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ABSTRACT This paper addresses the spatial trajectory tracking problem for a stratospheric airship with
state constraints, input saturation and unknown disturbances. First, a Laguerre-based model predictive
kinematic controller (LMPC) is proposed to tackle the state constraints and generate the desired velocity
signal. To reduce the complexity of online optimization, Laguerre functions are applied to decrease the
number of optimization variables by approximating the predicted control sequence. Second, in the dynamic
loop, a sliding mode controller (SMC) with fast power rate reaching law (FPRRL) is introduced to track
the desired velocity signal. The unknown disturbances in the dynamic model of airship are estimated and
compensated by reduced-order extended state observer (ESO). An anti-windup compensator is incorporated
into the FPRRL-based SMC controller to deal with the input saturation. Stability analysis implies that the
tracking errors converge to a small neighborhood of zero. Comparative simulations about spatial straight and
curve trajectory tracking are provided to evaluate the effectiveness and robustness of the proposed control
scheme.

INDEX TERMS Input saturation, model predictive control, state constraints, stratospheric airship, trajectory
tracking, unknown disturbances.

I. INTRODUCTION
Stratospheric airship, as a novel type of unmanned aerial
vehicle with great potentials in surveillance, emergency com-
munications and environmental observation, has garnered
considerable attention from scientists to engineers of many
fields in recent years [1], [2]. Similar to the balloon [3],
stratospheric airship gains the lift force through the use of
a buoyant gas rather than aerodynamic force, which makes
the airship possess longer endurance than the conventional
aircraft. Unlike the balloon, the stratospheric airship is capa-
ble of cruising along the predetermined path, also known
as trajectory tracking [4], [5], to accomplish relatively com-
plicated missions, such as typhoon tracking and maritime
rescue. However, the tracking control is quite difficult since
stratospheric airship is a complex, highly nonlinear and
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multivariable system. Moreover, parametric uncertainties,
external disturbances and state constraints in the model also
bring challenges in controller design.

In recent years, several approaches have been applied to
deal with the trajectory tracking problem of the stratospheric
airship. In [5], the author proposed a trajectory tracking con-
troller based on trajectory linearization control (TLC) theory.
The author of [6] designed a fuzzy sliding mode controller
to track a time-varying trajectory. In [7], active disturbance
rejection control (ADRC) was adopted to carry out the planar
trajectory tracking of the airship subject to lumped distur-
bances, and the author in [8] extended the approach to spa-
tial curve tracking. Besides, some other advanced methods,
such as neural network [9], reinforcement learning [10] and
fixed-time control [11], have also been applied to strato-
spheric airship successfully.

Among plenty of methods, the backstepping method is
a preferred choice for many researchers [12]–[15]. [13]
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proposed a vectorial backstepping tracking controller with
control allocation to deal with input saturation. In order to
avoid computing the derivatives of the virtual control com-
mand, the author of [14] designed a command-filtered back-
stepping controller for a multi-vectored thrust stratospheric
airship. However, in the conventional backstepping method,
the velocity control law of airship is directly related to the
position tracking errors. Therefore, large velocity or drastic
change of velocity can be generated from a large error condi-
tion. This phenomenon is termed as speed jump in some arti-
cles [16], [17]. When backstepping to the dynamic control,
the required force/torque at the jump point may exceed the
maximal force/torque that the airship can provide, which is
known as input saturation. In addition, stratospheric airship,
mainly served as a movable payload platform of communica-
tion or surveillance equipment, should remain in a relatively
steady status while tracking the predefined path. Therefore,
the constraint of the linear and angular velocity of the air-
ship is an inevitable challenge. Recently, barrier Lyapunov
function (BLF) based backstepping method for solving the
constrained problem of nonlinear system has been an active
research area [18]–[20]. In [18], the constraints of airship
position tracking error were handled by a tan-type BLF in the
guidance loop. In [21], the author proposed a log-type BLF
based controller to cope with the full-state constrained prob-
lem of the airship. However, compared with model predictive
control (MPC), BLF based backstepping method is rather
complicated and has to redesign when the constraint changes.
By applying MPC, not only the state constraints are handled
explicitly, but also the speed jump problem is avoided. MPC
has witnessed lots of outstanding developments in many
related areas, such as mobile robot [22], unmanned aerial
vehicle [23] and autonomous underwater vehicle [24]. The
research on the airship control with MPC is rather recent and
not yet exhaustive. [25] presented a gain-scheduling MPC
method to control the lateral motion of the unmanned airship.
Combining with the PID technology, the author of [26] pro-
posed a composite MPC-based control scheme to track the
desired forward velocity. In [27], an analytic MPC algorithm
was adopted to perform the path-following control of the air-
ship with uncertainties, and the controller design contained a
rather complex calculation to obtain the relative degree of the
model. In [28] and [29], the airship model was reformulated
into a linear parameter-varying system, and the optimiza-
tion problem in MPC was converted into a time-consuming
semi-definite programming problem. Although the afore-
mentioned researches have made some achievements in the
airship control with MPC, the high computational burden
problem of the MPC method has not been considered. It is
necessary to design an efficient MPC controller to handle the
constraints and make it suitable for real-time scenarios.

