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ABSTRACT Recently, in the paper [Z.G. Huang, L.G. Wang, Z. Xu, J.J. Cui, Some new preconditioned
generalized AOR methods for solving weighted linear least squares problems, Computational and Applied
Mathematics, 37(2018) 415–438.], Huang et al, by using the generalized accelerated over-relaxation (GAOR)
methods, proposed some new preconditioners for solving weighted linear least squares problems and discuss
their comparison results. In this paper, we present a new model of GAOR methods to solve the weighted
linear least squares problems. We prove that the new model is superior to the existing mentioned methods.
Numerical examples are also reported to confirm our theoretical analysis.

INDEX TERMS Preconditioned GAOR method, weighted linear least squares problems, linear system,
convergence, comparison theorem.

I. INTRODUCTION
Let us consider the weighted linear least squares problem
(WLLSP):

min
x∈Rn

(Ax − b)TW−1(Ax − b) (1)

where,W is the variance–covariance matrix; (see [1]–[4] and
references therein).

Least squares (LS) method for resolving linear equation
systems and WLLSP as a generalization of the LS arises in
many practical applications including linear programming,
convex quadratic programming, linear regression, geodetic
symmetrical transformations, electrical networks, boundary
value problems, analysis of large-scale structures and the
inequality constrained least squares problems [4]–[8]. For
solving this problem, we can solve a linear system as follows:

Hy = f , (2)

where,

H =
[
(I − B)p×p (U )p×(n−p)
(L)(n−p)×p (I − C)(n−p)(n−p)

]
,

is a nonsingular matrix with B = (bij)p×p, C = (cij)q×q, L =
(lij)q×p, U = (uij)p×q, q = n− p, and I is an identity matrix.

The basic stationary iterative method to solve the system
of linear equations Ax = d , with any splitting, A=M-N that
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det(M ) 6= 0 is as follows:

x(t+1) = M−1Nx(t) +M−1b. t = 0, 1, . . . (3)

where, M−1N is called the iteration matrix. This iterative
scheme converges to the unique solution if and only if
ρ(M−1N ) < 1, where ρ(A) is the spectral radius of A.
Based on the model of Eq. (3), there are some popular iter-

ative methods; see [9]–[18] and references therein. However,
if we solve Eq. (2) by the model of Eq. (3), we need the
inverses of I − B and I − C , which is the main drawback
of these methods.
To solve Eq. (2), Yuan and Jin [3] proposed the generalized

AOR (GAOR) method for solving the WLLSP. Consider the
following splitting for the matrix H :

H = D− CL − Cu = D (I − L − U) ,

where, D = diag(H ), and CL and Cu are strictly lower and
upper triangular matrices of H , respectively. Now, to solve
the Eq. (2) using the GAOR method, the matrix H is split as;

H = (I )n×n −
[

(0)p×p (0)p×(n−p)
(−C)(n−p)×p (0)(n−p)(n−p)

]
−

[
(B)p×p (−U )p×(n−p)

(0)(n−p)×p (K )(n−p)(n−p)

]
. (4)

Then, for w 6= 0, the GAOR method is as follows:

y(t+1) = µw,ry(t) + wg. t = 0, 1, . . . (5)
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where,

µw,r = M−1N =
[
I1 0
rC I2

]−1
︸ ︷︷ ︸

M−1

×

(
(I − w)I+(w− r)

[
0 0
−C 0

]
+w

[
B −U
0 K

])
︸ ︷︷ ︸

N

,

(6)

I1 and I2 are identity matrices of orders (p) and (n-p) respec-
tively, and:

g =
[

I1 (0)p×(n−p)
−rC I2

]
f .

Recently, several scholars established numerous models to
solve WLLSP [19]–[26]. Very recently, Huang et al. [26], to
decrease the spectral radius of µw,r , presented some models
of the preconditioned GAOR method. These authors, using
the splitting of Eq. (4), presented two preconditioning models
as follow:

Consider the preconditioner form of Eq. (2) as:

H̄y = f̄ ,

where H̄ = (I + S̄)H and f̄ = (I + S̄)f with;

(I ) S̄ =
[
Wi (0)p×(n−p)
Ki (0)(n−p)(n−p)

]
, i = 1, 2, (7)

where Ki is a q× p matrix and the form of K1 is as follows:

K1 =


−µ1l11 0 . . . 0
−µ2l21 0 . . . 0
...

...
...

−µqlq1 0 . . . 0

 , (8)

Also, for K2:
If q< p, then:

K2 =


−ν1l11 0 . . . 0 0 0 . . . 0

0 −ν2l22 . . . 0 0 0 . . . 0
...

...
. . .

...
...
...

...
...

