inter-class point cloud shapes, (-, -) is the adopted mixture
function and th(= 0.5) is a threshold. On top of this modeling,
the deep network can percept both the original data and the
mixed data to regularize the feature distributions.

B. POINT-BASED DATA MIXTURE

Although 3D point cloud data has only one more dimension
compared with 2D image, the data has confronted significant
difference in complexity because 3D point cloud concentrates
more on unordered points and 2D images can be seen as a
projection along some viewpoint. In this part, we discuss how
to mix the 3D data points of pairwise point cloud shapes.

1) WEIGHTED MIXTURE OF POINTS (WMP)

One simplest way to perform data augmentation is to follow
Equation (4) for mixing two 3D point clouds by using the
weighted sum of corresponding point coordinates. Similar to
BC and BC+, we denote our method on point cloud as WMP
and WMP+.

2) POINT SAMPLING BASED MIXTURE (PSM)

Instead of fusing corresponding points, we mix a pair of point
clouds by sampling different number of points from each
point cloud with aratio r € [0, 1]. First, we sample s1 = r xn
points from 3D point cloud X; and s, = (1 — r) X n points
from 3D point cloud X, by using a sampling function y(-).
Then, the sampled s; and s; points are concatenated to obtain
a new mixed training point cloud data

Xm = yX1ls1) U y(Xals2) (5)

To obtain good mixture results, we propose to try three dif-
ferent methods to realize the point sampling function y(-).
The first method is to leverage a continuous PSM (cPSM)
strategy, i.e. sampling s; continuous points from X; and s;
continuous points from X, respectively. The second method
is to leverage a random PSM (rPSM) strategy, i.e. sampling
s1 random points from X; and s, random points from X;. The
third method to leverage a crop-replace PSM (crPSM) strat-
egy, i.e. cropping s, continuous points from X; and replacing
them by using s, continuous points randomly picked up from
X>. Then, the labels of the mixed shape X, is calculated by
Ly =rli + (1 — ).

3) WEIGHTED PSM (WPSM)

To integrate the advantages of point sampling and WMP,
we propose a two step deep mixture method. First, we follow
PSM method to generate a mixed point cloud X;, for X; and
X>. Then, we follow WMP to further mix X,,, and X to obtain
a weighted mixture result X,,. In this way, we can further
increase the variance of data mixture and keep the basic
shape information. By adopting different sampling methods
of PSM and mixture functions of WMP, we can obtain dif-
ferent WPSM results: rWPSM for using rPSM and WMP,
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c¢WPSM for using cPSM and WMP, erWPSM for using
crPSM and WMP. When using WMP+-, we can similarly
obtain rWPSM+-, cWPSM+ and crWPSM .

C. FEATURE-BASED DATA MIXTURE
In this section, we study the feature-based data mixture.
As shown in the Figure 3, we divide the mixing meth-
ods into three categories from the viewpoint of features:
(1) low-level mixture of the original input point cloud data
(see Section IV-B); (2) middle-level mixture of features by
using the output of the middle layers of the adopted deep net-
work (or the intermediate point features); and (3) high-level
mixture of features by using the output of the last two layers
of the adopted deep network (i.e. the global point cloud
features). In Section IV-B, we have already discussed (1).
Thus, we only need to discuss issue (2) and issue (3) next.
We rely on a pretrained deep network for mixing pairwise
features. For network training, we only train the remaining
network layers after the mixed feature layer. For example,
if we mix the output features of Conv2 in Figure 2, then we
only train all the layers after Conv2 by taking the mixed data
as input. In all, we summarize the learning and testing process
of feature-based data mixture as follows.

« Stepl. Train a general deep network IN(S|W) by using
the point cloud data.

« Step2. Extract the output of each network layer as fea-
tures to be used for data mixture.

o Step3. Choose one intermediate layer Z for mixture of
features and mix pairwise features by using the methods
discussed in Section I'V-B.

o Step4. Train the remaining deep network layers after Z.

o StepS. Test the resulting deep network by taking the
non-mixed data as input for classification and feature
extraction.

To realize our idea, the classical PointNet [3] is adopted
as the base network ]N(S' |W) to verify our idea. According to
Figure 2, we perform feature mixture only using the output of
the convolutional layer (Conv) and the fully connected layer
(FC): Convl, Conv2, Conv3, Conv4, Conv5, FC1 and FC2,
where data mixture at FC2 layer belongs to category (3), and
data mixture at the other layers belong the category (2).

V. EXPERIMENT

In this section, we evaluate the performance of our stud-
ied method on the popular ModelNet dataset (i.e. the point
cloud version) which contains 127, 915 3D shapes from 622
object categories, where two subsets ModelNet10 and Mod-
elNet40 are popular used for algorithm evaluation. Model-
Net10 contains 4, 899 3D shapes belonging to 10 categories,
where 3,991 shapes are used for training and 908 shapes
are used for testing. ModelNet40 contains 12, 311 3D shapes
belonging to 40 categories, where 9, 843 shapes are used for
training and 2, 468 shapes are used for testing. More details
about the datasets can be found in [3], [16], [30]. The network
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TABLE 1. The ablation study results on random mixture.

