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ABSTRACT This paper takes a system view and studies a wireless queueing system where heavy-tailness
may occur both at the traffic arrival and in the form of themulti-user interference.With the rapid development
of AI technologies, this heavy-tailed traffic model has become more prevalent in the current network system,
such as the file or data size used in the deep learning algorithm. We first re-visit the standard asymmetric
queueing system with a mix of heavy-tailed and light-tailed traffic, but under a new variable-rate service
model that not only better models the dynamics of the wireless medium but also includes the previous models
as special cases.We then focus on the scheduling problemwhen heavy-tailed interference disrupts the serving
link. The performance of queueing policies is investigated during an ON/OFF renewal channel process with
heavy-tailed OFF periods, and the expected queue length and the throughput characteristic is studied under
the priority as well as max-weight scheduling policies. The results show that the expected queue length of the
heavy queue cannot be maintained as finite even under the most favorable priority policy. On the other hand,
a priority policy can guarantee the finiteness of an expected queue length for the light queue, but the system
is not throughput optimal any longer. It is further shown that no benefit can be provided by the max-weight
scheduling policy to the light queue for the queue length behavior in a steady-state, though the system is
always throughput optimal.

INDEX TERMS Heavy-tailed interference, queueing analysis, scheduling, artificial intelligence.

I. INTRODUCTION
Scheduling policy is an important problem in a network-
ing area, and we have seen lots of literature for variant
systems, including wireless [1], ad-hoc [2], and multi-hop
networks [3]. In this field, simple traffic models were consid-
ered in early research, such as Poisson or Markov-modulated
processes, as well as simple servicemodels. However, the net-
work traffic nowadays has begun to show strong correlations
and statistical similarity [4]. As these simple traffic mod-
els are not enough [5], heavy-tailed distributions have been
adopted to model such traffic in networking area. In these
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packetized networks, the file sizes vary quite significantly,
and data traffic is shown to bemore bursty. In these packetized
networks, the file sizes vary quite significantly, and data
traffic is shown to be more bursty. For example, with the rapid
development of AI technoglogies [6]–[9], the data size used
in the deep learning algorithm might be heavy-tailed [10].

A majority of the existing scheduling policies
analyses, when heavy-tailed traffic exists, focuses on asym-
metric queueing models, which shows how the system behav-
ior is influenced by heavy-tailed traffic. In these models,
there is generally a mix of heavy-tailed and light-tailed
traffic [11]–[13], which can describe the heterogeneous traf-
fic types in the network. Regarding the performance metric,
two criteria are often considered: expected queue length and
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throughput optimality. Throughput is a widely used perfor-
mance metric, since it shows the best performance region
that a scheduling policy can achieve. Second, since the delay
is proportional to the queue length, a finite expected queue
length in the steady-state is preferred whenever possible.

The authors [13] investigate a single-server system
with two parallel wireline queues, where one queue has
heavy-tailed traffic (‘‘heavy queue’’) while the other has
light-tailed traffic (‘‘light queue’’). They show that no
scheduling policy can guarantee the heavy queue’s queue
length asymptotic, and the light queue may act as poorly
as the heavy queue if an inappropriate policy is selected,
including the famous max-weight policy [14]. Based on
this work, [15] obtains the queue length distribution in a
steady-state, and characterizes its tail coefficient for both the
max-weight-α and log-max-weight policies, which prefers
to provide more service to the light queue compared to
the max-weight policy. The authors in [14] prove that
max-weight is throughput optimal. The authors in [16] study
the delay stability of the max-weight policies for more
complex networks. They propose a novel approach that com-
bines the fluid model with either renewal theory (for insta-
bility results) or stochastic Lyapunov theory (for stability
results) in [17]. Recently, the authors [18] have extended
their work to multi-hop networks, and show that the back-
pressure-α policy can stabilize the light flows delay while
the original back-pressure policy cannot, which is similar
to the result for the max-weight policies in the single-hop
case.

In the wireless queueing problems, channel dynamics have
to be considered. The authors in [19] introduce an ON/OFF
channel between the server and the queue, and study both the
max-weight-α and log-max-weight policies. They character-
ize the tail behavior of the queue length in steady-state under
heavy-tailed arrival processes. The same ON/OFF channel
model is also considered in [20], where they study the impact
of heavy-tailed traffic on the response time. Both inter-queue
and intra-queue scheduling choices are considered to opti-
mize the delay, and the analysis shows that the response time
tail of the light queue is sensitive to the intra-queue policy
choice.

All of the aforementioned works have laid the theoreti-
cal foundation for asymmetric queueing models with both
heavy-tailed and light-tailed traffic. However, they may not
be enough when we consider a wireless queueing system.
This is because some unique characteristics for a wireless sys-
tem have not been fully considered in previous studies. First,
the literature only considers channels that are either always
on [13], [15], [16], or can be modeled by some light-tailed
ON/OFF channels, e.g., the time-varying ON/OFF channels
with independent and identically distributed (i.i.d.) Bernoulli
processes [19]. Such channel modeling assumes that the
channel only experiences short time correlations, which
might not be true in reality. A better capture for the wireless
dynamics, such as large-scale and small-scale channel fad-
ing [21] needs to be considered.

Second, the heavy-tailed distributions are only considered
in the traffic model. However, for better understanding the
influence of heavy-tailed distributions in a wireless system,
we should not only consider the traffic arrival, but also the
potential heavy-tailed interference from other users. This is
because of the distinctive property of wireless communi-
cations, that is, the broadcasting nature [21]. As a result,
if the data transmission for one user shows some form of
heavy-tailed behavior [22], it will result in a a heavy-tailed
interference to other users in the systemwhen the interference
is strong.