The parametric uncertainties and unknown disturbances
present another challenge to the motion control of strato-
spheric airship. It is necessary to employ disturbance sup-
pression or attenuation methods to guarantee robustness.
In [30], a novel type-2 fuzzy approach was proposed to cope

with the parameter uncertainty. In [4], the author proposed
a non-certainty equivalence adaptive control to estimate the
uncertain parameters, and asymptotic convergence of errors
was guaranteed. A radial basis function neural network was
applied to compensate for the unknown wind field in [31].
The author of [32] proposed a novel super-twisting distur-
bance observer to improve the convergent rate of disturbance
tracking. Compared with the techniques above, the extended
state observer regards the lumped disturbance as new state
to compensate and has no need for prior information about
the bounds of disturbance. Therefore, ESO is relatively inde-
pendent of the mathematical model of the plant and sim-
ple to implement. In [7], a tracking controller of airship
horizontal model was proposed based on ADRC, and the
unknown disturbances were estimated by a third-order ESO.
In [33], based on the error model of the airship, a con-
ventional second-order ESO was adopted to estimate the
unknown term. Combining with integral SMC, an adaptive
multiple-input and multiple-output ESOwas designed to esti-
mate the unmeasurable linear and angular velocities for the
underwater robot in [34]. Author of [35] proposed a back-
stepping controller for integrated missile control system via
reduced-order ESO, which had fewer tuning parameter than
the conventional second-order ESO.

In this paper, considering the efficiency of MPC method,
a Laguerre-based MPC controller is proposed to deal with
the state constraints and reduce the online computational
burden in the kinematic loop of airship. In LMPC, the pre-
dicted control input sequence, which needs to be optimized,
is approximated by a group of Laguerre orthonormal basis
functions [36]–[38], [42]. Theoretically, the number of the
optimization variables in LMPC depends on the number
of basis functions while that number in conventional MPC
increases with the control horizon. Therefore, the complex-
ity of solving the optimization problem with the state con-
straints is reduced as the LMPC controller counting on
fewer optimization variables than conventional MPC meth-
ods, especially in large control horizon situation. On the
basis of our previous work [31] and the discussion above,
an FPRRL-based SMC controller with reduced-order ESO
is applied in the dynamic loop to track the desired velocity
signal generated by the LMPC kinematic controller. In order
to simplify the controller design, the coupling control input
of the airship model are classified into unknown disturbances
and estimated by the reduced-order ESO. In addition, an anti-
windup compensator is adopted to deal with the input satura-
tion. The main contributions of this paper are summarized as
follows:

1) Compared with backstepping based method [12], [14],
the speed jump problem under large error condition
is avoided by applying the MPC method with proper
constraints. Compared with the discrete MPC con-
troller [43] and the nonlinear MPC controller [44],
the proposed LMPC controller reduces the computa-
tional complexity by decreasing the quantity of opti-
mization variables.
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2) The reduced-order ESO applied in this paper has
fewer tuning parameter and easier to implement
than [7]. Compared with the conventional ESO [33],
the reduced-order ESO has better estimation perfor-
mance and faster transient response under the same
observer parameter.

3) State constraints, unknown disturbances and input sat-
uration are taken into consideration simultaneously in
this paper. Unknown disturbances and input saturation
are estimated and compensated by reduced-order ESO
and anti-windup compensator, respectively.

