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ABSTRACT Relational keyword search (R-KWS) systems provide users with a convenient means in
relational database queries. There exist two main types of R-KWS: those based on Data Graphs and
those based on Schema Graphs. In this paper, we focus on the latter, R-KWS based on Schema Graphs.
Most existing methods are typically inefficient due to the large number of repetitive operation caused by
overlapping candidate networks and the execution of lots of complex queries. We present the R-KWS
approach based on combined candidate network evaluation to improve the query efficiency. The proposed
Combined Candidate Network (CCN) can efficiently share the overlapping part between candidate networks,
and then avoid the repetitive operation during the evaluation of candidate networks. Meanwhile, CCN
possesses another important characteristic that candidate networks within a CCN are still identifiable after
candidate networks being compressed into a CCN. We design an algorithm based on this characteristic to
evaluate CCN for the generation of final query results. This algorithm is able to eliminate the execution of
a large number of complex queries required by most existing approaches, and thus significantly improve
the efficiency of keyword search. Experiments on real datasets show that our approach can improve query
efficiency without any loss of the quality of query results with respect to existing approaches.

INDEX TERMS Relational database, keyword query, schema graphs, combined candidate network.

I. INTRODUCTION
Structured Query Language (SQL) is the main means to
access data from a relational database, which requires users to
understand the complex SQL syntax and schema information
of database [4], [27], [29], [31]. Compared with SQL, rela-
tional database keyword search (R-KWS) is simpler, which
enables users to query information from a relational database
by the way of search engines.

Recently, lots of works about R-KWS are proposed, which
can be classified into two main types: R-KWS based on Data
Graphs [4]–[7], [28], [30] and R-KWS based on Schema
Graphs [8]–[24]. R-KWS based on Data Graphs typically
needs to preload the Data Graphs into memory, which can-
not sometimes be completed at a time because of the con-
sumption of a large amount of memory [7]. R-KWS based
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on Schema Graphs also represents a relational database as
a graph whose nodes represent tuple sets each of which
includes tuples from the same relation, and edges represent
join between the corresponding relations. The final query
results can be generated by a large number of complex SQL
queries derived from Candidate Networks (CNs).

This papermainly focuses on the research of R-KWSbased
on Schema Graphs, which makes full use of the function of
relational database to retrieve the query results. It has a gen-
eral problem of low query efficiency [8]–[15] because of the
execution of a large number of complex queries. In addition,
the overlapping part between CNs in R-KWS causes the same
operation to be executed by different CN evaluation plans for
many times, which further exacerbates the efficiency problem
of traditional methods. Most existing approaches [9]–[20],
[22] return the final search results based on the execution
of top-k queries with complex joins among multiple rela-
tions, which are derived from CNs. These complex queries
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significantly decrease the efficiency of keyword search in
traditional approaches.

Consequently, we propose an approach based on CCN
evaluation to solve the problem of low query efficiency of
R-KWS based on Schema Graphs. The novel CCN (actually
it is a tree) is proposed to efficiently share the overlapping
structure between CNs, and thus saves the large amount
of redundant operation during the process of generation of
query results. Meanwhile, CCN possesses another important
characteristic that CNs within a CCN are still identifiable
after CNs being combined. We design an algorithm based on
this characteristic to evaluate CCN for the generation of final
query results. The CCN evaluation is actually the restricted
traversal of tuple sets in CCN and does not require the con-
version from CNs to SQL queries as well as the following
execution of complex queries in database, which are typi-
cally required by most existing approaches. Consequently,
the proposed algorithm significantly improves the efficiency
of keyword search. We conduct extensive experiments based
on real datasets, and experimental results show that the pro-
posed approach is more efficient than existing methods.

The main contributions of this paper are as follows:
• The novel CCN is proposed to efficiently share the repet-
itive part between CNs, and thus eliminates redundant
operation causing extra time cost. Meanwhile, we pro-
pose an algorithm to generate CCNs.

• We propose an efficient algorithm based on CCN eval-
uation to generate the final query results, which greatly
reduces the complex database query operation required
by traditional methods.

