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ABSTRACT This paper focuses on the problem of visual tracking of a moving target with the temporary
occlusion of image feature, a dynamic visual tracking control system for robot manipulator is developed by
using adaptive fading Kalman filter (AFKF). The estimation of the residual covariance is used to compute
the forgetting factor to automatically adjust the weight of the image observation data for improving the
visual state estimation accuracy.When the target features are occluded, the prediction of missing observation
sequence are generated by using the predicted compensation noise and preorder observation sequence
to determine the forgetting factor for estimating the missing visual states. Then, a parameter adaptive
law with projection error compensation is designed to realize the visual tracking with uncertain camera
parameters. Finally, the trajectory tracking experiments based on a real robot platform is carried out to
verify the performance of the proposed state estimator and tracking controller. The results show that the
proposed method can accurately realize the visual tracking with the occluded trajectory and inaccurate
camera parameters, which improves the flexibility of dynamic visual tracking of robot manipulator.

INDEX TERMS Visual tracking, robot manipulation, Kalman filter, occlusion.

I. INTRODUCTION
Target tracking is widely used in the navigation of mobile
robot, object grasping and capture of robot manipulator.
Visual tracking of a moving target uses the camera to acquire
the target image features, establish the mapping between
visual and task space, and obtain the control command of the
robot, which is to realize the dynamic visual servoing control
of the robot manipulator [1]. The application of vision sen-
sor can improve the robot tracking performance in complex
environment.

Generally, the moving targets can be divided into three
types: (1) Identified objects, such as the ground lines, land-
marks, which are dynamic objects relative to robots. Such
targets are often used in navigation applications of mobile
robots [2], [3]. (2) Target with predictable trajectory, which is
mostly used for object capture [4], [5]. (3) Dynamic targets,
the trajectory is unpredictable, and the motion state can only
be obtained through the observer in real time to realize the
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robot tracking control. It is often used for grasping tumbling
satellites [6]–[9], and face tracking [10], [11].

This paper focuses on the dynamic target tracking of the
robot manipulator using visual servo method. The visual
tracking control system for dynamic targets can be divided
into visual state estimator and visual tracking controller
in [12]. The visual state estimator can directly estimate the
optimal system state and the object motion state in the image
plane through the real-time observer. The visual tracking
controller generates the robot’s control command directly in
the image plane. This design is also adopted in [13], [14], an
observer is designed to estimate the position and velocity of
the image feature points, and a tracking controller is designed
to track the object trajectory using robot manipulator with
uncertain model parameters.

In fact, considering the design of both state estimators
and tracking controllers is not limited to the study on visual
tracking of dynamic target, but it comes from the work on
the design of state estimators and controllers for uncertain
control variables in more common mechanical systems. Such
as in [15], for the tracking problem of the flexible joint
manipulator, a composite observer is designed to estimate
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the fault and disturbance, and the sliding mode controller
is designed for the fault-tolerant control. And as in [16],
for the vibration of space manipulators for on-orbit service,
neural network controller and disturbance are designed to
suppress the influence of friction and dynamic coupling on
joint control performance.

In the study of visual state estimation, the basic problem
is to consider the effect of sensor measurement noise on
the extraction of visual features. In [17], for visual track-
ing of micro-agents in minimally invasive surgery, Kalman
state estimators are used to estimate the inter-sample states
of micro-agents due to the low acquisition rate of medi-
cal imaging modalities. In [18], the extended Kalman filter
(EKF) is used to estimate the object velocity state with visual
measurement noise, which is applied to grasp a tumbling
satellite. Reference [19] is also applied to the satellite track-
ing, where Kalman filter can not only estimate the motion
state of the grapple fixture, but also estimate the inertial
parameters of the satellite. In the above studies, Kalman filter
is adopted as the state estimator, and of course, extended state
observer (ESO) is also commonly used [20].

The hot topic of visual tracking is how to track the tar-
get features in the case of occlusions, feature losses and
limited camera field of view (FOV). In the case of sensor
failure (unreliable data) or measurement of feature loss, it is
common to use additional sensors as compensation, such
as laser rangefinder scanning in mobile robot research [21].
It requires designing a state observer to estimate unmeasur-
able visual features. For the case of the feature occlusion, [22]
summarizes it as visual intermittent measurement problem.
It discusses the convergence condition on the dwell time,
the minimum time of object visible and maximum time of
outside the camera FOV. The results ensure to the image
state estimator convergence to reasonable bound under visual
intermittent measurement. On the basis of [22], [23] designs
an observer and predictor for the image feature outside
the camera FOV. When the image features are unavailable,
the target motion state can be estimated by switching sys-
tem between the observer and the predictor. Similarly, the
observers and predictors designed by [24] can estimate the
position and orientation of 3D moving targets.