In this paper, we perform a systematic study on the
impact of heavy-tailed dynamics to the scheduling policies
in a wireless queueing system. First we introduce a gen-
eral variable-rate service model that can be used to study
the standard asymmetric queueing system with a mix of
heavy-tailed and light-tailed distributions for either traffic
arrival or multi-user interference. This new model incorpo-
rates the effect of channel fading and multi-user interfer-
ence, and thus better captures the dynamics of the wireless
medium. We first analyze the model with heavy-tailed traffic
arrivals and general time-varying service rate, and study the
expected queue-length behavior in a steady-state of prior-
ity, max-weight, and max-service-rate scheduling policies.
We then focus on the scheduling problem in the presence
of heavy-tailed interference, which can be modeled by the
proposed variable-rate servicemodel with a heavy-tailedOFF
period to one queue (‘‘heavy queue’’) and light-tailed for the
other (‘‘light queue’’).1 It is shown that the queue length for
the heavy queue is unstable even under the most favorable
priority-for-H policy. Thus, no scheduling policies can guar-
antee the heavy queue’s queue-length stability. Regarding
the light queue, we show that the queue-length distribution
is light-tailed under the priority-for-L policy, but throughput
optimal does not exist anymore. For the max-weight schedul-
ing policy, a threshold-base performance for the light queue
is discovered. If the arrival rate for the light queue is below
some threshold, any scheduling policy can stabilize the light
queue. On the contrary, when the arrival rate to the light queue
is greater than the threshold, the expected queue length in
a steady-state is proven to be infinite under the max-weight
scheduling policy. Hence, no benefit can be provided by the
max-weight scheduling to the light queue in terms of the
steady-state queue-length performance, although the system
is throughput optimal.

To the best of the authors’ knowledge, no result has
been obtained for a wireless network that contains both
heavy-tailed and light-tailed interference. From a method-
ological point of view, the main technical difficulty for this
model comes from the correlation of interference across
time slots, which makes the queue-length behavior no
longer a Markov process. As we will see, the technical-
ity renders the standard tools, such as Lyapunov functions,

1Only priority and max-weight policies are studied for the interference
model, as the max-service-rate policy is not applicable.
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difficult to use. We thus resort to the creation of artificial
queues that can provide delay bounds to the original model,
and use an asymptotic argument to derive the steady-state
results.

The rest of the paper is organized as follows. Section II
shows the system model and some preliminaries. The impact
of mixing heavy-tailed and light-tailed traffic arrival is stud-
ied with a general variable-rate service model in Section III.
We then analyze the performance of priority and max-weight
scheduling policies with heavy-tailed multi-user interference
in Section IV. We conclude the paper in Section V, with a
discussion for future directions.

II. SYSTEM MODEL AND PRELIMINARIES
A. DEFINITIONS
We first show some relevant definitions, which will be exten-
sively used in the remainder of this paper.
Definition 1 (Heavy-Tailness): A nonnegative random

variable X is called heavy-tailed if E[X2] = ∞. It is
light-tailed otherwise.

Wenote that there are different definitions of heavy-tailness
in the literature. For example, light-tailed is sometimes
defined if the random variable is of exponential type,
and heavy-tailed otherwise. Our definition is the same
as [16], [23].
Definition 2 (Tailed Coefficient): The tailed coefficient C

of a nonnegative random variable X is defined as C =
min{C ∈ R+|E[XC ] = ∞}.
Definition 3 (Rate Stability): A queue Q(t) is stable if

lim
t→∞

Q(t)
t
= 0 with probability 1.

Based on the queueing theorem, a queue is stable if and
only if the mean service rate is greater than the mean arrival
rate.
Definition 4 (Capacity Region): The capacity region of a

queueing system with K queues is the rate region where the
mean rate tuple (λ1, · · · , λK ) is stably supportable, i.e., the
queues can be stable for some scheduling policy. Here λi
denotes the mean arrival rate for queue i, i ∈ {1, · · · ,K }.
Definition 5 (Throughput Optimality): We call a schedul-

ing policy throughput optimal if the queues can be sta-
bilized when the mean rate tuple is within the capacity
region.
Definition 6 (Stable-State Queue Length): A queueQ(t) is

stable and its stable-state queue length is defined as

q = lim
t→∞

E[Q(t)].

B. THE WIRELESS QUEUEING SYSTEM MODEL
In this section, we introduce the general service-rate queueing
model. We consider a time-slotted wireless system with a
single server and two parallel queues H and L, as illustrated
in Figure 1. The server can serve at most one queue at
a time and the service rate is a normalized 1 packet per

FIGURE 1. The general asymmetric parallel queueing model with traffic
arrivals of two queues and time-varying wireless channels.

time slot.2 Both queues are assumed to have infinite buffer.
We denote the queue lengths as QH (t) and QL(t), and their
arrival processes AH (t) and AL(t), respectively, where Ai(t) is
the number of packets arriving at queue i in time slot t , i ∈
{H ,L}. We further use qH and qL to denote the steady-state
queue length when they exist. We assume that the arrival
process Ai(t) is stationary with mean λi and tail coefficient
Ci, i ∈ {H ,L}. All arrivals are assumed to be i.i.d. over time
and of each queue, and occur at the end of each time slot.
We will refer to queue H and L as the ‘‘heavy queue’’ and
‘‘light queue’’, respectively, although the heavy-tailed and
light-tailed distributions may refer to either traffic arrival or
channel OFF period, depending on the context.

Both queues are connected to the server via wireless
time-varying channels, which fluctuate over time according
to some random processes. In practice, this fluctuation may
be due to channel noise or other interference in the wire-
less medium. Specifically, we denote the wireless channel
between queue i and server at time t asGi(t), which is station-
ary with mean gi, i ∈ {H ,L}. Correspondingly, the available
service rate, which is determined by a combination of the
service rate and the channel state, is a time-varying random
process and denoted as Si(t) for i ∈ {H ,L}. We assume
that Si(t) is stationary, has mean si, and has support Ri, i ∈
{H ,L}. The variable service rate processes SH (t) and SL(t)
are independent of the arrival processes and of each other.
We assume that the channel conditions, or equivalently the
service rates, are known by the queues before the scheduling
decision. Note that the channel states may not be i.i.d. over
time, which is particularly suitable when the interference is
persistent. This is a case that will be considered in Section IV.