• Extensive experiments based on real datasets are con-
ducted to compare the proposed approach with existing
approaches, and the experimental results show that our
approach can significantly improve query efficiency of
R-KWS.

The relatedwork is introduced in Section II. Definitions are
described in Section III. Section IV presents the proposed
method. The experimental results are analyzed in Section V.
We conclude in Section VI.

II. RELATED WORK
Recently, R-KWS [25], [32]–[38] has become a hot topic
in database community. The R-KWS based on Schema
Graphs has query flexibility but with high execution cost.
A large amount of relevant literature has been devoted to the
improvement of query efficiency of R-KWSbased on Schema
Graphs. However, the evaluation of CNs by most approaches
[15]–[18] results in lower query efficiency. In order to solve
this problem, DISCOVER-II [19] introduces an IR ordering
strategy which employs the sparse algorithm and the global
pipeline algorithm to calculate relevance for CNs and eval-
uate CNs according to the relevance. DISCOVER-II will
not evaluate any other CNs after generating top-k query
result, so as to improve query efficiency. Lu et al. [1] pro-
pose the multiple keyword queries on graph data while most
traditional approaches focus on a single query setting.

SPARK [20] proposes skyline scan algorithm which can
achieve theminimum amount of data exploration. In addition,
SPARK also uses a non-monotonic upper limit function to
further limit unnecessary data access. Li et al. [3] propose
an efficient and progressive group steiner tree algorithm to
overcome the limitation of traditional parameterized dynamic
programming algorithm for keyword search in relational
databases. CNRank [21] proposes a CN ranking algorithm
based on the Bayesian network model which scores CNs
according to the probability of generating the result and the
relevance of CNs. The few CNs with the highest scores
in CNRank contain most of the query results. As a result,
CNRank only evaluates a small number of CNs to improve
search efficiency. DISCOVER proposes a plan generator for
redundant operation during the evaluation of CNs. The plan
generator can eliminate redundant operation by establishing
intermediate relationships which also need a high evaluation
cost. Lu et al. [2] present the parallel computing keyword
queries on a multicore architecture. They study the query
level parallelism, operation level parallelism and data level
parallelism. However, their approach is still based on the
traditional thought evaluating CNs into SQLs, which is the
main difference in contrast to our approach.

Although the existing methods improve the query effi-
ciency of R-KWS from different perspectives, most of
them cannot avoid the CN evaluation which is really time-
consuming. Consequently, the CCN evaluation is proposed
to improve the query efficiency by sharing the repetitive part
between CNs and avoiding the execution of complex queries
in database.

III. PRELIMINARIES
In this section, some classic concepts in R-KWS research area
are introduced from work [12]–[14], and some modifications
are made to them. Schema Graph G represents a relational
schema in which nodes represent relations and edges repre-
sent foreign key constraint between relations.
Definition 1: A joining network of tuples j is a tree with

tuples as nodes. For any pair of adjacent tuples tp and tq
in j, where tp and tq belong to the relations Rp and Rq
respectively, then there must be an edge 〈 Rp,Rq〉 in G and
〈 tp,tq 〉 ∈ 〈 Rp, Rq 〉.
Definition 2: Given a keyword query Q = {k1, · · · , kn},

a joining network of tuples j is Minimal Total Joining Net-
work of Tuples (MTJNT), when it is both total, that is, j
contains all the keywords in Q, and minimal, that is, j is no
longer a total joining network of tuples if any node is removed
in j.
Definition 3: Given a keyword query Q = {k1, · · · , kn},

a Tuple Set RKp is a collection of tuples that contains all the
keywords inK which is a subset ofQ but does not contain any
keywords in Q− K from the relation Rp. If K = ∅, the tuple
set is called free tuple set, otherwise the tuple set is called key
tuple set. For example, P{k1,k2,..,kn−1} represents a key tuple
set including keywords {k1, . . . , kn−1} but excluding kn from
table PAPER.
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Definition 4: Given a keyword query Q = {k1, · · · , kn},
a Candidate Network C is a tree with tuple sets as nodes. For
any pair of adjacent tuple sets RKp and RMq in C , there must
exist an edge 〈 Rp, Rq 〉 in G. Furthermore, C is both total,
that is, C contains all the keywords in Q, and minimal, that
is, C is no longer a complete tree if any node is removed.