On the other hand, for the design of the tracking con-
troller, it needs to consider the parameter uncertainties, which
include robot dynamics model, grasp model and camera
model. In view of the dynamics parameters and grasp model
parameters, it often uses adaptive neural network method
to compensate parameter uncertainty. In [25], multi-layer
neural networks are used to approximate unknown nonlin-
ear parameter dynamics of autonomous underwater vehicles
(AUVs), adaptive robust control are adopted to compen-
sate for environmental disturbances. Reference [26] uses the
adaptive neural networks to approximate the unknown non-
linear dynamics of robot manipulator with dead-zone input.
Reference [27] developes adaptive neural network-based
visual tracking method to solve the problems of an uncertain
object grasp position for dual-arm manipulation. The visual

tracking task needs to determine the desired image features in
advance, [28] discusses the problem of visual tracking con-
troller without desired image features. The reference frame
is defined by visual targets and planar motion constraint, and
the pose estimation algorithm is designed for mobile robot.

In addition, inaccurate calibration of camera model param-
eters will reduce the performance of visual tracking. In [29],
an adaptive visual servo tracking controller is designed to
compensate unknown external parameters and visual feature
depth when the parameters completely unknown. The camera
model parameters and depth of image feature are included in
the image Jacobian matrix. When there are uncertain for a
few parameters, the uncertain parameters are linear extracted
from image Jacobian. The adaptive law can be used to esti-
mate parameters for the performance of the visual tracking
system. Reference [30] focuses on the robot visual tracking
for working on an unknown constraint surface, where the
depth of image feature point is the unknown time-varying.
The depth-independent interaction matrix framework and the
depth parameter adaptive laws are developed to compen-
sate the unknown depth. In [31], the visual tracking tasks
are considered as a nonlinear optimization problem. The
depth-independent interaction matrix is used for the linearly
extraction of unknown camera model parameters, the model
predictive control (MPC) is used to estimate parameters.
Furthermore, on the basis of [31], [32] introduces visual
constraints to the predictive control methods for avoid the
visual features outside the camera FOV.

In this paper, we focus on the problem of visual state esti-
mation and tracking control for a dynamic target. Adaptive
fading Kalman filter (AFKF) algorithm is used for the state
estimation under the case of image feature temporary occlu-
sion. The forgetting factor is computed to adjust the weight
of the image observation data to improve the visual state
estimation accuracy. When the target feature lost, the pre-
order observation sequence is used to determine the forgetting
factor for estimating the missing visual states. Compared
with [22] and [23], the proposed method solves the tracking
problem in the case of temporary and complete occlusion
of image features by solving one parameter (the forgetting
factor) without additional design of trajectory predictor. The
advantage of this method is convenient for applying to a real
robot platform. For the sake of the design of visual track-
ing controller, based on the depth-independent interaction
matrix in [30] and [31], we consider to design the parame-
ter adaptive law including projection error compensation to
further improve the estimation accuracy of camera model
parameters.

This paper is organized as follows: Section II discusses
the design of visual state estimator, where a new com-
putation method of the forgetting factor is proposed in
Section II-B. The design of visual tracking controller is pre-
sented in Section III, which provides a new adaptive update
law for uncalibrated camera parameters in Section III-B.
In Section IV and V, simulation and experiment results are
presented to demonstrate the effectiveness of the proposed
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control method. Finally, the conclusion and future work are
provided in Section VI.

II. VISUAL STATE ESTIMATION OF DYNAMIC TARGET
Since the trajectories of a moving target are unknown,
an observer is needed to estimate its motion state. The
image position information of the target feature point can
be obtained directly through the camera, and its velocity in
the image plane can be calculated. However, the differential
processing of image position introduces noise, then Kalman
filter is used to reduce the noise and improve the accuracy of
state estimation.

A. AFKF ALGORITHM
The normal Kalman filter is a linear Gaussian filtering algo-
rithm based on the state space, which relies on accurate model
parameters. However, in practical applications, the model
parameters often deviates from the real system to a certain
extent, thus the normal Kalman filter cannot guarantee the
filter convergence. Kalman filter adopts iterative algorithm,
where the state estimation at certain instant is influenced
by all observation data [33]. Adaptive fading Kalman Filter
(AFKF) uses the forgetting factor to adjust the weights of
all observation data in real-time, to improve the utilization
of the new observation data, and to reduce the influence of
old observation data to state estimation.

Let the Cartesian trajectory of the target point o be
(xo (t), ẋo (t)) ∈ R3, and the corresponding image trajec-
tory be (yo (t), ẏo (t)) ∈ R2. AFKF is used to estimate the
unknown motion state of the moving target in the image
plane, which includes the position, velocity of the feature
point.

The state vector of image feature is formed as O,

O =
[
uo vo u̇o v̇o

]T (1)

where yo (t) =
[
uo vo

]T denotes the image coordinate of
the feature point o; ẏo (t) =

[
u̇o v̇o

]T denotes the velocity
in image plane, respectively.

The discrete state equation and observation equation of
visual tracking system are given,

Ok = AOk−1 +Gk−1Wk−1 (2)

yk = COk + Vk (3)

where at the instant of k , yk is the measurement vector in
visual space,A andC are the state transitionmatrix and obser-
vation matrix, respectively. Wk and Vk are the sequences of
state and measurement noise.