III. HEAVY-TAILED TRAFFIC ARRIVALS
We first analyze the general variable-rate service model of
Section II with a mix of heavy-tailed and light-tailed traffic
arrival distributions. To that end, we further assume that the
arrival processes to the L (H ) queue, AL(t) (AH (t)), is light-
tailed (heavy-tailed) according to Definition 1. When the
scheduler chooses to serve queue i, the service rate is a
random process Si(t), which is i.i.d. over time and across
queues. We assume that both SH (t) and SL(t) are light-tailed,

2The service rate can be a random process in our model. Since we also
consider the random channel variations, such service rate randomness can
be absorbed into the channel variation, while keeping a normalized packet
rate.
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FIGURE 2. The capacity region 3 of the heavy-tailed traffic arrival model
with p0 = 0.3,p1 = 0.7 and r0 = 0.2, r1 = 0.5, r2 = 0.3.

i.i.d. over time, and distributed according to some discrete
distributions with P{SL(·) = k} = pk , k ∈ RL , and
P{SH (.) = j} = rj, j ∈ RH . Obviously, sL =

∑
k∈RL

pkk ,
sH =

∑
j∈RH

pjj.
For this model, the capacity region, according to Defini-

tion 4, can be easily derived and is given by

3 =
⋃
akj∈A
{(λH , λL)}|0 < λL <

∑
k∈RL

∑
j∈RH

akjpkrjk,

0 < λH <
∑
k∈RL

∑
j∈RH

(1− akj)pkrjj}, (1)

where

A , {akj : ak0=1, a0j=0, 0 ≤ akj ≤ 1,∀k ∈ RL , j ∈ RH }.

(2)

The boundary of the capacity region consists of a piecewise
linear curve. Let (3L ,3H ) denote a boundary point of the
capacity region, then we have that 0 < 3L < sL . Moreover,
for a given 3L , we can determine the corresponding 3H by
solving the following linear programming problem:

maximize
{akj}

∑
k∈RL

∑
j∈RH

(1− akj)pkrjj

subject to
∑

k∈RL

∑
j∈RH

akjpkrjk = 3L

ak0 = 1, ∀k ∈ RL

a0j = 0, ∀j ∈ RH

0 ≤ akj ≤ 1, ∀k ∈ RL , j ∈ RH . (3)

A pictorial illustration of the capacity region is shown as
the gray area in Fig. 2.

A. PRIORITY FOR H
In this policy, the scheduler selects queue H as long as
SH (t)QH (t) > 0, and serves queue L in other scenarios.
Note that the policy does not need to know either the actual
queue length or the service rate, only that they are nonzero.

Again, this represents the best-case scenario for the heavy
queue, and the steady-state queue length analysis will shed
light into the behavior of the heavy queue. We have the
following result.
Proposition 1: Under the priority-for-H scheduling pol-

icy, the heavy queue is stable and qH = ∞.
Proof: It is equivalent to proving

lim
t→∞

E[QH (t)] = ∞.

The main idea behind the proof is to consider the renewal
intervals that commence at the beginning of each busy period
of queueH . Define the renewal reward processR(t) = QH (t).
We have

lim
t→∞

E[R(t)] =
E[R]
E[T ]

,

from the key renewal theorem, where E[R] denotes the
expected reward accumulated over a renewal interval, and
E[T ] < ∞ is the mean renewal interval. It is therefore
enough to show that

E[
T∑
t=0

QH (t)] = ∞. (4)

To prove Eqn. (4), let us condition on the busy period com-
mencing at time 0 with a burst of size b to queue H . After
this instant, assuming for the sake of a lower bound that there
are no further bursts arriving at queue H , then with high
probability, queue H drains at rate sH . So the reward is at
least O(b) for O(b) time slots. Thus, for some constant K ,

E[
T∑
t=0

QH (t)] ≥ E[Kb · b] = E[Kb2] = ∞,

where the last expectation is infinite because the initial burst
size has tail coefficient CH that is smaller than 2.

B. PRIORITY FOR L
The priority-for-L policy is similarly defined as
Section III-A. We have the following main result.
Proposition 2: Under the priority-for-L scheduling policy,

the following statements hold:
1) If λH > (1− λL/sL + p0λL/sL)sH , the heavy queue is

unstable, and no steady-state exists.
2) If λH < (1− λL/sL + p0λL/sL)sH , the heavy queue is

stable, and qH = ∞.
3) The light queue is stable and qL <∞.
Proof: For the light queue, we can prove qL < ∞ by

considering the Lyapunov function

VL(QL(t)) =
1
2
Q2
L(t).

Expanding the term E[VL(QL(t + 1))|QL(t)] at QL(t),
we have:

E[VL(QL(t + 1))|QL(t)]

= E[
1
2
(QL(t)+ AL(t)−min{QL(t), SL(t)})2|QL(t)]
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= VL(QL(t))+ E[AL(t)− SL(t)

+ max{0, SL(t)− QL(t)}|QL(t)]QL(t)

+E[(AL(t)−min{QL(t), SL(t)})2|QL(t)]

≤ VL(QL(t))+ (λL − sL)QL(t)

+E[max{0, SL(t)− QL(t)}|QL(t)]QL(t)

+E[A2L(t)+ S
2
L(t)|QL(t)]

≤ VL(QL(t))+ (λL − sL)QL(t)+ E[S2L(t)]

+E[A2L(t)+ S
2
L(t)].

Since AL(t) and SL(t) are both light-tailed, we have
E[A2L(t)] < ∞ and E[S2L(t)] < ∞. Hence, there exists a
positive constant b such that

E[VL(QL(t + 1))|QL(t)]≤VL(QL(t))+(λL − sL)QL(t)+ b.

(5)

Therefore, using the Lyapunov theory, we can add up inequal-
ities (5) over all t ∈ {0, 1, . . . ,T − 1} and divide by T , and
then we have:

qL ≤
b

sL − λL
<∞.