The rest of this paper is organized as follows. In Section II,
related preliminaries, stratospheric airship model and control
objectives are introduced. Section III is devoted to designing
the trajectory tracking controller. Comparative simulation
results are presented in Section IV. In Section V, a summary
is concluded, and the future work is indicated.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
1) NOTATIONS
Throughout this paper, |·| represents the absolute value of a
scalar; ‖·‖ represents the Euclidean norm of a vector or the
Frobenius norm of a matrix; |·|n represents n-th power of the
absolute value of each element of a scalar. In addition, In×n
represents a n × n identity matrix; On×n represents a n × n
zero matrix.

2) DISCRETE-TIME LAGUERRE FUNCTIONS
The discrete-time Laguerre functions are a set of orthonormal
basis functions and can be written in a vector form as:

L(k) = [l1(k), l2(k), l3(k), · · · , lN (k)]T (1)

where N ∈ N represents the number of Laguerre functions
and is a design parameter. L(k) satisfies the following differ-
ence equation

L(k + 1) = AlL(k) (2)

with the initial condition given as

L(0) =
√
1− a2l

[
1,−al, a2l , · · · , (−1)

N−1aN−1l

]
(3)

where 0 ≤ al < 1 is the other design parameter of Laguerre
functions. Al is a N × N lower triangular matrix and each
element of Al is defined as:{

ai,j = al if i = j

ai,j = (−1)i−j−1ai−j−1l (1−
√
1− a2l ) if i > j

(4)

The orthonormality of the discrete-time Laguerre functions
can be expressed as

∞∑
k=0

li(k)lj(k) = 0 for i 6= j

∞∑
k=0

li(k)lj(k) = 1 for i = j (5)

Remark 1: The orthonormal basis function is a powerful
tool in system identification to fit the unknown model. Moti-
vated by this idea, the discrete-time Laguerre functions can
be utilized to parameterize the predicted control sequence in
MPC with proper Laguerre coefficients [38]. For example,
an unknown discrete signal u(k) can be expressed by a linear
combination of N discrete-time Laguerre functions as

u(k) = L(k)T γ (6)

where the vector γ represents the coefficient of the linear
combination.

3) FPRRL
FPRRL is described by a first-order nonlinear system

ṡ = −ρs−k|s|αsgn(s) (7)

where s ∈ R is the sliding surface.
Lemma 1: For FPRRL above, s and ṡwill converge to zero

in finite time and the settling time T is a continuous function
of the initial conditions

T =
ln(1+ k

ρ
|s(0)|(1−α))

ρ(1− α)
, s(0) ∈ R (8)

if k, ρ > 0, α ∈ (0, 1) [39].
In the presence of disturbance δ, considering the following

nonlinear system

ṡ = −ρs−k|s|αsgn(s)+ δ, (9)

FPRRL can not guarantee the finite time stabilization
of s and ṡ.
Lemma 2: If the disturbance δ 6= 0 and |δ| ≤ δ̄ where δ̄ is

a constant, s will converge to the region as

|δ| ≤ min((
δ̄

k
)
1
α ,
δ̄

ρ
) (10)

in finite time [39].

4) DEFINITIONS
Definition 1: For any x ∈ R, a saturation function is

defined as

fsat (x) =


xmax, x > xmax
x, xmin ≤ x ≤ xmax
xmin, x < xmin

(11)

where xmax, xmin can be regarded as the physical limits of
actual system. For any x = [x1, x2, · · · , xn]T ∈ Rn, the sat-
uration function vector is fsat(x) = [fsat(x1), fsat(x2), · · · ,
fsat(xn)]T.

B. STRATOSPHERIC AIRSHIP MODEL
The stratospheric airship studied in this paper is shown
in Figure 1. The airship has a traditional ellipsoidal enve-
lope with a cross-shaped tail. A gondola is attached to the
bottom of the envelope and symmetric to the longitudinal
axis. The helium filled in the envelope provides the buoyancy.
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FIGURE 1. Stratospheric airship structure sketch.

The thrust force and steering torque are generated by four
vertical vector propellers and one horizontal vector propeller
attached to the envelope.

1) REFERENCE FRAMES
To describe the motion of airship in three-dimensional space,
the earth and body reference frames must be defined. The
origin Og of the earth reference frame (ERF) is located at
a fixed point on the ground. Ogxg points to the north, Ogzg
points to the earth core, and Ogyg is determined following
the right-hand rule. The origin O of the body reference
frame (BRF) coincides with the center of volume (CV) and
lies right above the center of mass (CG). Ox points towards
the front of the airship, Oz is perpendicular to Ox axis and
points downwards.Oy is determined following the right-hand
rule.