CN is a key component of R-KWS based on Schema
Graph, which is used to generate the final query results. How-
ever, CNs generated by traditional algorithms typically have
overlap. Thus, the CCN is introduced to solve the problem of
repetitive operation caused by overlap. As shown in the Defi-
nition 2, MTJNT is actually the final query results returned to
users. MTJNT shows users which tuples in database include
their interested keywords and how these tuples are organized
by the foreign key references between them.

IV. COMBINED CANDIDATE NETWORK EVALUATION
In this section, we introduce our approach in details. The
overall framework of our approach is presented in subsec-
tion IV-A, while the corresponding CCN generation and the
MTJNT generation are described in the following subsections
respectively.

A. FRAMEWORK OF COMBINED CANDIDATE
NETWORK EVALUATION
The framework of CCN evaluation is shown in Figure 1.
A user enters the keywords at the interactive interface to start
the whole process (step 1). The system firstly queries the
database for tuples containing the keywords, and generates
tuple sets according to the return results (step 2). Then we
use the traditional methods [12], [19] to generate CNs based
on the tuple sets and schema information (step 3). CCNs are
generated based on the CNs in step 4, which is detailed in
subsection IV-B. Next, MTJNTs are generated by traversing
CCNs (step 5, namely subsection IV-C). Finally, the system
measures MTJNTs, and returns the top-k results with the
highest score to the user (step 6). Initialization phase creates
a set of the foreign key constraint to support the execution of
the MTJNT generation algorithm (step 7).

FIGURE 1. Framework of CCN evaluation.

B. ALGORITHM OF CCN GENERATION
R-KWS based on Schema Graphs usually deals with each
CN separately, which results in the overlapping part between

CNs to be handled for many times. To solve this problem,
we propose the novel concept CCN which compresses multi-
ple CNs sharing repetitive part into a treewhose nodes are still
tuple sets. CCN is able to eliminate redundant part causing
unnecessary operation by sharing repetitive structure between
CNs. In order to generate MTJNT from each CN in a CCN,
we design CCN with an important feature that enables each
CN to be identifiable within a CCN. However, it is difficult to
fulfill this requirement due to the repetitive structure between
CNs. To achieve this feature, we propose a concept duplicate
layer in Definition 5.
Definition 5: Let ccn be a CCN which is formed by com-

bining a set of CNs M = {cn1, cn2, . . . , cnn}, and M̂ =

{S1, S2, . . . , Sn} be a set where Si ∈ M̂ is the node set of
cni ∈ M . Let Ud = {Sd1 , Sd2 , . . . , Sdk }1≤k≤n be a set where
Ud ⊆ M̂ . If Ud satisfies |Ud | = max(|Ux |)∀Ux⊆M̂ and
D = Sd1 ∩ Sd2 ∩ ... ∩ Sdk 6= ∅, then D is defined as a
duplicate layer. For any Si ∈ M̂ , if the difference D̃ =
Si − S1 ∪ ...Si−1 ∪ Si+1... ∪ Sn is not empty, then D̃ is also
defined as a duplicate layer.
The node set of a CCN can be divided as duplicate layers

without intersection. CCN can also be considered as a tree
with duplicate layers as nodes. The duplicate layer with
children is owned by multiple CNs while the leaf duplicate
layer belongs to only one CN. Actually, given a CCN, its CN
combined can be identified by a unique path from the root
to the leaf in the corresponding duplicate layer tree. In order
to maintain a duplicate layer tree, we design codes to each
node in a CCN. It contains two dimensions, name field and
parent field. Given a node n in a CCN, name represents the
identifier of the duplicate layer where n exists while parent
is the identifier of its parent duplicate layer.
CCN generation along with the duplicate layer division