Method th Dataset Accuracy
PointNet(baseline) - ModelNet40 89.08
WMP 0.0  ModelNet40 88.59
WMP 0.5  ModelNet40 89.52
WMP+ 0.0  ModelNet40 88.87
WMP+ 0.5  ModelNet40 89.44

TABLE 2. Results of different 3D point cloud mixture strategies.

Method Dataset PointNet(vanilla)  PointNet
Baseline ModelNet40 87.45 89.08
WMP ModelNet40 88.39 89.52
WMP+ ModelNet40 87.98 89.44
cPSM ModelNet40 88.35 89.61
rPSM ModelNet40 88.10 89.61
crPSM ModelNet40 87.90 89.40
cWPSM ModelNet40 87.86 89.69
cWPSM+ ModelNet40 88.02 89.65
rWPSM ModelNet40 87.78 89.20
rWPSM+ ModelNet40 88.43 89.32
crWPSM ModelNet40 88.10 89.44
crWPSM+  ModelNet40 88.18 89.77

classification accuracy rate in percentage (%) is used as the
basic evaluation measure.

Implementation Details: The classical PointNet [3] is
adopted as the baseline method which has two implementa-
tion versions PointNet (vanilla) and PointNet, where Point-
Net (vanilla) does not use the transformation net compared
with PointNet, The experimental platform is based on GTX
1080Ti GPU, Intel Xeon CPU 3.5GHZ HP Z440 with ten-
sorflow framework under Ubuntu 16.04 System. Each of the
adopted point cloud data is evenly sampled from the original
shape with 1024 points and has been normalized to a unit
sphere. Similar to PointNet, each point cloud is augmented
by performing random rotation along the up-axis and adding
zero mean gaussian noise with 0.02 standard deviation for
data jittering.

A. ABLATION STUDY ON RANDOM MIXTURE

We carry out ablation study to verify whether random mixture
works after applying data mixture, where PointNet is used as
the baseline.

Our classification accuracy rates are listed in Table 1. With-
out using random mixture, the performance of WMP (th =
0.0) has decreased the baseline (i.e. 88.59% vs. 89.08%),
while WMP (¢4 = 0.5) has improved the baseline. The reason
may lie in that, without using the original atom category for
classification, WMP (th = 0.0) network may not know how
to fit the mixed data without some reference. With the help of
random mixture, PointNet can grasp both the atom category
and the transition category (i.e. the mixed category) between
pairwise point clouds. Thus, the random mixture operation is
more likely to produce positive gains on classification, which
is adopted for all follow up settings.
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FIGURE 4. The classification performance on ModelNet10 dataset.

TABLE 3. The ModelNet10 classification results of feature-based data
mixture at different layers of the adopted deep network.

PointNet(vanilla): 91.51
WMP WMP+ ¢PSM rPSM

Convl  93.30 93.41 9229  92.18 92.52
Conv2  92.74 93.08 9263 92.18 92.52
Conv3d  92.74 93.08 9196 9341 92.07
Conv4  92.52 92.85 9263 9241 92.63
Conv5 9222 92.00 92.44 92,66  93.11

FC1 92.55 92.44 92.11 9244  92.66

FC2 91.77 91.66 91.77  92.00  92.22

Layers
crPSM

B. RESULTS OF POINT-BASED DATA MIXTURE
In Table 2, we present the classification accuracy rates by
using different mixture strategies on 3D point cloud.
According to the results, we can have several observa-
tions: (1) all the tested data mixture methods can improve
the baseline performance; (2) WMP is superior to WMP+;
(3) as for the low-level point cloud based data mixture, cPSM
and rPSM are superior to crPSM; (4) as for the middle-level
feature based data mixture, cWPSM+ performs better than
cWPSM, which is the same for rWPSM+ and crWPSM+;
(5) the performance improvement for all compared methods
on PointNet(vanilla) is larger than on PointNet, which may be
contributed to the employment of transformation operation
and which reveals another advantage of the transformation
layer of PointNet. The different WPSM+- results reveal that
point-based data mixture outperform traditional coordinate
based data mixture method (e.g. ctWPSM+ vs. WMP+ on
ModelNet40). The results also suggest that WPSM can fur-
ther improve the performance of point-based data mixture.
Moreover, we analyze the classification results on Model-
Net10 in Figure 4. According to the barchart results, it is easy
to see that cr-WPSM+- has achieved the best performance.
To intuitively demonstrate the performance of crWPSM+,
we also plot the 2D t-SNE embedding [31] results of the
extracted features (i.e. FC2 layer in Figure 2) in Figure 5.
By comparing ctWPSM+ with baseline (i.e. PointNet),
the inter-cluster overlappings of crWPSM+ have reduced a
lot, such as the pink cluster vs. the black cluster, which reveals
that, after data mixture, the features of crWPSM+ becomes
more separated.
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TABLE 4. The ModelNet40 classification results of feature-based data mixture at different layers of the adopted deep network.