For the heavy queue, it can be served only when SL(t) = 0
or when SL(t) > 0 but QL(t) = 0. Since the light queue has a
finite expected queue length, according to Little’s Theorem,
we have that

P{QL(t) = 0} = 1−
λL

sL
.

Therefore, the average service rate of H is

p0sH + (1− p0)(1−
λL

sL
)sH = (1− λL/sL + p0λL/sL)sH

almost surely, which is equivalent to
∑

k∈RL ,j∈RH
(1 −

akj)pkrjj when a0j = 0, ak0 = 1, akj =
λL
sL
.

However, when 3L = λL , we have

3H = max
akj∈A
{

∑
k∈RL

∑
j∈RH

(1− akj)pkrk j|∑
k∈RL

∑
j∈RH

akjpkrjk = λL},

from the capacity region (1). By choosing a0j = 0, ai0 = 1
and aij =

λL−sL r0
(1−r0)sL

, we know
∑

k∈RL

∑
j∈RH

akjpkrjk = λL

is satisfied. Also, since λL−sL r0
(1−r0)sL

< λL
sL
, we have

3H ≥
∑
k∈RL

∑
j∈RH

(1−
λL − sLr0
(1− r0)sL

)pkrjj

>
∑
k∈RL

∑
j∈RH

(1−
λL

sL
)pkrjj

≥ (1− λL/sL + p0λL/sL)sH ,

which means that there must exist a rate pair {λL , λH } in the
capacity region that satisfies λH > (1−λL/sL+p0λL/sL)sH .
In this case, the heavy queue is unstable, and no steady-state

exists. As a result, the priority-for-L policy is not throughput
optimal.

If λH < (1 − λL/sL + p0λL/sL)sH , then qH is stable.
However, the expected queue length of queue H is infinite
even under the priority-for-H policy, so it will remain infinite
under the priority-for-L policy.
Proposition 3: Under any nonidling scheduling policy,

if λL < sLr0, then qL <∞.
Proof: Suppose queue L is only served when event

{SH (t) = 0} occurs. Since SH (·) and SL(·) are both i.i.d.
and SL(·) is light-tailed, we can derive that the service rate of
queue L (denoted as SLe) in every time slot is light-tailed with
mean sLr0. Precisely, P{SLe = 0} = 1 − r0 + r0p0, P{SLe =
k} = r0pk for k ∈ RL . Therefore, as in Proposition 2,
if λL < sLr0, we can similarly prove that E[qL] < ∞.
Moreover, the service opportunity is always offered to queue
L when SH (t) = 0, no matter what policy it is. Therefore,
if λL < sLr0, E[qL] < ∞ holds under any nonidling
scheduling policy.

C. MAX WEIGHT
The max-weight policy, unlike the priority policies, makes
use of the queue length information at each time slot. Hence,
we assume that the scheduler knows QH (t) and QL(t) in
addition to the service rate information SH (t) and SL(t). More
precisely, the scheduler compares

SH (t)QH (t) ≷ SL(t)QL(t)

and chooses to serve the queue that wins the competition.
For the max-weight policy, the following result states that

the steady-state queue length will be infinite for large λL .
Proposition 4: Under max-weight scheduling with a

bounded service rate SL(.) ≤ SLmax for queue L, if λL >

sLr0, then E[QL] = ∞.
Proof: Conditioning on the busy period commencing

with a burst of size b at the heavy queue,QH (t) > SLmaxQL(t)
is almost surely satisfied. Therefore, the heavy queue will
drain at a rate of at most sH with high probability, and the
light queue will build up at a rate of λL − sLr0 with high
probability. In order to get more service than sLr0, queue L
will at least build up toO(b) level. After that, the two queues
drain together, with most of the slots being used to serve
queue H . Since queue H drains at most by O(b), queue L
stays at O(b) level for at least O(b) time slots. Therefore,
we have

E[
T∑
i=0

QL(i)] ≥ E[Kb · b] = E[Kb2] = ∞,

where T is the renewal interval of queue L’s busy period.
Similar to the proof of Proposition 1, we have that
E[QL] = ∞.

D. MAX SERVICE RATE
Themax-service-rate policy is similar to themulti-user diver-
sity scheme [24], [25] and is often used in wireless commu-
nication systems. It chooses to serve the nonempty queue
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that has the highest instantaneous service rate. Specifically,
the scheduler compares SH (t) ·1{QH (t)>0} ≷ SL(t) ·1{QL (t)>0}
and serves the queue that wins the competition.

We characterize the behavior of both queues in Propo-
sition 5. Interestingly, the stability results for both queues
exhibit some threshold effects.
Proposition 5: Under the max-service-rate policy,
1) queue H is heavy-tailed with tail coefficient CH − 1 if

λH < µH , and unstable otherwise;
2) queue L is light-tailed if λL < µL , and unstable

otherwise.
Proof: For queue H , the average service rate is

µH = E[SH |SH ≥ SL]+ P{QL(t) = 0}E[SH |SH < SL]

=

∑
k∈RL

∑
j∈RH

(1− akj)pkrjj,

where a0j = 0, ak0 = 1, akj = P{QH (t) = 0}1k≤j +
P{QL(t) > 0}1k>j. Therefore, similar as in the proof of
Proposition 1, we know if λH < µH , queue H is stable and
has a infinite expected queue length. If λH > µH , queue H
is unstable and no steady-state exists.

For queue L, the average service rate is

µL = E[SL |SH < SL]+ P{QH (t) = 0}E[SH |SH ≥ SL]

=

∑
k∈RL

∑
j∈RH

akjpkrjk,

where a0j = 0, ak0 = 1, akj = P{QH (t) = 0}1k≤j +
P{QL(t) > 0}1k>j. Therefore, similar to the proof of Propo-
sition 2, we can derive that if λL < µL , queue L has a finite
expected queue length. However, if λL > µL , queue L is
unstable and no steady-state exists.