The adaptive fading Kalman filter algorithm (AFKF) is
given as follows [33],

Ok = AOk−1 (4)

P̃k = αk
(
APk−1AT

+Qk−1

)
(5)

K̃k =
αk

βk
Kk (6)

Ôk = Ok + K̃krk (7)

Pk = P̃k − K̃kCP̃k (8)

Comparedwith the normal Kalman filter, the forgetting factor
αk is introduced into the propagation of P̃k in (5), which
is the covariance between predicted and real value, and the
update of gain K̃k in (6), so as to update the predicted Ok
and estimated Ôk of state vector, and the error covariance Pk
between estimated and real value. Since the predicted error
covariance matrix is enlarged by αk times, the utilization ratio
of the new measurement data is improved. The forgetting
factor αk is defined by (9)

αk =
trace

(
βkCkPkCT

k + (βk − 1)Rk
)

trace
(
CkPkCT

k

) , αk ≥ 1 (9)

where βk is a scalar factor, and Pk is the time propagation
error covariance of the normal Kalman filter. To compute the
αk , it needs to compute the βk .

βk = max
{
1,

1
m
trace

(
S̃k ,STk

)}
(10)

where Sk and S̃k denote the covariance of the residual and
its estimation respectively, and they are calculated by the
following formula,

Sk = CP̃kCT
+ Rk (11)

S̃k = βkSk =
1

k − 1

k∑
i=1

rirTi (12)

where ri is the residual, and ri = yi − COi.
In AFKF algorithm, the estimation of the residual covari-

ance S̃k is used to calculate the forgetting factor αk , and αk
is introduced into the predicted error covariance matrix P̃k ,
which can increase the weights of new observation data
applied in the filtering process and improve the accuracy of
state estimation. When the gain Kk is ideal, rk is the white
noise vector, and its auto-correlation is,

E
(
rk+jrTk

)
= CA

(
I−Kk+j−1C

)
A (I−Kk+1C)

×A
[
PkCT

−KkSk
]

(13)

When the model parameters are inaccurate, the auto-
correlation of rk is not zero. Then, the estimated of the
residual covariance at k is,

S̃k = βk
(
CP̃kCT

+ Rk

)
= αkCPkCT

+ Rk (14)

The covariance of the residual represents the role of the
current error to the system. When the dynamic model is
unknown or partially unknown, the covariance of the residual
and predicted error will increase due to the action of the
unknown part. It can be seen from (14) that the increase
of the residual covariance due to βk can be considered as
the increase of the predicted error covariance due to αk .
Therefore, the incomplete data in the dynamic systems can be
compensated by increasing Pk . Since βk ≥ 1, then αk ≥ 1.
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When the increase of Pk is small, the value (1− βk) is small,
then (1− βk)Rk can be ignored; When the increase of Pk
is greater than Rk , it can consider (1− βk)Rk ignored due
to Rk is small. Thus, αk is approximately equal to βk . Then
P̃ (k) = β (k)P (k), Therefore, this algorithm is called AFKF
based on adjusting the covariance of predicted error.

According to the updated state vector Ôk , the position and
velocity trajectories of the target point in the image space are
obtained,

yd (t) =
[
uo (t) vo (t)

]T
ẏd (t) =

[
u̇o (t) v̇o (t)

]T (15)

yd (t) and ẏd (t) will be input into the visual controller in
Section III as the desired trajectories of the target point.

B. COMPUTATION OF THE FORGETTING FACTOR
In Section II-A, we reviewed the AFKF algorithm, whose
core is the computation of the forgetting factor. Its computa-
tion method is formulated by the specific task. In this study,
the above AFKF algorithm is adopted, and a special compu-
tation method for the visual tracking task under the target
occlusion is proposed. Specifically, we will explain how to
compute the forgetting factor without the image observation
data.

When the image features of target point are obscured,
theAFKF algorithmwill fail due to the lack of image observa-
tion data. The general strategy is to adopt the linear prediction
method to approximate a linear movement for the target
over the invisible time, i.e. assuming the velocity is constant.
However, when the velocity changes greatly, it cannot achieve
the target tracking effectively under this assumption. We use
the preorder observation sequence to estimate the target state
in the invisible stage to improve the tracking performance.

Assuming the image feature is obscured at k instant,
the state vector cannot be obtained. At this time, the obser-
vation equation under the case of image feature occlusion is
given,

_yk = C
_

Ok + Yk (16)

where
_yk denote the prediction of the missing observation

vector,
_

Ok denote the prediction of state vector. According
to (16), there is the covariance of an observation noise
sequence Rk between the observation and real value at k
instant. Yk is not the real observation noise sequence, but
it is the compensation noise, which approximates the real
observation vector by introducing the covariance Rk . Since
there is an estimation error with the covariance Pk between
the estimated state vector Ôk and the real state vector Ok ,
the covariance of the observation noise sequence can be
written as

Uk = Rk +GT
k PkGk (17)

Since the current observation state of yk is unknown, its
covariance Pk is also unknown, which makes Uk impon-
derable. We use preorder observation sequence yk−1 to

replace yk , and its error covariance Pk−1 to replace Pk . The
approximate error covariance matrix of the observation noise
sequence at k instant is obtained as

_

Uk = Rk +GT
k Pk−1Gk (18)

By (16), the new residual can be calculated by follows,

_rk = C
_

Ok + Yk − COk (19)

Considering (18), AFKF update process under occlusion is,
_

Sk = CP̃kCT
+ Rk +GT

k Pk−1Gk (20)
_

Kk = P̃kCT_S
−1

k (21)
_

Ok = Ok +

[
I6 −

_

KkC
]−1 _

KkYk (22)

Substitute (22) into (19), and the new residual is obtained,

_rk = C
[
I6 −

_

KkC
]−1 _

KkYk + Yk (23)

According to the new residual
_rk and the covariance of

new residual
_

Sk , the forgetting factor αk can be computed
by (9) and (10). Therefore, under the case of image feature
occlusion, the state vector Ok can keep updating due to the
computation of the forgetting factor in AFKF.