process is shown in Figure 2. The capital letters P, A, C,
W represent the database tables PAPER, AUTHOR, CITE
(relationship between PAPERs) and WRITE (relationship
between AUTHOR and PAPER) respectively. The figures in
the left side are examples of CNs. Each node in a CN is a tuple
set. For example, P{k1} represents a key tuple set including
keyword k1 but excluding all the rest keywords from table
PAPER while the capital letter without keywords (like C{})
is free tuple set [12]. At the beginning, any CN is chosen as
an initialization to form the first CCN. For example, the CN
with label 1© in Figure 2(a) is used as the initial CCN whose
nodes’ name and parent fields are set to the code a and null
(donated by a[]) respectively. Then, all the CNs with the same
first node as the CCN are added to the CCN 2©. Note that only
CN and CCN that have the same first node are able to have
repetitive structure.

The process of how to combine a CN into a CCN is shown
in the following. Given a CN cn1 and a CCN ccn1, we firstly
need to find the repetitive structure. It is determined whether
the first duplicate layer dl1 of ccn1 exists in cn1. If dl1 exists
in cn1, then we check whether any child of dl1 exists in cn1.
This process is repeated until no duplicate layer exists in cn1
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FIGURE 2. CCN generation process. (a) Initial CCN.

or arriving at the leaf node, which is an iterative process like
DFS in a graph. During each of iteration, we will find a child
sdl1 of a given duplicate layer, satisfying that sdl1 exists in
cn1. The repetitive structure is determined by the iterative
process.

There exist two result cases from the perspective of dupli-
cate layer comparison when the algorithm terminates. The
first case is that only a part of the duplicate layer currently
being compared exists in the CN to be combined. For this
case, the non-repetitive part (the bold part in Figure 2(b))
of the CN is added as a new duplicate layer to the given
CCN, and the current duplicate layer becomes its parent.
Meanwhile, the repetitive part is separated from the current
duplicate layer and becomes a new one with the current
duplicate layer as its parent. In addition, the parent of all
the original children of the current duplicate layer is changed
to the duplicate layer newly created and separated from the
current duplicate layer; that is, the parent fields of all children
are modified to the name of the new duplicate layer.

For example, both the first duplicate layers of CCN 4© and
CN 5© have the overlapping structure P{k1}-C{}-P{} in Fig-
ure 2. Therefore, the non-repetitive structure C{k2}-P{k3} of
CN 5© is added to CCN 4©, and then becomes a new dupli-
cate layer whose corresponding name field and parent field
are set to e and a, respectively. The remaining, non-repetitive
structure C{} of the current duplicate layer of CCN 4© is
separated as a new duplicate layer whose name and parent
are set as d and a, respectively. In addition, the parent fields
of all the original children of the current duplicate layer are
modified to d which is the new duplicate layer separated from
the current duplicate layer. The process in Figure 2 (b) also
falls into this category. The second case is that the whole
duplicate layer currently being compared exists in the CN to
be combined and there is not any overlap between each of its
children and the CN. For this case, the non-repetitive part of
the CN is added as a new duplicate layer to the CCN (shown
in bold in Figure 2) and its parent is set to the current duplicate
layer. For example, CN 7© contains the first duplicate layer
of CCN 8© whose all children are completely absent in CN
7© and no part of each child appears in CN 7©. Thus, we just
need to add the non-repetitive structure W{k2}-A{k3} of CN
7© to CCN 8© as a new duplicate layer and set the current
duplicate layer a to be its parent.
The CCN generation process is shown in Algorithm 1. First

of all, a CN which is not added into any CCN is used as
the initial TempCCN (Line 4) and the name field is set for
its nodes (Line 5). Then, the CNs that have the same first
node with the TempCCN are added to the TempCCN in turn
(Lines 6-19). When a CN is added to the CCN, the first
duplicate layer of the CCN is compared with the CN (Line 7).
If the first duplicate layer exists in the CN, then the algo-
rithm checks whether one of its children exists in the CN
(Lines 8-10). This process is repeated until there is only a
part of the current duplicate layer existing in the CN or all
its children do not exist in the CN. If the current duplicate
layer exists in the CN and all its children do not exist in the
CN (Line 11), the algorithm adds the non-repetitive structure
of the CN as a new duplicate layer to the CCN (Line 12)
and set name field and parent field for its nodes (Line 13).
If only a part of the current duplicate layer exists in the
CN (Line 14), add a non-repetitive structure of the CN as a
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Algorithm 1 CCN Generation
Input: A set of CN CNs; Threshold of CN CNThreshold
Output: A set of CCN CCNs
1: function CCNGeneration
2: Initialize queue TempCCN // stores intermediate