Obviously, {µL , µH } is in the capacity region. Hence,
if 3L = µL , then 3H ≥ µH . Therefore, if 3L < µL , then
3H > µH . As a result, the max-service-rate policy is not
throughput optimal.
Note that this is a general service-rate queueing model,

which not only better models the wireless channel dynamics
but also includes the previous ON/OFF models as special
cases. For the scheduling policies, similar properties hold for
both models.

IV. HEAVY-TAILED MULTI-USER INTERFERENCE
A. A MOTIVATIONAL EXAMPLE
A heterogeneous wireless cellular network is considered,
where femtocells are placed overlaid with macrocells. For
femtocells, such deployment allows them to share the spec-
trum with the macrocell and thus the spectrum utilization
can be improved. A typical scenario is depicted in Figure 3,
where both the macrocell and femtocell have their respective
users. There is a femto user FU1, which is in the interference
range of the macrocell, while another femto user FU2 is not.
Hence, if heavy-tailed traffic is transmitted on the downlink
in the macrocell, such as the log-normal type of distributions
for call durations as reported in [26], FU1 will experience
heavy-tailed interference. While FU2 does not suffer from

FIGURE 3. A motivational example of mix of both heavy-tailed and
light-tailed interference in a heterogeneous cellular network.

TABLE 1. Summary of parameters.

such interference, but may be influenced by some out-of-cell
interference, which is light-tailed.

Denoting the packet processing capability of FUn as Vn(t)
at time t , the femtocell needs to decide how to send each
FU’s packets for them to process, with knowledge of Vn(t),
and/or Qn(t), n ∈ {H ,L}. As we can see, this problem can be
analyzed using the general variable service rate model.

B. ASSUMPTIONS AND PRELIMINARY ANALYSIS
We consider the variable service rate model described in
Section II-B, but only highlight the new assumptions for the
heavy-tailed interference problem in this section. We con-
sider both arrival processes AH and AL to be light-tailed,
as the heavy-tailness is reflected in the channel process
instead of the arrival.3 The Gn is modeled as an ON/OFF
renewal process {On,Un}, with alternating independent ON
period On and OFF period Un, for n ∈ {H ,L}. The process
OH , UL , OL are light-tailed. However, UH is heavy-tailed
because of the heavy-tailed interference. We provide a sum-
mary of these parameters in Table 1.

Similar to [13], [19], when the service rate is 1 packet per
time slot, the capacity region for this model can be character-
ized as:

{(λH , λL)|λH <
a1

a1 + a2
, pH , λL <

a3
a3 + a4

, pL ,

λH + λL < pH + pL − pHpL}. (6)

From (6), we can see that the capacity region is pentagonal,
where an example is shown in Fig. 4. In our analysis, we only

3Amore general approach would be to combine heavy-tailed traffic arrival
with heavy-tailed interference. However, such approach would result in
various combinations of the mixture of heavy-tailed and light-tailed arrival
and interference, which is beyond the scope of this paper.
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FIGURE 4. The capacity region 3 of the heavy-tailed interference model
with λL = 0.8, λH = 0.6.

focus on the case in which the rate pair is in the capacity
region.

In this section, we investigate the scheduling performance
of the heavy-tailed interference system under different poli-
cies. We focus on both priority (for queue H and L) and
max-weight policies in the analysis. The max-service-rate
policy becomes trivial because of the ON/OFF nature of the
channel and the constant service rate. Also, it is clear that a
scheduling policy is only useful in determining which queue
to serve when both GH and GL are ON. As only one channel
is ON and the other is OFF, the queue with the ON channel
should be selected. Furthermore, no queue can be served
when both channels are OFF.

We should emphasize that our model is different from
the existing literature. The main difference is that the
heavy-tailed distribution applies to the OFF period of queue
H ’s channel, instead of the traffic arrival. As a result, some
key differences will be brought about by the heavy-tailed
channel dynamics even if we apply the same scheduling pol-
icy in the new model. Methodologically, Lyapunov functions
are often adopted to deal with this type of problems. However,
this method requires the queue length Qn(t) to be a Markov
process. Note that the one-step queue length evolution can be
written as

Qn(t + 1)=Qn(t)+An(t)− Sn(t)Gn(t)1{Qn(t)>0,n is scheduled}
(7)

whereGn(t) denotes whether channel n is ON. In the previous
models [13], [15]–[20], the channel is either always ON or
the ON/OFF processes are i.i.d. Bernoulli processes. As a
result, (7) satisfies the Markovian requirement. However,
in the heavy-tailed interference model, channel {Gn(t)} is an
ON/OFF renewal process, making Qn(t) no longer a Markov
process.

C. PRIORITY FOR L POLICY
We consider the priority-for-L policy, where queue L is
served as long as it is nonempty and channel GL is ON.

FIGURE 5. An example of the artificial queue L1.

The result for the expected queue length and throughput
optimality is shown as follows.
Proposition 6: Under the priority-for-L policy, the

expected queue length of queue L in steady-state is finite.
However, when λH > pH (1− λL), the system is not through-
put optimal.

Proof: We will first prove that queue L is queue-length
stable. For each OFF period UL of queue L, the cumulative
arrival is AUL =

∑N
i=1 AL(i). The expected value of AUL is

derived by:

E[AUL ] = E[E[AUL |UL = N ]]

= E[E[
N∑
i=1

AL(i)|UL = N ]]

= E[NλL]

= a4λL .

The variance of AUL can be derived as:

Var[AUL ] = E[A
2
UL ]− (E[AUL ])

2

= E[E[A2UL |UL = N ]]− (E[AUL ])
2

= E[E[(
N∑
i=1

AL(i))2|UL = N ]]− a24λ
2
L

= E[N (φL + λ2L)+ N (N − 1)λ2L]− a
2
4λ

2
L

= E[NφL + N 2λ2L]− a
2
4λ

2
L

= a4φL + (a24 + b4)λ
2
L − a

2
4λ

2
L

= a4φL + λ2Lb4.