0 0 . . . −νqlqq 0 0 . . . 0

 . (9)

If q = p, then:

K2 =


−ν1l11 0 . . . 0

0 −ν2l22 . . . 0
...

...
. . .

...

0 0 . . . −νqlqq

 . (10)

If q > p, then:

K2 =



−ν1l11 0 . . . 0
0 −ν2l22 . . . 0
...

...
. . .

...

0 0 . . . −νqlqq
...

... . . .
...

0 0 . . . 0


. (11)

And,

W1 =


0 0 . . . 0

γ2b21 0 . . . 0
...

...
...

γpbp1 0 . . . 0

 ,

W2 =


0 0 . . . 0 0

δ2b21 0 . . . 0 0
0 δ3b32 . . . 0 0
...

...
...

...

0 0 . . . δpbp,p−1 0

 (12)

for µi, νi, γi, δi > 0, i = 2, . . . , p.
Then, the preconditioned matrix with the precondi-

tioner (7) can be decomposed by the following splitting

H̄i = I −
[
(0)p×p (0)p×(n−p)
−L̃i (0)(n−p)(n−p)

]
−

[
B̃i −Ũi

(0)(n−p)×p C̃i

]
,

(13)

where, B̃i = B−Wi(I−B), Ũi = (I+Wi)U , L̃i = L+Ki(I−B)
and C̃i = C − KiU .
Furthermore, its iteration matrix defined as:

µ̃w,r

= M̃−1Ñ =
[
I1 0
rL̃i I2

]−1
︸ ︷︷ ︸

M̃−1

×

(
(I − w)I + (w− r)

[
0 0
−L̃i 0

]
+ w

[
B̃i −Ũi
0 C̃i

])
=

[
(1− w)I1 + wB̃i −wŨi

w(r − 1)L̃i − wrL̃iB̃i (1− w)I2 + wC̃i + wrL̃iŨi

]
.

(14)

Also, the second class of preconditioner is;

(II ) S̄ =
[

Si (0)p×(n−p)
(0)(n−p)×p Vi

]
, i = 1, 2. (15)

where for αi, βi, τi, σi > 0;

S1 =



0 α2b12 · · · 0 0

β2b21 0
. . . 0 0

...
. . .

...
. . .

...

0 0
. . . 0 αpbp−1,p

0 0 . . . βpbp,p−1 0


(16)

S2 =


0 α2b12 · · · αpb1p

β2b21 0 · · · 0
...

...
. . .

...

βpbp1 0 · · · 0

 (17)
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V1 =



0 τ2c12 · · · 0 0

σ2c21 0
. . . 0 0

...
. . .

...
. . .

...

0 0
. . . 0 τqcq−1,q

0 0 . . . σqcq,q−1 0


(18)

V2 =


0 σ2c12 · · · σqc1q

σ2c21 0 · · · 0
...

...
. . .

...

σqcq1 0 · · · 0

 (19)

Then, the preconditioned matrix with preconditioner (15) can
be decomposed by the following splitting:

H̄i = I −
[
(0)p×p (0)p×(n−p)
−L̂i (0)(n−p)(n−p)

]
−

[
B̂i −Ûi

(0)(n−p)×p Ĉi

]
,

(20)

where, B̂i = B− Si(I − B), Ûi = (I + Si)U , L̂i = (I + Vi)L
and Ĉi = C − Vi(I − C).
The iteration matrix of Eq. (20) also defined as:

µ̄w,r

= M̄−1N̄ =
[
I1 0
rL̂i I2

]−1
︸ ︷︷ ︸

M̄−1

×

(
(I − w)I + (w− r)

[
0 0
−L̂i 0

]
+w

[
B̂i −Ûi
0 Ĉi

])
=

[
(1− w)I1 + wB̂i −wÛi

w(r − 1)L̂i − wrL̂iB̂i (1− w)I2 + wĈi + wrL̂iÛi

]
.

(21)

In this paper, we propose some new splittings of H and H̄ .
Moreover, we prove that the new splittings compare with the
splittings of (4), (13) and (20) work better.

II. PREREQUISITE
We start with some basic notation and preliminary results
which we allude to later.
Definition 1 ([9], [10]):
(a) A matrix H is Z-matrix if for any i 6= j, hij ≤ 0.
(b) A Z-matrix is M-matrix, if H is nonsingular, and if

H−1 ≥ 0.
(c) A square matrix H = hij is M-matrix if

H = αI − B;B ≥ 0 and, α > ρ(B).

Definition 2 ([9], [10]): The splitting H =M –N is called
(a) Convergent if ρ (M−1N ) < 1;
(b) Regular if M−1 ≥ 0, N ≥ 0;
(c) Nonnegative if M−1N ≥ 0;
(d) M-splitting ifM is a nonsingularM-matrix and N ≥ 0;
Lemma 3 ([27], [28]): Let H = M − N be an M-splitting

of H . Then ρ (M−1N ) < 1 if and only if H is M- matrix.