CCN
3: for CNa∈CNs∧IsNew(CNa) do
4: TempCCN.AddCN(CNa)
5: SetTag(TempCCN )
6: for all CNb∈CNs ∧
7: SameFirstNode(TempCCN ,CNb) do
8: tag←HeadTag (TempCCN )
9: for all stag∈SonTag(tag) ∧
10: CompleteRepeat(stag,CNb) do
11: tag←stag
12: end for
13: if NoNodeRepeat(TempCCN , tag,CNb)

then
14: InsertNode(TempCCN ,CNb)
15: SetTag (TempCCN , tag)
16: else
17: InsertNode(TempCCN ,CNb)
18: SetTag(TempCCN , stag)
19: ResetTag (TempCCN , stag)
20: end if
21: end for
22: CCNs.Add(TempCCN )
23: Clear(TempCCN )
24: end for
25: end function

new duplicate layer to the CCN (Line 15) and set name and
parent for its nodes (Line 16). In addition, the non-repetitive
structure of the current duplicate layer is separated as a new
duplicate layer and the parent fields of all original children of
the current duplicate layer are modified (Line 17). The final
CCN generated is added to the CCN set (Line 20), and the
TempCCN is reset (Line 21) for the next CCN.

C. CCN EVALUATION
The main part of CCN evaluation is how to generate the final
results of MTJNTs. Traditional methods for MTJNT gener-
ation typically convert a CN into a SQL query and execute
it in database, which is costly. Consequently, we propose a
MTJNT generation algorithmwhich significantly reduces the
complex database queries required by traditionalmethods and
further improves the query efficiency. The CN set generated
by our approach contains all possible CNs as discussed above.
Therefore, the MTJNTs generated by the algorithm contain
all possible query results. In the following, we will discuss
how to evaluate the CCN to generate the MTJNTs.

For a given CCN, there exists a corresponding duplicate
layer tree. As shown in Figure 3, the part with the solid
line represents the CCN while the part with the dotted line
represents the corresponding tree with six duplicate layers

FIGURE 3. Combined candidate network.

{Da, Db, Dc, Dd , De, Df }. The role of duplicate layer is to
provide our approach with the capacity of identifying each
CN in the CCN. For a duplicate layer tree, a path from the
leaf to the root can form a CN. The reason why we consider
the CCN in two different ways is that the view considering
tuple sets as nodes is used to generate the joining network of
tuples while the other view is used to restrict the generation of
joining network of tuples within a CN, namely the generation
of MTJNTs.

The way generating the MTJNTs in CCN evaluation is
similar to DFS (Depth-First Search) in CCN, which is a
recursion. The algorithm will begin with the root of a CCN
and traverse all nodes in the CCN. When it arrives at a
duplicate layer leaf, the path from the root to the leaf will
form a MTJNT. The most fine-grained object operated in
the algorithm is actually a tuple rather than a node and the
links between tuples are also considered in addition to the
links between tuple sets. The tuple ID and the join relation-
ships between tuples are loaded during the preload process.
Considering the path (Da Dd Dc) in the CCN in Figure 3,
the algorithm starts at a tuple at1 in P{k1} ofDa, then traverses
the adjacent tuple at2 of at1 in C{}, at3 of at2 in P{}, dt1 of at3
in C{} of Dd , ct1 of dt1 in P{k2,k3} of Dc, where we assume
that each tuple has one adjacent tuple at least in the following
node. Finally, the path which is composed of the tuples at1,
at2, at3, dt1, ct1 forms a real MTJNT for the CN (Da Dd Dc).
It seems to be a simple task and DFS can be quite sufficient
for this work. However, if DFS is used, the adjacent tuples in
W{} and A{k3} in Db might be traversed after at3 is traversed
in Da and this will lead to the generation of incomplete path
which is just a part of a MTJNT for the CN (Da Dd Db).
Consequently, the duplicate layer tree is introduced to restrict
the traversal of path within each of CN in a given CCN.