20

PointNet(vanilla):87.45

PointNet: 89.08

Layers
WMP  WMP+ cPSM  PSM  coPSM | WMP  WMP+ cPSM  1PSM  crPSM
Convl  88.87 89.32 88.79  89.04 88.23 89.52 89.81 89.12  89.28 89.36
Conv2  89.20 88.83 88.59  88.40 88.27 89.28 89.04 89.69  89.16 89.20
Conv3  88.96 88.92 88.79  89.20 88.27 89.85 89.81 89.44  89.16 88.92
Conv4  89.16 89.32 88.92  89.04 88.55 89.16 89.40 89.69  89.48 89.73
Conv5  89.28 89.32 89.00 89.12 88.75 89.80 89.40 89.73  89.28 89.48
FCl 89.24 89.04 88.83  88.63 88.83 89.40 89.04 88.59  89.06 89.44
FC2 87.70 87.78 8721 87.21 87.29 88.71 88.75 88.92  88.71 89.04

40

C. RESULTS OF FEATURE-BASED DATA MIXTURE

In this section, we discuss the performance of feature-based
data mixture. We test data mixture at intermedia layer (i.e.
middle-level feature or high-level feature) Z of the deep
network shown in Figure 2 from Convl layer to FC2 layer
based on the pretrained PointNet(vanilla) or PointNet.

We first present our initial results on ModelNet10 in
Table 3 based on the pretrained PointNet (vanilla) network.
According to each line of the table, we find that: (1) WMP+
performs better than WMP in most cases; (2) the overall
performances of WMP and WMP+ outperform cPSM, rPSM
and crPSM; (3) crPSM has achieved the best performance
on Conv5, FC1 and FC2 layers; and (4) all the data mix-
ture results have improved the baseline accuracy rate (i.e.
91.51%).

In Table 4, we present our results on ModelNet40 dataset
by using both PointNet(vanilla) and PointNet as baselines,
respectively. According to each line of this table, we observe
that: (1) with PointNet(vanilla), WMP+ outperforms WMP
in most cases; (2) with PointNet(vanilla), the overall per-
formances of WMP and WMP+ outperform cPSM, rPSM
and crPSM; (3) with PointNet, WMP+, WMP, cPSM, rPSM
and crPSM have comparable performances; (4) all the results
can improve the corresponding baselines in most cases from
Convl to Conv5 layers, but it is not the case for FC1 and
FC2 layers, especially for PointNet; (5) the performance lift
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is higher for PointNet(vanilla) than that of PointNet; and (6)
the results in Table 4 is in consistent with Table 3.

The above results reveals that we can improve the per-
formance of PointNet(vanilla) and PointNet by mixing data
at convolutional layers (e.g. Convl, Conv2, Conv3, Conv4,
Conv5 as middle-level features), but it may become harder
for the high-level features (e.g. FC1 and FC2). The reason
may lie in that, at the final FC layers (or the high-level
global features), there does not exist enough nonlinear space
for representative feature learning. Although the best results
of the feature-based data mixture (i.e. WMP: 89.85%) is
slightly superior to the best point-based data mixture method
(i.e. crWPSM+: 89.77%) on ModelNet40, the feature-based
method requires to pretrain a basic network in ahead of using
the mixed data for training, which is more complex than the
point-based mixture method.

D. DISCUSSION

According to the experimental results, one can see that data
mixture works positively for 3D point cloud data, because
that we can improve the recognition performance by mixing
pairwise point-based data and pairwise feature-based data.
The point-based data mixture is easier to realize compared
with the feature-based data mixture. Thus, we suggest to use
the point-based data mixture for 3D point cloud. We also
find that it would be easier to improve the performance of
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FIGURE 6. Representative examples of 3D point cloud retrieval on ModelNet40 dataset. The first column shows the query input point cloud shapes, and
the corresponding shapes on the right of each line show the top10 retrieved results. The shapes in red boxes are error results.

simple networks by comparing PointNet(vanilla) and Point-
Net, which means that the extra networks (e.g. transformer
network) adopted in PointNet may have the function of data
regularization and data mixture may produce limited effects.

Further, we extract PointNet feature (FC2 layer) depend-
ing on point-based data mixture to perform 3D point cloud
retrieval on ModelNet40. In Figure 6, we plot some represen-
tative retrieval results and it is easy to see that our results are
very promising by automatically picking up intra-class shapes
from the dataset. Although there are some error results (see
the last line of Figure 6), one can observe that the shapes of
the error results are quite similar to the query input, which
can be contributed to the inter-class similarity of point cloud
without structured information.

VI. CONCLUSION

This paper has revisited 3D point cloud recognition from the
viewpoint of data mixture. In order to verify whether data
mixture works for 3D point cloud, we have designed two dis-
tinct ways of performing data mixture for training deep net-
work. We first present point-based methods for data mixture
and then discuss the feature-based data mixture methods. Our
experimental results show that both kinds of mixture methods
can help to improve the performance of 3D point cloud
recognition, where point-based data mixture is more practical
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without additional operations. In conclusion, we have verified
that data mixture-based method could improve the perfor-
mance of shape recognition, but the performance gain may be
restricted to the deep models or the mixture methods. In the
future work, we would study more effective data mixture
methods to improve the discriminative ability of shape fea-
tures and classifiers for point cloud recognition.
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