The spatial positions of O in ERF are defined as p =
[x, y, z]T , and the Euler angles which represent the orien-
tation of BRF with respect to ERF are defined as ξ =
[φ, θ, ψ]T . The linear and angular velocity are defined as
v = [u, v,w]T and ω = [p, q, r]T with respect to BRF,
respectively. {Ix , Iy, Iz} and {Ixy, Iyz, Ixz} denote the moments
of inertia and the products of inertia in BRF, respectively.
Since the gondola is symmetric about the lateral plane andCG
lies right below CV, the products of inertia {Ixy, Iyz, Ixz} = 0.

2) STRATOSPHERIC AIRSHIP DYNAMIC MODEL
To facilitate the airship modeling, some reasonable assump-
tions are made.
Assumption 1: The stratospheric airship is regarded as

a rigid body such that the aeroelastic effects can be
neglected [40].
Assumption 2: The stratospheric airship remains in the

neutral buoyant state [40].
The kinematic equations of airship are given by

ṗ = Reb(ξ )v, ξ̇ = W ξ (ξ )ω (12)

where

Reb(ξ ) =

cθcψ sθcψsφ − sψcθ sθcψcφ + sψsφ
cθsψ sθsψsφ + cψcφ sθsψcφ − cψsφ
−sθ cθsφ cθcφ

 (13)

is the direction cosine matrix of BRF to ERF. s(·), c(·), t(·)
denote sin(·), cos(·), tan(·), respectively.

W ξ (ξ ) =

1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (14)

is the Euler rotation matrix. The dynamic equations of airship
are given by[

mI3×3 +M ′ −mr′C
×

mr′C
× IO + I ′O

] [
v̇
ω̇

]
+

[ (
mI3×3 +M ′

)
ω × v+ mω ×

(
ω × r′C

)
ω × (IOω)+ mr′C × (ω × v)

]
=

[
f g − f b + f a + f t + dv

mg +mb +ma +mt + dω

]
(15)

where m is the mass of airship; r′C
× is a skew symmetric

matrix; IO = diag{Ix , Iy, Iz} is the inertial matrix to the
axis of BRF; M ′ and I ′O are additional mass and inertia
matrices, respectively; f g, f b, f a and f t are the gravity, buoy-
ancy, aerodynamic force and propulsive force, respectively;
mg, mb, ma and mt are the gravitational torque, buoyancy
torque, aerodynamic torque and propulsive torque, respec-
tively; dv and dω represent the unknown disturbances.

For the convenience of controller design, the kinematic and
dynamic equations can be expressed in the following compact
form {

η̇ = G (η) ν
ν̇ = f ν (η, ν)+ Bτ + d

(16)

with

G =
[
Reb O3×3
O3×3 W ξ

]
(17)

B =


bu 0 0 0 buq 0
0 bv 0 bvp 0 0
0 0 bw 0 0 0
0 bpv 0 bp 0 0
bqu 0 0 0 bq 0
0 0 0 0 0 br

 (18)

where η =

[
pT , ξT

]T
, ν =

[
vT ,ωT

]T
, f ν =[

fu, fv, fw, fp, fq, fr
]T . τ = [

τu, τv, τw, τp, τq, τr
]T are the

generalized force and torque. d =
[
du, dv, dw, dp, dq, dr

]T
are the unknown disturbances. The detailed model of
the stratospheric airship studied in this paper can be
referred to [19].
Assumption 3: The control inputs of the stratospheric air-

ship τ satisfy the input saturation: τ = fsat(τ 0), where τ 0
represent the unconstrained control inputs and {τmin, τmax}
indicate the minimum and maximum values of control inputs,
respectively.

C. PROBLEM FORMULATION
The control objective of this paper is to design the control
input τ for the stratospheric airship described by (16) in the
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FIGURE 2. Block diagram of the trajectory tracking controller.

presence of state constraints, input saturation and unknown
disturbances such that

1) the airship position p moves along the desired trajec-
tory pd (t) = [xd (t), yd (t), zd (t)]T , and the trajectory
tracking errors converge to a sufficiently small neigh-
borhood of zero;

2) the linear and angular velocity satisfy the following
constraints

νmin ≤ ν(t) ≤ νmax (19)

1νmin ≤ 1ν(t) ≤ 1νmax (20)

Remark 2: (19) is posed to make the airship remain in a
relatively stable status. (20) is used to avoid the speed jump
under large initial error condition.