Given a tuple in a parent node, like at1, its adjacent tuple
of child node, like at2, is also referred to as its eligible tuple.
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All the eligible tuples in the duplicate layer leaf will be
enumerated when the algorithm arrives at a duplicate layer
leaf. Suppose that there exist three eligible tuples in Dc given
dt1. The algorithm will enumerate the three tuples to generate
three MTJNTs. After the enumeration, it returns to the Dd .
If there still exists a child of Dd which has some eligible
tuples not enumerated, like Db, the algorithm will go into Db
and enumerate all the eligible tuples to generate MTJNTs.
There are still some problems which are needed to be solved
in the enumeration of this situation; that is, there are multiple
separate nodes or sub-trees in a duplicate layer, likeDb, rather
than only one node. The algorithm will conduct the recursive
process again over each separate part in the duplicate layer to
enumerate all the combination. Suppose that there are three
tuples dt1, dt2 and dt3 in C{} in Dd . After the enumeration
of Db, the recursion for the tuple dt1 is finished, and then
the algorithm begins with dt2 by the same procedure as dt1,
i.e., traversing the eligible tuples of dt2 in the following Db.
The process keeps iterating until all tuples in P{k1} of Da
complete their recursion; that is, the algorithm terminates at
that point.

It can be seen that the proposed tree CCN efficiently shares
the overlapping part between different CNs. The overlap-
ping part P{k1}/C{}/P{}/C{} between the CN (Da Dd Dc) and
the CN (Da Dd Db) is handled for only one time during
the generation of their MTJNTs. Moreover, our algorithm
parses the complex join relationship between relations in
the front end to generate MTJNTs while traditional algo-
rithms typically evaluate the join relationship in CNs into a
large number of complex SQL queries and execute them in
back-end databases. The SQL queries with lots of complex
join relationship between tables are really time-consuming.
Therefore, our algorithm improves the efficiency from the
two points above.

The MTJNT generation process is shown in Algorithm 2.
The function of MTJNTGeneration is used to generate all
MTJNTs (Lines 3-6). The function of MTJNTExtension is
for the extension of TempMTJNT and its parameter Node is
the tuple set where the extended tuple is located. When Node
is the first node of the CCN (Line 9), a tuple of Node is added
to TempMTJNT (Line 11) and the extension continues (Lines
10-14). If Node is not the first node, the algorithm looks for
a tuple which belongs to the parent node of Node and has
been added to TempMTJNT (Line 16), and then adds the
adjacent tuple of this tuple in Node to TempMTJNT (Line
18) and continues the extension (Line 19). The function of
AddNextTuple is for the extension of the next tuple. If there
is a node in the CCN that is on the same duplicate layer as
Node and has not been visited (Lines 27-29), the algorithm
extends the tuple in that node (Line 28) or its child. When
the duplicate layer of the Node has the child (Line 30),
the algorithm extends the tuples of the nodes in the child
(Lines 31-35). When the duplicate layer which the Node is
in has been extended and there is no child, TempMTJNT is a
final MTJNT (Line 37).