III. UNCALIBRATED VISUAL TRACKING CONTROLLER
DESIGN
Inaccurate calibration of camera model parameters will
reduce the performance of visual tracking. Therefore,
the uncertainty of camera model parameters should be con-
sidered in the design of tracking controller. In this section,
Image-based visual servoing method (IBVS) method [29]
is adopted, where the image Jacobian matrix is linearized,
which contains camera internal and external parameters, and
the parameter adaptive law is designed to solve the parameter
uncertainty of the camera model.

A. MODEL OF DEPTH-INDEPENDENT INTERACTION
MATRIX
The image Jacobian matrix contains the depth parameters of
the target feature points, as well as the camera internal and
external parameters. Since the depth parameters appear in the
form of nonlinearity, the camera model parameters cannot
be linearized. This model of depth-independent interaction
matrix is introduced to extract depth parameters, and the
inaccurate camera parameters could be linearized.

Firstly, the camera perspective projectionmodel is showed,
which represents the mapping between the feature point coor-
dinates in the image plane and Cartesian space.

y (t) =
1

zc (t)
Fx (t) with zc (t) = m3x (t) (24)

where y (t) and x (t) are the image coordinate and Carte-
sian coordinate relative to robot base coordinate system,
and zc (t) is the depth of the feature point in the camera
coordinate system. F is the first two rows of the projection
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matrix M, and m3 is the third row. The derivative of (24) is
given,

ẏ (t) zc (t)+y (t) żc (t) = Fẋ (t) with żc (t) = m3ẋ (t) (25)

Considering the kinematic constraint of robot arm, (25) can
be rewritten as follows,

ẏ (t) =
[

1
zc (t)

N (y (t))
]
J (q (t)) q̇ (t)

with N (y (t)) = F− y (t)m3 =

[
m1 − u (t)m3
m2 − v (t)m3

]
(26)

In (26), N (y (t)) ∈ R2×4 is defined as the depth-independent
interaction matrix, and it satisfies the linearization condition,
i.e. for any vector ζ ∈ R4×1, N (y (t)) ζ can be linearly
parameterized as,

N (y (t)) ζ = B (y (t), ζ ) θ (27)

where B (y (t), ζ ) is the regression matrix, which is indepen-
dent of camera parameters; θ is the parameter vector, which is
composed of unknown parameters in the projectionmatrixM.
Since the depth zc (t) is nonlinear, it needs to separate zc (t)
from (26) for extracting θ linearized. The depth-independent
Jacobian matrix D (t) ∈ R2×3 is defined,

D (t) = N (y (t)) J (q (t)) (28)

Then, (26) can be rewritten as,

zc (t) ẏ (t) = D (t) q̇ (t) (29)

The unknown parameter vector θ is included in D (t),
and its values are needed to designing an adaptive laws to
determine, so as to obtain the joint control commands of
robot arm.

B. DESIGN OF ADAPTIVE LAW FOR CAMERA
PARAMETERS
When the camera model parameters are uncertain, the ele-
ments of the projection matrix M are uncertain. In this
section, a new adaptive update law for uncertain camera
parameters is proposed, which introduces the compensation
of projection error estimation. Let the parameter vector be
θ = [mij] ∈ R12×1, i ∈ [1, 3], j ∈ [1, 4]. The tracking
error of the feature points in the image space is given as
follows,

1y (t) = y (t)− yd (t) (30)

1ẏ (t) = ẏ (t)− ẏd (t) (31)

ẏr (t) = ẏd (t)− κ1y (t) (32)

where the desired image trajectories yd (t) and ẏd (t) are
obtained by (15). We defines the reference velocity in the
image plane ẏr (t) in (32), which is obtained from the posi-
tion tracking error 1y (t) and the desired velocity trajectory
ẏd (t), and κ is the positive constant. For (31), we introduce

the estimation of the velocity tracking error 1 ˆ̇y (t) in the
image plane,

1 ˆ̇y (t) = ˆ̇y (t)− ẏd (t) (33)

The adaptive sliding mode vector sy (t) in the image plane
is defined as follows,

sy (t) = ˆ̇y (t)− ẏr (t) = ˆ̇y (t)− ẏd (t)+ κ (y (t)− yd (t))