Since no packet is allowed to be transmitted when the channel
is OFF, the queue L behavior will be the same as a new
artificial queue L1, where we combine the time line only with
the ON periods of queue L and remove all the OFF periods.
The number of arrivals in the first slot of an ON period OL
is assumed to be the sum of the arrivals of the current time
slot and all arrivals in the previous OFF period. We show
an example of the artificial queue L1 in Figure 5. In order
to prove queue L is stable, it is enough to show that arrival
rate for queue L1 is less than 1. The arrivals of queue L1
can be treated as the sum of two flows, AL for each slot
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FIGURE 6. An illustration of the artificial queue L2.

and AUL at the first time slot for each ON period. Denote
ALU (t) = AUL (t) · 1{t is the first time slot of an OL period}, then the
arrival process for queue L1 can be formulated as

AL1 (t) = AL(t)+ ALU (t).

Further, we notice that all the ON periods form a renewal pro-
cess, where the process ALU is as a renewal reward process
associated. From renewal theory [27], the average arrival rate
for ALU is provided by following:

lim
T→∞

[
1
T

∫
AUL · 1t is the first time slot of an OL perioddt]

=
E[ALU ]
E[OL]

=
a4λL
a3

.

Therefore, we obtain the total arrival rate for queue L1, given
by λL+a4λL/a3 = λL(a3+a4)/a3 < 1, where the last holds
because λL <

a3
a3+a4

. Hence, we conclude that queue L1 is
stable, which means that queue L is stable.
Next, we will show that the expected queue length of queue

L in steady-state is finite. A second artificial queue system
L2 with two subqueues L21 and L22 is considered, as depicted
in Figure 6. The arrival for queue L21 is AL and the server’s
service rate is a3

a3+a4
. The other queue L22 has the arrival ALU

at the service rate a4
a3+a4

. We know that the queue length of L1
will be smaller than the sum of the queue length of L21 and
L22, since some service will be wasted if either queue L21 or
L22 is empty. Similarly, we consider another artificial queue
system L23 with the arrival process AUL (t) and the service rate
a4

a3+a4
OL packets per slot. The queue length performance of

queue L22 in anOL period should be identical as that of queue
L23 in any time slot. Therefore, we know that the expected
queue length of queue L22 and L23 should be the same. The
expected queueing delay of the queue L21 and L23, which are
discrete-time Geo/G/1 queues, is provided by [28]:

E[D] =
λ2b2 − λρ + λ2b

2λ(1− ρ)
, (8)

where λ and λ2 are the first and second moment of the arrival
in each slot, b and b2 are the first and second moment of
the service rate for each arrival, and ρ is the traffic intensity.
We can see that the expected queue lengths are finite under
both queue L21 and L23, according to Eqn. (8) and Little’s
Law. Hence, we conclude that the expected queue length of
queue L is finite.
Finally, we will prove that the system is no longer through-

put optimal when λH > pH (1 − λL). For queue H , it can

FIGURE 7. Under the priority-for-L, the queue length QL versus the arrival
rate λL for λH = 0.1 and λH = 0.5, respectively.

FIGURE 8. Under the priority-for-L, the queue length QH versus the
arrival rate λH for λL = 0.1 and λL = 0.5, respectively.

only get service under two conditions:1) when GH is ON and
GL is OFF; or 2) when both GH and GL are ON and queue
L is empty. Since queue L is queue length stable under the
priority-for-L policy, by applying Little’s law, we know that
the fraction of time that queue L is busy is equal to λL

pL
. As a

result, the average service rate of queue H is

µH = pH (1− pL)+ pHpL(1−
λL

pL
) = pH (1− λL).

If λH > pH (1− λL), the average service rate is smaller than
the average arrival rate for queue H . Thus queue H will not
be stable even if the mean rate (λH , λL) is in the capacity
region. Therefore, we conclude that this scheduling policy is
not throughput optimal.
Here we show some simulation results in Fig. 7 and 8.

We randomly generate the traffic arrival AL , AH , channel
ON period OL , OH and channel OFF period UL following
the light-tailed distribution and channel OFF period UH fol-
lowing the heavy-tailed Pareto distribution. Assume that the
expectations are satisfied a1 = a2 = a3 = a4 = 3.
Figure 7 shows the queue length change in QL with λL under
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the priority-for-L for λH = 0.1 and λH = 0.5, respectively.
When λL < 0.5, the queue length of queue L is finite on
both condition. Once λL > 0.5, QL becomes infinite because
λL > pH = a3/(a3+a4) = 3/(3+3) = 0.5. Besides, we plot
the queue length change inQH with λH under the priority-for-
L for λL = 0.1 and λL = 0.5, respectively, in Figure 8. When
λL = 0.1, the queue length of queue H is finite on condition
of λH < pH (1 − λL) = 0.5 * (1 − 0.1) = 0.45. In case of
λH > 0.45, the arrival rate is greater than the average service
rate and QH becomes unstable. The condition of λL = 0.5 is
similar to λL = 0.1 elaborated above.

D. PRIORITY FOR H POLICY
For the priority-for-H policy, the server will serve queue H
whenever it is nonempty and channelGH is ON. Proposition 7
shows a negative result for the expected queue length under
this policy.
Proposition 7: For the priority-for-H scheduling policy,

the expected queue length of queue H in steady-state is
infinite.

Proof: Similar to the previous deduction, for each OFF
period UH of queue H , the cumulative arrival during this
period is given by AUH =

∑N
i=1 AH (i). We can obtain the

mean and variance of AUH as:

E[AUH ] = a2λH ,

and

Var[AUH ] = a2φH + λ2Hb2 = ∞,

respectively. As no packet is allowed to be transmitted during
the OFF period, the queue behavior of queue H will be the
identical as a new artificial queue H1, where the time consists
of the ON periods of queue H , and remove all the OFF
periods. The number of arrivals in the first slot of an ON
period OH is equal to the sum of all arrivals in the previous
OFF period and the arrivals of the current time slot.We denote
AHU (t) = AUH (t) · 1{t is the first time slot of an OH period}. We have
the arrival process of the artificial queue H1 as

AH1 (t) = AH (t)+ AHU (t).