Algorithm 2 MTJNT Generation
Input: A set of CCN CCNs
Output: A set of MTJNT MTJNTs
1: function MTJNTGeneration // stores intermediate

MTJNT
2: Initialize queue TempMTJNT
3: for all CCN∈CCNs do
4: Node←HeadNode (CCN )
5: MTJNTExtension(TempMTJNT,Node,CCN )
6: end for
7: end function
8: function MTJNTExtension(TempMTJNT, Node, CCN )
9: if Node=HeadNodeOf(CCN ) then
10: for all tuple∈TupleSet(Node) do
11: TempMTJNT.AddTuple(tuple)
12: AddNextTuple(TempMTJNT, Node, CCN )
13: TempMTJNT.Remove(tuple)
14: end for
15: else
16: ft ←ParentTuple(TempMTJNT ,Node)
17: for all tuple∈AdjacentTupleOf(ft)∧tuple∈Node

do
18: TempMTJNT.AddTuple(tuple)
19: AddNextTuple(TempMTJNT ,Node,CCN )
20: if AllNodeAdd(TempMTJNT ,Node) then
21: TempMTJNT.Remove(tuple)
22: end if
23: end for
24: end if
25: end function
26: function AddNextTuple(TempMTJNT ,Node,CCN )
27: for all n∈CCN∧SameTag(n,Node) do
28: MTJNTExtension (TempMTJNT, n, CCN )
29: end for
30: if ExistSonTag(Node) then
31: for all g∈SonTag (Node) do
32: for all h∈HeadNodeOfBranch(g,CCN ) do
33: MTJNTExtension (TempMTJNT, h,

CCN )
34: end for
35: end for
36: end if
37: MTJNTs.Add(TempMTJNT )
38: end function

A set M of all possible MTJNTs are generated after the
CCN evaluation. We show how to select the top-k MTJNTs
in M . It is not the point of this paper how to measure the
quality of the final results returned to users. Thus, we choose a
classical evaluation strategy [12], [29] for the top-k selection.
Their strategy prefers MTJNTs with less tuples, which means
the MTJNT with the least tuples will be the top-1 answer.
Our approach employs their strategy to score each MTJNT
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TABLE 1. DBLP data set.

in M , and then returns top-k MTJNTs. Actually, any eval-
uation strategy can be easily exploited by our approach for
the selection of the results returned according to different
requirements or data circumstance.

V. EXPERIMENTAL ANALYSES
Our algorithms are implemented using Java language and
experiments are carried on a compatible PC, with Intel I5 pro-
cessor (3.2GHz) and 8 GB of RAM. The software platform
is configured as Windows 7 and Oracle 11g. The experi-
mental data used are from real datasets, DBLP (DataBase
systems and Logic Programming) and IMDB (Internet Movie
Database) respectively. DBLP is the on-line reference for
bibliographic information on major computer science publi-
cations, while IMDB is the world’s most popular and authori-
tative source for films, television programs and home videos,
designed to help fans explore the world of movies. They
provide two public datasets for research community, which
are updated continuously and wildly used by researchers. The
specific features of the two datasets are shown in Table 1 and
Table 2.

TABLE 2. IMDB data set.

In our experiments, we compare the query efficiency of
our approach (CCNE for short) to the traditional approach
DISCOVER-II along different dimensions and test the effect
of changing various parameters of CCNE on its efficiency.
CNRank is a representative CN ranking technique which
reduces the number of CNs to be evaluated by ignoring the
less important CNs for the improvement of query efficiency
(there are several similar methods within this kind, such as
SPARK, etc.). Thus, we make CNRank to be a complete
end-to-end system by adding CN generation and evalua-
tion process (as said in [21]), and compare our approach
to CNRank on query efficiency. We also conduct experi-
ments on two different datasets DBLP and IMDB and obtain
similar results, which means our approach is stable and
valid.

FIGURE 4. Comparison with traditional methods.

A. EFFECT OF NUMBER OF KEYWORDS
The experiment compares the efficiency of CCNE with the
two methods DISCOVER-II and CNRank when varying the
number of keywords. The maximum number of nodes in CN
(namely the CN’s threshold) and the k value of top-k are
set to 5 and 10 respectively. The experimental results are
shown in Figure 4. It can be seen that the efficiency of CCNE
is higher than the other two methods. The query time of
CCNE slowly increases with varying the number of keywords
from 1 to 5. In CCNE, the process of creating tuple sets
accounts for the main part of the query time. As the number
of keywords increases, more tuple sets need to be created,
which results in increased query time. For DISCOVER-II
and CNRank, their evaluation process of CNs needs more
time in addition to the time cost for creating the tuple sets,
especially for DISCOVER-II. Therefore, CCNE has a better
performance in query time than DISCOVER-II and CNRank.