= 1 ˆ̇y (t)+ κ1y (t) (34)

where ˆ̇y (t) denote the estimation of the image velocity tra-
jectory, which is calculated by the estimation of projec-
tion matrix M̂ (t). By (29), the estimation of the depth-
independent Jacobian matrix D̂+ is used to map the reference
velocity ẏr (t) to the joint space of the robot arm, then the
reference in the joint space is given,

q̇r (t) = D̂+ (t) ẑ (t) ẏr (t) (35)

where D̂+ (t) ∈ R7×2 is the pseudo-inverse of D (t) ∈ R2×3,

and D̂+ (t) = D̂T (t)
{
D̂ (t) D̂T (t)

}−1
. Similarly, the adap-

tive sliding mode vector sq (t) in the joint space is defined as
follows,

sq (t) = q̇ (t)− q̇r (t) (36)

Since D̂ (t) and ẑ (t) are obtained by θ̂ (t), which is linearly
extracted fromM. In order to ensure the existence of D̂+ (t),
M̂ (t) ∈ R3×4 must be full rank, i.e. the rank of M̂ (t)
is 3. Here a potential field force 9

(
θ̂ (t)

)
is introduced

to keep the M̂ (t) full rank. The negative gradient function
∂9

(
θ̂ (t)

)/
∂ θ̂ (t) is used to update the θ̂ (t) to keep it away

from the singularity region of M̂ (t) It also guarantees the
existence of D̂+ (t), referred to [31] for details.
Next, we define the estimation error of the projection

matrix, that is
∥∥∥M̂ (t)−M (t)

∥∥∥. By (24) and (27), the error
is given,

e1 (t) = ẑ (t) y (t)− F̂ (t) x (t)

=
{
m̂3 (t)−m3 (t)

}
x (t) y (t)−

{
F̂ (t)− F

}
x (t)

= 4 (x (t), y (t))1θ (t) (37)

where
∥∥m̂3 (t)−m3 (t)

∥∥ is the estimation error of the third

row of M̂ (t),
∥∥∥F̂ (t)− F

∥∥∥ is the estimation error of the first

two rows. 1θ (t) = θ̂ (t) − θ is the updated error of θ (t).
In order to improve the accuracy of parameter estimation, the
new estimation errors of depth z (t) and depth-independent
Jacobian matrix D (t) are introduced as the compensation of
projection error estimation. According to (29), the error is
defined as,

e2 (t) =
{(
ẑ (t)− z (t)

)
ẏ (t)−

(
D̂ (t)− D (t)

)
q̇ (t)

}
K3

= 2 (ẏ (t), x (t), ẋ (t))1θ (t) (38)
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FIGURE 1. The behavior of motion state estimation of AFKF: (a) position trajectories; (b) position error; (c) velocity
trajectories; (d) velocity error.

By the regressionmatrix4 (x (t), y (t)) and2(ẏ(t), x(t), ẋ(t)),
the adaptive update law of θ (t) is designed as,

˙̂
θ(t)

=−0−1


4T(x (t), y(t))P1e1(t)+P2

∥∥sq(t)∥∥2 ∂9
(
θ̂(t)

)
∂ θ̂ (t)

+
1
ẑ (t)

2T (ẏ (t), x (t), ẋ (t))(1ẏ (t)+κ1y (t))


(39)

where0,P1 andP2 are the positive definite weightingmatrix.
According to the dynamic equation of robot arm, the visual
tracking control law is designed as,

τ = H (q (t)) q̈r (t)+ C (q (t), q̇ (t)) q̇r (t)+G (q (t))

−

K1+K2

∥∥∥∥∥∥
∂9

(
θ̂(t)

)
∂ θ̂(t)

∥∥∥∥∥∥
 sq(t)−

1
ẑ(t)

D̂T (t)K3sy(t)

(40)

where K1, K2 and K3 denote a symmetric positive def-
inite matrix. In (40), the sliding mode vector sq (t) and
sy (t) are regarded as the control error. The gradient function
∂9

(
θ̂ (t)

)/
∂ θ̂ (t) is used to ensure D̂+ (t) the existence.

IV. SIMULATION RESULTS
A. THE BEHAVIOR OF VISUAL STATE ESTIMATOR
This section verifies the performance of AFKF algorithm
in visual state estimation, which can be divided into two
parts: the target trajectory with and without occlusion. In sim-
ulation, the origin of robot end-effector coordinate system
is set as the feature point O of dynamic target. Firstly,
the model parameters and initial values of robot arm are
shown in Table 1, where the true trajectoriesO (t) of the target
are given for comparison. The simulation time is 1.5s, and the
sampling interval is 1ms.

In order to indicate the superiority of the proposed method,
the results obtained by the normal Kalman filter method are
introduced for comparison, where both two methods adopted
the same noise parameters. According to the desired trajec-
tory (anticlockwise elliptic) in Table 1, the results obtained by
the two methods are shown in Fig. 1. The performance of the
estimated position trajectories are shown in Fig. 1(a). Since
the initial position of the end-effector point is given inconsis-
tently with the target feature point, both two trajectories move
toward the target position rapidly in the initial stage.

In the process of the whole trajectory tracking, it is obvious
that the KF trajectory does not coincide with the true trajec-
tory, and there are large deviations in some stages, and the
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FIGURE 2. The behavior of motion state prediction of AFKF under occlusion: (a) position prediction; (b) position error;
(c) velocity prediction; (d) velocity error.