Similarly we consider two artificial queue:H2 with the arrival
process AHU and the service rate 1 packet per time slot;
and H3 with the arrival process AUH and the service rate
OH packets per time slot. The queue length performance of
queue H2 in an OH period should be identical as the queue
length performance of queue H3 in any time slot. Therefore,
the expected queue length of queue H2 should be the same as
H3. Since Var[AUH ] is infinite, the expected queue length of
queue H3 is infinite. As a result, the expected queue length
of queue H2 is also infinite according to Eqn. (8). It is clear
that the expected queue length of queue H1 is greater than
the expected queue length of queue H2, which leads to the
conclusion.

In the system considered above, the priority-for-H policy
is the best one that prefers the heavy queue. We thus claim

FIGURE 9. A schematic illustration of U .

that the expected queue length of queue H is always infinite
under any scheduling policy.

E. MAX-WEIGHT POLICY
For the max-weight scheduling policy, the server compares
the length of QH (t) and QL(t) when both channels are ON,
and serves the longer queue. This subsection is to analyze the
queue length performance under the max-weight scheduling
policy. Because of a technical reason, we assume that the
process OH is always less than some constant OHm .
Proposition 8: For the max-weight scheduling policy,

the expected queue length of queue L in steady-state is:
1) finite, if λL < (1− pH )pL;
2) infinite, if λL > (1− pH )pL .
Proof:

There are four subcases of the channel conditions as
follows:

1) P1 , (1 − pH )(1 − pL), if both GH and GL are OFF,
denoted as case A1;

2) P2 , (1−pH )pL , if GH is OFF and GL is ON, denoted
as case A2;

3) P3 , pH (1− pL), if GH is ON and GL is OFF, denoted
as case A3; and

4) P4 , pHpL , if both GH and GL are ON, denoted as
case A4.

First, we will show that the expected queue length of queue
L is finite only if λL < (1− pH )pL . This is done by proving
that the expected queue length of queue L in steady-state is
finite when queue L get served at A2, that is, the conclusion
holds no matter what scheduling policy is used.

Suppose queue L can only be served at A2. Define U as
the time duration between two successive A2’s. As queue L
cannot be served during U , we know that OL occurs only in
the OH period, rather than in the UH period. An illustration
of U is shown in Figure 9.

Clearly, for each OL that occurs during U , we have

OL(i) < OHm .

Since each OL(i) is i.i.d., we have

P[OL(i) ≤ OHm ] = P[OL ≤ OHm ] , p0.

We use N to denote the number of time slots that OL occurs
during U , then we can obtain that

P[N = n] ≤ P[OL(1) ≤ OHm , · · · ,OL(n) ≤ OHm ]
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=

n∏
i=1

P[OL(i) ≤ OHm ]

= pn0.

Thus we have

E[N ] ≤
∞∑
n=0

npn0 =
p0

(1− p0)2
,

E[N 2] ≤
∞∑
n=0

n2pn0 =
p0(p0 + 1)
(1− p0)3

.

We can show that

0 < U ≤
N∑
j=1

OL(j)+
N+1∑
k=1

UL(k).

Hence, the mean and variance of U satisfy

m , E[U ]

≤ E[
N∑
k=1

OL(k)+
N+1∑
k=1

UL(k)|N = n]

= E[a3 · n+ a4 · (n+ 1)]

= a4+ (a3 + a4)E[N ]

≤ a4+ (a3 + a4) ·
p0

(1− p0)2
< ∞,

and

σ 2 , Var[U ]

= E[U2]− E[U ]2

≤ E[(
N∑
k=1

OL(k)+
N+1∑
k=1

UL(k))2|N = n]− m2

= E[n(b3 + a23)+ n(n− 1)a23 + (n+ 1)(b4 + a24)

+ (n+ 1)na24 + 2n(n+ 1)a3a4]− m2

= E[n2(a24 + a
2
3 + 2a3a4)+ n(b3 + b4 + 2a24

+ 2a3a4)+ a24 + b4]− m
2

= (a24 + a
2
3 + 2a3a4)E[N 2]+ (b3 + b4 + 2a24

+ 2a3a4)E[N ]+ a24 + b4 − m
2

≤ (a24 + a
2
3 + 2a3a4)

p0(p0 + 1)
(1− p0)3

+ (b3 + b4 + 2a24

+ 2a3a4)
p0

(1− p0)2
+ a24 + b4 − m

2

< ∞.

In each U , we have the cumulative arrival is AU =∑U
i=1 AL(i). Similar to the proof of Proposition 6, we can

obtain the mean and variance of AU as

E[AU ] = mλL ,

Var[AU ] = mφL + λ2Lσ
2.

Because packets can only be transmitted during A2, the queue
behavior of queue L will be identical to a new artificial

queue L3, where the time line only consists of the A2 peri-
ods without all other periods. Denote AU2(t) = AU (t) ·
1{t is the first time slot of an A2 period}. The arrival process of queue
L3 can be written as

AL3 (t) = AL(t)+ AU2(t).

Also we notice that all packets arriving at queue L arrive at
queue L3, with the only exception that they arrive in shorter
periods. Let T2 denote as the time period of A2, and T0 as the
time period between the first slot of A2 and the last slot before
the next A2. Then we have

T2∑
i=1

AL3 (i) =
T0∑
i=1

AL(i).

Since P2 = E[T2/T0], we have

E[AL3 ] = E[AL]/P2 =
λL

P2
< 1

This proves that queue AL3 is stable. We also have

E[AU2] = E[AL3 ]− E[AL] =
λL

P2
− λL < 1− P2.

Next, wewill prove that the expected queue length of queue
L3 is finite. We consider a second artificial queue system L4
with two subqueues L41 and L42. The arrival process of queue
L41 is AL and the server’s service rate is P2. The other queue
L42 serves the arrival AU2 and the rate is 1 − P2. We also
consider another artificial queue L43 with the arrival process
AU and the service rate A2 packets per slot. The queue length
performance of queue L42 in an A2 period and the queue
length of queue L43 in any time slot should be the same.
Hence, we know that the expected queue length of queue L42
and L43 should be identical.