III. TRAJECTORY TRACKING CONTROLLER DESIGN
As illustrated in Figure 2, the control scheme in this paper
consists of three main parts: the predefined trajectory gener-
ated by the trajectory tracking model, the LMPC kinematic
controller and the FPRRL-based SMC dynamic controller.

A. TRAJECTORY TRACKING MODEL
To generate the desired attitude ξd (t), a Frenet frame [41] of
the desired trajectory pd (t) at arbitrary time t is defined as
follows: 

et =
ṗd
‖ṗd‖

eb =
ṗd × p̈d
‖ṗd × p̈d‖

en = eb × et

(21)

where et , eb and en represent the tangent vector,
the binormal vector and the normal vector, respectively.
Then, the desired reference frame can be established by
{et , sgn(eb3)en, sgn(eb3)eb}, and the rotation matrix from the
desired reference frame to ERF can be written as Red =[
et , sgn(eb3)en, sgn(eb3)eb

]
where eb3 is the third element

of eb [4], [11]. Since the objective of attitude tracking is

to render the BRF coinciding the desired reference frame,
comparing Red =

[
rij
]
(i = j = 1, 2, 3) with Reb results in the

desired attitude ξd = [φd , θd , ψd ]T as

φd = arctan(
r32
r33

)

θd = arctan(
−r31√
r211 + r

2
21

)

ψd = arctan(
r21
r11

)

(22)

and then the desired tracking signal for the kinematic loop is

defined as ηd =
[
pTd , ξ

T
d

]T
.

B. KINEMATIC CONTROLLER DESIGN
In the kinematic loop, an LMPC controller is designed
to track the desired signal ηd obtained from the previous
subsection.

1) CONTROLLER DESIGN
The airship kinematicmodel in (16) can be treated as a control
subsystem with input ν and output η. Thus, it can be refor-
mulated into a discrete-time linear model with a sampling
interval 1t as follows{

xη,s(k + 1) = Aη,sxη,s(k)+ Bη,s(k)ν(k)
η(k) = Cη,sxη,s(k)

(23)

with

Cη,s = Aη,s = I6×6 (24)

Bη,s(k) = TG (η (k)) (25)

We assume xη,s(k) is observable, thus xη,s(k) = η(k). T is
a scalar matrix with diagonal element 1t . Since the posi-
tion and attitude of stratospheric airship η change slowly in
practice, in order to reduce the computational burden, it is
reasonable to assume that G (η (k)) is invariant during the
prediction horizon.
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To get the incremental expression of (23), we define the
increment of input ν and state xη,s as

1ν(k) = ν(k)− ν(k − 1) (26)

1xη,s(k) = xη,s(k)− xη,s(k − 1) (27)

and the tracking error is defined as

eη(k) = η(k)− ηd (k) (28)

Assumption 4: The desired trajectory signal ηd (k)
remains unchanged within the prediction horizon.

Then, a new augmented state can be defined as follows

xη(k) =
[
1xη,s(k)T , eη(k)T

]T
(29)

Based on (23) and (29), a new augmented prediction model
can be obtained as{

xη(k + 1) = Aηxη(k)+ Bη1ν(k)
eη(k) = Cηxη(k)

(30)

with

Aη =
[

Aη,s O6×6
Cη,sAη,s I6×6

]
(31)

Bη =
[

Bη,s
Cη,sBη,s

]
(32)

Cη = [O6×6, I6×6] (33)

According to the augmented prediction model (30), given
a predicted control sequence, the corresponding prediction
state sequence can be calculated by simulating the prediction
model forward over Np steps, where Np is termed as pre-
diction horizon. Given the initial state xη(k), the predicted
input and state at time k + m are defined as 1ν(k + m) and
xη(k + m|k), respectively. For illustrative purpose, the pre-
dicted input at time k + m is written as

1ν(k + m) = [1ν1(k + m),1ν2(k + m), . . . ,

1ν6(k + m)]T (34)

where 1νi(k + m) represents the ith element of 1ν(k + m).
Inspired by Remark 1, given the parameter ali and number Ni
of Laguerre functions, 1νi(k + m) can be expressed as

1νi(k + m) = Li(m)T γ i (35)

where Li(m)T =
[
l i1(m), l

i
2(m), . . . , l

i
Ni (m)

]
, and γ i are the

coefficients that need to be optimized. Substituting (35)
into (34), we have

1ν(k + m) = M(m)γ (36)

with

M(m) =


L1(m)T oT2 . . . oT6
oT1 L2(m)T . . . oT6
...