TABLE 1. Model parameters and initial values in simulation.

AFKF trajectory basically coincide with the true trajectory.
Fig. 1(b) shows the variation of the estimated error. The
error of AFKF trajectory is affected by the large error in the
initial stage with exceeding 10 pixels, and the overall tracking
average error of AFKF trajectory is limited within 2 pixels.
The estimated velocity trajectory is shown in Fig. 1(c). Since
the differential operation is adopted which introduced the

noise, and the estimated trajectory presents an oscillating
state. The AFKF trajectory moves toward the true trajectory
at a practical velocity in the initial stage, and follows the
desired velocity trajectory in an oscillation state. In contrast,
theKF trajectorymoves toward the desired trajectory at a very
large velocity in the initial phase, and the maximum reaches
35 pixel/s and the average exceeds 20 pixel/s from 0s to 0.5s,
which is impractical for a real applications. After 0.5s, KF
trajectory follows the desired trajectory with a certain track-
ing error, and the error is >5 pixel/s as shown in Fig. 1(d).
Although the error of AFKF trajectory reaches 35 pixel/s in
the initial stage, it recovers rapidly <5 pixel/s within 0.2s,
whose average error is <4 pixel/s. It is in line with a real
tracking task of robot arm.

The performance of AFKF is verified in case of target
feature occlusion, and the simulation results are shown as
Fig. 2. Similarly, the linear prediction method and KF are
used for comparison. Linear prediction is used to estimate
the motion state under occlusion. The occlusion is lasted
from 0.3s to 0.5s, when the observation cannot be obtained.
The two methods are used to estimate the invisible motion
state. As shown in Fig. 2(a), the two trajectories deviate
from the true trajectory under occlusion, and the tracking
error of linear + KF is much greater than that of AFKF.
This is because the proposed method considers the preorder
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observation sequence, and predicts the noise Yk to com-
pensate for the estimated state, thus the deviation is not
too large. When the target features become visible at 0.5s,
AFKF trajectory rapidlymoves toward the true trajectory, due
to the update of S̃k . Since the forgetting factor is instantly
corrected, the propagation of Pk in (5) is rapidly adjusted,
and it converges to the true trajectory. After the feature is
visible, the linear+KF trajectory slowly is adjusted, to move
toward the true trajectory. The position tracking error of
AFKF in the occlusion stage is themaximumof 20 pixels, and
the average is 10 pixels. And the maximum of linear+ KF is
45 pixels and the average is 20 pixels, as shown in Fig.2 (b).
In comparison, the velocity tracking error of the two methods
is larger than that of the position trajectory due to the larger
noise of velocity estimation. As shown in Fig.2(c), the overall
trend of the estimated velocity trajectory is similar to that
of the position trajectory. When the target feature becomes
re-visible, the estimated trajectory moves slowly toward the
true trajectory, not immediately. This is also because the prop-
agation of Pk is affected by the convergence due to the
influence of large noise. In the occlusion stage, the tracking
error of AFKF is the maximum 25 pixel/s and the average
15 pixel/s. The maximum of KF is 40 pixel/s and the average
is 22 pixel/s. It is indicated that the introduced noiseYk plays
an obvious role in the occlusion stage.

B. THE BEHAVIOR OF VISUAL TRACKING CONTROLLER
Next, the performance of the proposed uncalibrated visual
tracking controller is verified. The true and estimated value
of camera projection matrix at the initial time are given as
follows,

M =

−1082 1662 −1321 697510
1454 842 −227 −426860
0.361 −0.476 −0.8 868

 ,
M̂ (0) =

−190 1500 −82 200000
1210 −885 −98 −650000
0.1 −0.15 −0.98 1000


In simulation, the estimated trajectories in section 4.1 are

used as the desired trajectories, which are obtained by AFKF
and linear+KFmethods. The visual tracking results without
occlusion are shown in Fig. 3. Compared with the desired
trajectory in Fig. 1, AFKF trajectory follows the desired tra-
jectory with a very small tracking error. Since the estimation
M̂ of the projection matrix is used, the imprecise parameters
are adjusted through the parameter adaptive law (39) in the
initial stage in order to reach the tracking requirements. Thus
AFKF trajectory slowly converges to the desired trajectory,
as shown in Fig. 3(a). In addition, KF trajectory can also be
used to follow the desired trajectory through the proposed
parameter adaptive law. In the upper half of the true trajectory,
KF trajectory deviates significantly, which corresponds to the
estimated desired trajectory in Fig. 1(a).

Compared with the results of trajectory estimation, KF
trajectory converges to the true trajectory with a smaller
error, which indicates that the proposed adaptive method

FIGURE 3. The simulation results of uncalibrated visual tracking:
(a) trajectory tracking; (b) position tracking error.

TABLE 2. The simulation results of tracking error and estimation error.

can achieve the desired trajectory tracking through parameter
update. Although there is some error between the estimated
desired and true trajectory.