Lemma 4 ([27], [28]): Let A, B are Z-matrix and A is an
M-matrix, if A ≤ B then B is an M-matrix too.
Lemma 5 [9]: LetH = M1−N1 = M2−N2 be two regular

splittings of H , where H−1 ≥ 0. If M−11 ≥ M
−1
2 , then:

ρ(M−11 N1) ≤ ρ(M
−1
2 N2) < 1.

Lemma 6 [10]:LetH be a Z-matrix. ThenH is anM-matrix
if and only if there is a positive vector x such that Hx > 0.

III. MAIN RESULT
Consider the following splittings;

B = D1 − L1 − U1,C = D2 − L2 − U2,

where Di, −Li, −Ui (i = 1, 2) are diagonal, strictly lower
and strictly upper triangular parts of B and C, respectively.
Furthermore,

D1 = D11 + D12; where D11 < I1,

and,

D2 = D21 + D22; where D22 < I2.

Then, to solve the linear system (1), we consider the following
splitting

H =
[
I1 − D11 (0)p×(n−p)
(0)(n−p)×p I2 − D22

]
−

[
−L1 (0)p×(n−p)
−L −L2

]
−

[
D12 − U1 −U
(0)(n−p)×p D21 − U2

]
. (22)

So, the iteration matrix of GAOR method with the splitting
of Eq. (22) is:

µw,r

=

[
(I1 − D11)+ rL1 0

rL (I2 − D22)+ rL2

]−1
︸ ︷︷ ︸

M−1

×

(I − w) [ I1 − D11 0
0 I2 − D22

]

+ (w− r)
[
−L1 0
−L −L2

]
+w

[
D12 − U1 −U

0 D21 − U2

]
︸ ︷︷ ︸

N

(23)

In the following we will compare our splitting with the split-
ting of Eq.(4).
Theorem 7: Consider the matrix H in Eq. (2) and let µ(1)

w,r

and µ(2)
w,r

be the iteration matrices of the GAOR method by
splittings of (4) and (22), respectively. If C ≤ 0,U ≤ 0,Bi ≥
0; (i = 1, 2) and ρ(µ(1)

w,r
) < 1, then for 0 < w ≤ 1 and

0 ≤ r < 1 we have; ρ(µ(2)
w,r
) ≤ ρ(µ(1)

w,r
).

Proof: From Eq. (6) and Definition 2, we can see that
µ(1)
w,r

is M-splitting of H . Then, from the Lemma 3 H is
M-matrix. Also, from (6), (23) and Definition 2, these split-
tings are regular.
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Now, consider µ(1)
w,r
= M−11 N1, and µ(2)

w,r
= M−12 N2.

Then;

M2 −M1 =

[
(I1 − D11)+ rL1 0

rL (I2 − D22)+ rL2

]
−

[
I1 0
rL I2

]
≤

[
0 0
0 0

]
.

Therefore;

M2 ≤ M1.

SinceH isM-matrix, from Lemma 4M1,M2 areM-matrices.
Therefore, M−12 ≥ M

−1
1 .

And by Lemma 5 the proof is completed.
Similarly, we consider the following model for the pre-

conditioned matrix H̄ . We only consider the first kind of
preconditioners; another class can be analogously verified.
By Eq. (13):

H̄i =
[
(I1 +Wi)(I1 − B) (I1 +Wi)U
Ki(I1 − B)+ L KiU + (I2 − C)

]
, (24)

(I1 +Wi)(I1 − B)

= (I1 +Wi)− (I1 −Wi)B, (25)

Now, consider the following splittings;

(I1 −Wi)B = D1 − L1 − U1,

KiU − C = D2 − L2 − U2,

where Di, −Li, −Ui (i = 1, 2) are diagonal, strictly lower
and strictly upper triangular parts of (I1−Wi)B and KiU−C ,
respectively. Furthermore,

D1 = D11 + D12; where D11 < I1.

And,

D2 = D21 + D22; where D22 < I2.

Then, we have the following splitting of H̄ :

H̄ =
[
I1 − D11 0

0 I2 − D22

]
−

[
−L1 −Wi 0

−(Ki(I1 − B)+ L) −L2

]
−

[
D12 − U1 −(I1 +Wi)U

0 D21 − U2

]
. (26)

Then iteration matrix of preconditioned GAOR method with
the splitting of (26) is

¯̄µw,r =
¯̄M−1 ¯̄N

=

[
(I1 − D11)+ rL1 + rWi 0
r(Ki(I1 − B)+ L) (I2 − D22)+ rL2

]−1
︸ ︷︷ ︸

¯̇M−1

×

 (I − w)
[
I1 − D11 0

0 I2 − D22

]
+ (w− r)

[
−L1 −Wi 0

−(Ki(I1 − B)+ L) −L2

]
+w

[
D12 − U1 −(I1 +Wi)U

0 D21 − U2

] 
︸ ︷︷ ︸

¯̄N

(27)

Theorem 8:Let µ̄w,r and ¯̄µw,r be the iterationmatrices of the
preconditioned GAOR method by splittings of (13) and (26),
respectively. If the conditions of Theorem 7 are satisfied, then
we have,

ρ( ¯̄µw,r ) ≤ ρ(µ̄w,r ) < 1.