The expected queueing delays of queue L41 and L43 are
both finite according to Eqn. (8). Combinedwith Little’s Law,
we conclude that the expected queue lengths of queue L41 and
L43 are finite. Note that the actual queue length of queue L3
will be smaller than the summation of queue L41 and L42,
since some service will be wasted if either queue L41 or L42
is empty. Hence, the expected queue length of queue L3 is
finite, and as a result the expected queue length of queue L is
finite.

Then we will study the case λL > (1 − pH )pL . In this
subcase, queue L has to contend for another λL −P2 fraction
of time from sub-case 4 in order that the average service rate
is greater than the average arrival rate. Now we consider a
packet arrives at queue L at time slot τ , the queueing delay
of this packet is denoted as WL(τ ). We notice that WL(τ )
consists of four parts, T1, T2, T3, T4, denoting the number
of slots for the four sub-cases. We consider the condition
QH (τ ) > QL(τ ). The scenario with best delay performance
occurs when no packet arrives at queue H after time slot τ .
The scheduling policy keeps selecting queue H until both
queue lengths become equal, and then queue L is scheduled
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when it is available. We denote T as the least time such that
QL(τ + T ) > QH (τ + T ). Then, we have

(WL(τ )− T )1{t∈A2∪A4} ≥ QL(τ ),

∀ t ∈ (τ + T , · · · , τ +WL(τ )).

By taking expectation on both sides conditioned on the event
0 , {QH (τ ) > QL(τ )}, we have

E[(WL(τ )− T )|0]P(t ∈ A2 ∪ A4) ≥ E[QL(τ )|0],

which means that

E[(WL(τ )− T )|0] ≥
1

P2 + P4
E[QL(τ )|0]. (9)

Notice that T must satisfy the following:

QL(τ )+
T∑
k=0

AL(τ + k)− T2 ≥ QH (τ )− T3 − T4.

Again taking the conditional expectation on both sides,
and together with the ergodic property of T2, T3, T4,
we have

E[
T∑
k=0

AL(τ + k)+ (P3 + P4 − P2)T |0]

≥ E[QH (τ )− QL(τ )|0].

Because T is a stopping time, according to the Wald’s equa-
tion, we have

E[T |0] ≥
1

λL + P3 + P4 − P2
E[QH (τ )− QL(τ )|0]. (10)

Substituting (10) into (9), we have

E[WL(τ )|0]

≥
1

λL + P3 + P4 − P2
E[QH (τ )− QL(τ )|0]

+
1

P2 + P4
E[QL(τ )|0]

=
1

λL + P3 + P4 − P2
E[QH (τ )|0]+ (

1
P2 + P4

−
1

λL + P3 + P4 − P2
)E[QL(τ )|0]

≥
1

λL + P3 + P4 − P2
E[QH (τ )|0]+ (

1
P2 + P4

−
1

P3 + P4
)E[QL(τ )|0].

If
1

P2 + P4
−

1
P3 + P4

> 0,

we have

E[WL(τ )|0] >
1

P3 + P4
E[QH (τ )|0] = ∞, (11)

which concludes that the expected queue length of queue L is
infinite based on Little’s Law.

Otherwise,

(
1

P3 + P4
−

1
P2 + P4

)E[QL(τ )|0]+ E[WL(τ )|0]

≥
1

P3 + P4
E[QH (τ )|0]. (12)

Again from Little’s Law, we have

E[WL(τ )] =
1
λL
E[QL(τ )].

Now, if E[QL(τ )] is infinite, we obtain the conclusion
directly. Otherwise,E[QL(τ )|0] is finite ifE[QL(τ )] is finite.
We denote V as an upper bound for E[QL(τ )|0]. We can
rewrite (12) as

E[WL(τ )|0]

≥
1

P3 + P4
E[QH (τ )|0]− (

1
P3 + P4

−
1

P2 + P4
)V

≥ E[QH (τ )|0]− (
1

P3 + P4
−

1
P2 + P4

)V . (13)

Next, we consider the event 0c = {QH (τ ) ≤ QL(τ )}.
It follows that

E[WL(τ )|0c] ≥ E[QH (τ )|0c]

≥ E[QH (τ )|0c]− (
1

P3 + P4
−

1
P2 + P4

)V . (14)

Combining (13) and (14), we have

E[WL(τ )] ≥ E[QH (τ )]− (
1

P3 + P4
−

1
P2 + P4

)V . (15)

From Proposition 6, we haveE[QH (τ )] is infinite. Therefore,
the expected queue length of queue L is infinite by Little’s
Law and (15), when λL > (1 − pH )pL . This concludes the
proof.

V. CONCLUSION
The scheduling policies are studied in a wireless system
with both heavy-tailed and light-tailed dynamics, which may
come from either traffic arrivals or multi-user interference.
For heavy-tailed traffic arrivals, we studied a more gen-
eral variable-rate service model, in which channel dynamics
(as opposed to simple ON/OFF) are incorporated. We then
focused on the more challenging heavy-tailed multi-user
interference problem, and found that the heavy queue has an
unstable queue length asymptotic, which cannot be guaran-
teed by any scheduling policies. Regarding the light queue,
we proved that the priority-for-L policy can stabilize its queue
length, though not throughput optimal any more. Max-weight
scheduling is throughput optimal but cannot provide the
queue length stability for the light queue. Furthermore, there
exists a threshold effect for the light queue. When the traffic
arrival rate for the light queue is less than the threshold,
its queue length will be light-tailed under any scheduling
policy. Neither the priority nor max-weight policy provides
a satisfying queueing performance for the considered model
with heavy-tailed interference. Some prior study [19] has
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shown that revised max-weight policies, including log-max-
wight and max-weight-α, can guarantee better performance
for heavy-tailed traffic arrivals. We will investigate these
scheduling policies under heavy-tailed traffic interference in
the future work.
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