The tracking error is collected in Table 2, where the max-
imum value represents the tracking (estimated) error at the
initial time, which is the moment with the maximum error
in the tracking process. The average error of AFKF position
trajectory is 0.43, which is nearly 80% lower than the KF
error of 2.31, and the average error of velocity trajectory is
also 71% lower. The results indicate that the advantage of
AFKF is mainly reflected in the position estimation. Due to
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FIGURE 4. The simulation results of visual tracking with occlusion:
(a) trajectory tracking; (b) position tracking error.

the oscillation in the velocity estimation, the accuracy is
relatively reduced.

The tracking results in the presence of occlusion are shown
in Fig. 4. Again, the overall trend of the curve is similar to that
of Fig. 2. In the initial stage, the parameter adaptive law is
used to adjust the parameters of the inaccurate camera model,
and the tracking trajectory move toward the true trajectory.
As shown in Fig. 4(a), the trajectory follows the desired
trajectory in Fig. 2(a) during the occlusion stage, which
indicates that the inaccurate camera parameters do not affect
the actual tracking performance. When the features become
visible, AFKF trajectory converges to the true trajectory with
small fluctuations, which indicates that there is a certain
error in the actual tracking control. In the occlusion stage,
the average tracking error of AFKF trajectory is <10 pixels,
and KF is >15 pixels, as shown in Fig. 4(b).

The tracking and estimation errors with occlusion are col-
lected in Table 3. The average of AFKF position estimation
is 6.46 pixels. The estimation error increases significantly
compared to the results in Table 2 due to the lack of observa-
tion. Compared with the linear prediction and KF methods,

TABLE 3. The results of tracking error and prediction error of occlusion
simulation.

FIGURE 5. The experimental platform of the dual-arm robot.

AFKF reduces the estimation errors of position and velocity
by 65.8% and 54.2%, respectively. In the occlusion stage,
the estimation error will increase, and the maximum repre-
sents the deviation between the estimated and the true value
when the target become visible, and it is easy to know that
the trajectory estimation of AFKF has a smaller deviation
from the true trajectory. In the whole process, AFKF is better
to estimate the target trajectory, thus the tracking error is
smaller.

V. EXPERIMENTS AND RESULTS
In the experiment, amonocular color camerawith a resolution
of 800∗600 pixels is used, which is fixed above the robot’s
workspace, as shown in Fig. 5. The images of the working
area of the robot manipulator are acquired by the camera in
real time, and the feature points pasted on the end-effector are
obtained through object recognition and feature extraction.
The dual-arm 7DOF robot platform is adopted, in which the
left arm is used to simulate the unknown motion of the target
feature (target arm), and the right arm is used to follow the
motion of the target feature (tracking arm). The feature points
are pasted on both the end-effectors of the target arm and the
tracking arm, which are red and green squares respectively.

The image coordinates of the square center are obtained by
fast image processing algorithm. The number of the feature
points on the each end-effector is four, which can avoid the
image Jacobian singularity [27]. The coordinate transforma-
tion matrix of each feature point relatively to the coordinate
system of the end-effector is precisely calibrated in order to
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FIGURE 6. The snapshots of experiment 1.

obtain the Cartesian coordinates of the feature points through
the robot kinematics.

The experiment is divided into two groups. The first group
verifies the performance of the proposed uncalibrated visual
tracking controller. Given the desired image trajectory, the
end-effector features of the tracking arm are controlled to
achieve visual tracking. The second group verifies the overall
performance of visual estimator and tracking controller. The
features on the target arm move with the given random image
trajectory (the trajectory data is recorded as error calculation
only), and the features on the end-effector of the tracking arm
are controlled to following the motion of the target features.

TABLE 4. The model parameters and initial values in experiment 1.

A. EXPERIMENT 1: GIVEN THE KNOWN VISUAL
TRAJECTORIES
The system parameters and initial state are shown in Table 4.
The estimation of the camera projection matrix at the initial

time M̂ (0) is arbitrarily given, and its true value M is
unknown. The desired image trajectory of the feature point
on the target arm is ellipse, and the image trajectory of one
feature point is only given, since the trajectories of the other
three feature points are similar, except for the difference in
spatial distance.

The snapshots of experiment 1 are shown in Fig. 6.
According to of the labeled desired trajectory, the tracking
arm move with visual tracking controller. The path point A is
the initial position, and the process is divided into two parts:
adjustment stage A-C and tracking stage D-F. In the whole
process, the camera parameters are continuously updated to
achieve an accurate visual tracking task.

The experimental results are shown in Fig. 7. Fig.7 (a)
shows the image trajectory tracking results. Due to the
influence of motion state estimation error and camera mea-
surement noise, the tracking error in experiment is larger
than that in simulation, but the maximum is limited within
6 pixels, and the average is <3 pixels, as shown in Fig.7
(b). Fig.7 (c) represents the tracking trajectory in Cartesian
space, and it can be seen that there is an obvious change in
the depth direction (z-axis), which indicates that the proposed
tracking method achieves the 3-D target tracking. However,
the motion along the z-axis of the camera frame is limited
to a small scale. This is because the proposed method adopts
image-based visual servoing method (IBVS) of the monoc-
ular camera, which does not estimate the depth information,
thus the proposed method is not suitable for the large scale
motion along the z-axis. Fig.7 (d) shows the all joint tra-
jectories, and it can be seen that the range of joint angle
variation is small, which reflects the stability of the tracking
process.
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FIGURE 7. The experimental results of uncalibrated visual tracking: (a) image trajectory tracking; (b) tracking errors;
(c) Cartesian trajectory; (d) joint trajectories.