Proof:Weknow thatH isM-matrix. Then by Lemma 6 it
is easy to see that H̄ is M-matrix too. Therefore, similar to
the proving process of Theorem 7, we conclude that these
splittings are regular. Moreover, let

µ̄w,r = M̄−1N̄ , ¯̄µw,r =
¯̄M−1 ¯̄N .

Then;

¯̄M − M̄ =
[
(I1 − D11)+ rL1 + rWi 0
r(Ki(I1 − B)+ L) (I2 − D22)+ rL2

]
−

[
I1 0

r(L + Ki(I − B)) I2

]
≤

[
0 0
0 0

]
.

And by Lemma 6 the proof is completed.

IV. NUMERICAL EXAMPLE
In this section we test the effectiveness of two mentioned
splitting methods. The experimental results were obtained
using an Intel Celeron with a 2.8GHz 32-bit processor and
1GB RAM memory running Windows 7.

The computational platform used was the MATLAB
environment. y(0) is zero vector and the f was selected
such that the exact solution of the system (2) is yT =
(1, 2, 3, . . . , n)T ∈ Rn. The stopping criterion is ε < 10−6.

The number of iterations (denoted by IT) and spectral
radius and CPU time are reported in the following tables in
order to show the efficiency of our splitting methods.
Example 9: Consider the matrix H of Eq. (2) with the

following conditions:

bii = 1/ξ (i+ 1); i = 1, · · · , p,

bij = (1/λ)− (1/λj+ i);

i < j, i = 1, · · · , p− 1, j = 2, . . . , p,

bij = (1/λ)− (1/[λ(i− j+ 1)+ i];

i > j, i = 2, · · · , p, j = 1, . . . , p− 1,

cii = 1/ξ (p+ i+ 1); i = 1, · · · , n− p,

cij = (1/λ)− (1/[λ(p+ j)+ p+ i]);

i < j, i = 1, · · · , n− p+ 1, j = 2, . . . , n− p,

cij = (1/λ)− (1/[λ(i− j+ 1)+ p+ i]);
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TABLE 1. The spectral radius and number of iterations of the GAOR with
two different splitting.

TABLE 2. The results of iterations of the preconditioned GAOR with two
different splittings.

TABLE 3. The results of the preconditioned GAOR with two different
splittings.

i > j, i = 2, · · · , n− p, j = 1, . . . , n− p− 1,

lij = (1/[λ(p+ i− j+ 1)+ p+ i])− (1/λ);

i = 1, · · · , n− p, j = 1, . . . , p,

uij = (1/[λ(p+ j)+ i])− (1/λ); i = 1, · · · , p,

j = 1, . . . , n− p, ξ, λ ∈ <.

In Table 1, we reported the number of iterations and the
spectral radius of the corresponding iterative methods with
different splittings.

In Table 2, we show the results of the corresponding itera-
tive schemes with the following preconditioner (µi = γi = 1)
and the splittings of (13) and (26):

P̄ = I + S̄ =
[
I1 +W1 0
K1 I2

]
(28)

In Table 3, we show the results of the corresponding iterative
methods with the following preconditioner (αi = βi = τi =
σi = 1) and the splittings of (20) and (26):

P̄ = I + S̄ =
[
I1 + S1 0

0 I2 + Vi

]
(29)

The results also show that the scalability of our algorithms
is suitable. For example, from Table 3, we can see that
when n=10, the iteration steps of Splitting (26) ≈ 0.83 ×
Splitting(18), but, when n is increased to 50, the iteration
steps of Splitting (26) ≈ 0.73× Splitting(18).
From tables 1-3 we can see that, the iterative methods with

our splitting, without extra cost per iteration step, perform
much better than existingmethods for solvingweighted linear
least squares problems. Furthermore, an iterativemethodwith
the splitting (22) performs much better than preconditioned
methods with the splittings (13) and (20).

V. CONCLUSION
In this paper, we modified the solution procedures to solve
the weighted linear least squares problem and improved the
convergence rates of iterative methods. From the numerical
results and theoretical analysis, we can conclude that the
performance of the modified iterative method is much better
in comparison with the existing methods.
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