B. EFFECT OF THE NUMBER OF RESULTS RETURNED
The influence of the number of results returned (namely,
top-k) is tested for the three methods in this experiment. The
number of keywords and CN’s thresholds are fixed at 3 and 5,
respectively. As shown in Figure 5, the query time of CCNE
has almost no change with the increase of k comparing with
DISCOVER-II and CNRank. The reason is that CCNE finds
out the top-k results from the universe of MTJNTs; that is,
CCNE does not need to generate more MTJNTs to return
the top-k results as the value k increases. DISCOVER-II and
CNRank implement the CN evaluation according to the level
of relevance [18], [20], and stop the execution after generating
top-k MTJNTs; that is, DISCOVER-II and CNRank need
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FIGURE 5. Query time varying top-k .

to generate more MTJNTs with the increase of the value k,
which decreases their efficiency.

C. TIME COST OF DIFFERENT PHASES IN CCNE
The time cost of different phases of CCNE is analyzed in this
experiment. There are three main phases: the generation of
tuple sets, the preparation for MTJNTs, and the generation of
MTJNTs, as shown in Figure 6. It can be seen that the tuple
set generation accounts for the most time of CCNE relative to
the other two phases. A large number of queries are posed to
the database and the execution of these queries takes up much
time of CCNE. The other two phases have less access to the
database, and the size of data manipulated is much smaller
than the process of creating tuple sets. Therefore, the columns
of the generation of tuple sets in Figure 6 are much higher
than the other two phases. Time cost of generating MTJNTs
tends to increase at the beginning and then decrease as the
number of keywords increases. This is because for a given
CN’s threshold the number of CNs increases first and then
decreases as the number of keywords increases. For example,
if there is only one keyword, then CN contains only one key
tuple set. Thus, the number of CNs is only the number of key
tuple sets. However, the number of CNs containing all the
keywords will significantly decrease when there are a large
number of keywords.

D. COST ANALYSIS OF INITIALIZATION
The consumption of space and time in the initialization of
CCNE is shown in Figure 7 where the abscissa represents
DBLP and IMDB in different years, the histogram with the
legend DBLP indicates the size of the DBLP dataset used in
our experiments, the legend Initialization indicates the size of
the memory occupied by the initialization of CCNE, and the

FIGURE 6. Time cost of different phases in CCNE.

FIGURE 7. Cost analysis of initialization.

performance curve indicates the time cost of the initialization.
As shown in Figure 7, the amount of data loaded during
the initialization is much smaller than the actual size of the
dataset, and has a small increase rate as the dataset increases.
Meanwhile, CCNE consumes memory much less than tradi-
tional R-KWS based on Data Graphs, which considers a tuple
as a node in their graphs. The time cost of the initialization in
CCNE is about 200s when the whole DBLP dataset is used
for the test, which is not an acceptable time cost for query.
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However, the initialization is established for only one time at
the beginning of execution during the whole life cycle of our
system. The same experimental results were also presented
on the IMDB dataset. Our approach is able to achieve high
efficiency based on the initialization.

VI. CONCLUSION
We propose the approach based on CCN evaluation to solve
the problem of low query efficiency of R-KWS based on
Schema Graphs. The key of our approach is the new proposed
tree CCN which is the base of efficiency improvement. CCN
can efficiently share the overlap between CNs by compress-
ing them into a single tree. Meanwhile, CCN possesses an
important feature that each combined CN within the CCN
is still identifiable. We propose an algorithm based on this
feature to generate the final query results, which significantly
improve the efficiency of R-KWS based on Schema Graphs.
We compare the time cost of the proposed approach with
two traditional approaches DISCOVER-II and CNRank in the
DBLP dataset and IMDB dataset. Experimental results show
that our approach has a better performance than the other
two approaches, and the change of relative parameters has
less negative effect on the efficiency of our approach than the
other two approaches, such as the CN’s threshold, the number
of query result returned (top-k), the number of keywords, etc.
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