B. EXPERIMENT 2: UNKNOWN AND OCCLUDED
VISUAL TRAJECTORIES
In experiment 2, the feature trajectory of the target arm is
shown in Table 5.

TABLE 5. Initial values in experiment 2.

Again, the image trajectory of one feature point is given.
The tracking arm only moves to follow the motion estimated
state of the target feature observed by camera. The occlusion
of the feature points is carried out randomly. At a certain
moment, a white paper is artificially covered over the target
feature points, thus the feature points are completely covered.
After a proper time interval, the white paper is removed
and the feature points are re-visible. This time interval is
determined according to the actual situation, i.e. when the
relative pose between two arms reaches a certain range or the

features are close to out of the camera field of view, the white
paper is immediately removed. The controller parameters are
the same as in experiment 1, and the experimental snapshots
are shown in Fig. 8.

In order to avoid collisions, a safe distance between the two
end-effectors is required. Therefore, the visual tracking error
is not zero, but is the constant image distance between the
corresponding feature points. The path point A is the initial
state,C is the stable tracking stage, F is the start of occlusion,
and H is the re-visible stage. The process is divided into four
stages: in theA-C stage, the motion state of the target features
are estimated by AFKF, and the visual controller is used to
drive the tracking arm to quickly approach the target arm.
In C-F stage, the uncertain camera parameters are updated to
achieve accurate target tracking. InF-H stage, the features are
not visible, and AFKF estimates the motion state and guides
the tracking arm to move. Although the tracking arm devi-
ates significantly from the target trajectory, the general trend
remains consistent with the target trajectory, which verifies
the effectiveness of AFKF trajectory prediction. InH-I stage,
the target is re-visible, and the motion state estimated by
AFKF becomes accurate, and the tracking arm again rapidly
approaches the target trajectory.

The experimental results are shown in Fig.9 (a) and (b),
which show the results of image trajectory tracking and error
respectively. The experiment lasted closely to 40s.
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FIGURE 8. The snapshots of experiment 2.

FIGURE 9. The experimental results of visual tracking with occlusion:
(a) trajectory tracking; (b) position tracking error.

At the initial state A, the image distance between the two
groups of feature points is more than 200 pixels. In A-C
stage (0-8s), the tracking arm moves toward the target at
25 pixels per second. In C-F stage (8s-22s), the tracking arm

performs stable tracking with an error within 2 pixels. In F-H
stage (22s-33s), the average tracking error is<9 pixels when
the target is not visible. In H-I stage (33s-38s), the target
is re-visible, and the tracking arm moves toward the target
at >10 pixels per second, and finally the tracking error is
within 2 pixels in 3s.

TABLE 6. The results of tracking error and estimation error of occlusion
experiment.

We further analyze the stable tracking stageC-F and occlu-
sion stage F-H. The results are shown in Table 6. In C-F
stage, the average error is 2.76 pixels, which comes from
many sources. The main source is the position estimation
AFKF (1.86 pixels), and the rest is from the measurement
and camera parameter update error, which is less than 1 pixel.
The maximum denotes the error when the features become
not visible. Generally, the range of the tracking error with
<3 pixels can be applied to actual robot applications. In F-H
stage of the invisible feature, the average error is 14.05 pixels,
where the errors from the position and velocity predictions
of AFKF contribute 5.37 and 12.62 pixels respectively, and
the time of occlusion increase with the maximum (H point)
reaching 16.58 and 30.45 pixels. In general, during the
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occlusion 11s, the movement distance of the target feature
is more than 50 pixels, and the final error is about 8 pixels,
which indicates that the proposed method is more suitable for
the situations of the feature occluded with short time.

VI. CONCLUSION
In this paper, an AFKF-based visual tracking method of
moving targets for robot manipulation is developed to solve
the problems of the visual state estimation under occlu-
sion and visual servoing with parameter uncertainty. The
computation method of the forgetting factor is proposed to
improve the prediction accuracy of occluded trajectory. The
projection error compensation is introduced into the adaptive
law of uncertain camera parameters to improve the tracking
accuracy. The simulation results indicate the effectiveness
of AFKF state estimator and uncalibrated visual tracking
controller.

The two experiments are carried out by a real robot plat-
form, and the results show that the ellipse trajectory tracking
is achieved with an average error <3 pixels when the real
camera parameters are unknown. The unknown and occluded
trajectory tracking is successfully achieved with an average
error<3 pixels without occlusion and<15 pixels with occlu-
sion. The experimental results can satisfy the requirements
of the common robot manipulation applications. In particu-
larly, the proposed method is suitable for the extraction of
non-robust target feature in a visual tracking task of robot
manipulation, which is easy to lose due to environmental
interference. Furthermore, the target occlusion in experi-
ment is randomly given, and the occlusion time will be
further discussed in future work to expand its application
range.
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