...
. . .

...

oT1 oT2 . . . L6(m)T

 (37)

γ =
[
γ T1 , γ

T
2 , . . . , γ

T
6

]T
(38)

where oi, i = 1, 2, . . . , 6 represents zero vector and its
dimension is identical to Li(m). Simulating (30) forward over
m steps, the predicted state at time k + m can be obtained as

xη(k + m|k) = Amη xη(k)+
m−1∑
j=0

Am−j−1η Bη1ν(k + j) (39)

Substituting (36) into (39), we have

xη(k + m|k) = Amη xη(k)+
m−1∑
j=0

Am−j−1η BηM(j)γ

= Amη xη(k)+ 0(m)
T γ (40)

with

0(m)T =
m−1∑
j=0

Am−j−1η BηM(j) (41)

Then, the predicted tracking error at time k +m is calculated
by

eη(k + m|k) = Cηxη(k + m|k) (42)

Based on prediction model (30), the conventional cost
function is defined as

J (k) =
Np−1∑
m=0

1ν(k + m)TR1ν(k + m)

+

Np∑
m=1

xη(k + m|k)TQxη(k + m|k) (43)

with

Q = CT
ηCη (44)

where R is the weight matrix. Substituting (36) into the
first item of (43), with a sufficiently large prediction hori-
zon Np, applying the orthonormality of Laguerre func-
tions (5), we have

Np−1∑
m=0

1ν(k + m)TR1ν(k + m) = γ TRηγ (45)

where Rη is depending on R and its dimension is equal to∑6
i=1 Ni. Then, substituting (40) and (45) into (43), we have

J (k) = γ T2γ + 2γ T9xη(k)

+

Np∑
m=1

xη(k)T (ATη )
mQAmη xη(k) (46)

with

2 =

Np∑
m=1

0(m)Q0(m)T + Rη (47)

9 =

Np∑
m=1

0(m)QAmη (48)
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where the third item in (46) is constant and will be omitted in
optimization.

To guarantee the stability of kinematic loop, an exponential
weighting factor αw > 1 and a scaling factor 0 < λw < 1 are
accommodated into the conventional cost function (43), and
a new cost function of LMPC is defined as

JL(k) =
Np∑
m=1

α−2mw xη(k + m|k)TQLxη(k + m|k)

+

Np−1∑
m=0

α−2mw 1ν(k + m)TRL1ν(k + m) (49)

with

QL =
(
λw

αw

)2

Q+

(
1−

(
λw

αw

)2
)
P∞ (50)

RL =
(
λw

αw

)2

R (51)

Q = CT
ηCη (52)

where R is the weight matrix and P∞ is the solution of
following algebraic Riccati equation

ATη
λw

[P∞ − P∞
Bη
λw

(RL +
BTη
λw

P∞
Bη
λw

)−1
BTη
λw

P∞]
Aη
λw

+QL − P∞ = 0. (53)

In order to simplify (49), we define

x̂η(k + m|k) = α−mw xη(k + m|k) (54)

1ν̂(k + m) = α−mw 1ν(k + m) (55)

Âη = α−1w Aη, B̂η = α−1w Bη (56)

According to (30), it is easy to verify that x̂η and ν̂ satisfy the
following equation

x̂η(k + m+ 1|k) = Âηx̂η(k + m|k)+ B̂η1ν̂(k + m) (57)

Substituting (54) and (55) into (49), the cost function JL(k) is
transformed into

JL(k) =
Np∑
m=1

x̂η(k + m|k)TQL x̂η(k + m|k)

+

Np−1∑
m=0

1ν̂(k + m)TRL1ν̂(k + m) (58)

Therefore, the optimization problem subject to cost func-
tion (49) and model (30) can be regarded as finding the
optimal solution subject to cost function (58) and model (57).
Repeating the deduction process from (35) to (48) on the basis
of (57), the following results can be obtained

1ν̂(k + m) = ML(m)γ L (59)

x̂η(k + m|k) = Â
m
η x̂η(k)+ 0L(m)

T γ L (60)

Similar to (46), substituting (59) and (60) into (58), we have

J (k) = γ TL2Lγ L + 2γ TL9L x̂η(k)

+

Np∑
m=1

x̂η(k)T (Â
T
η )
mQLÂ

m
η x̂η(k) (61)

with

2L =

Np∑
m=1

0L(m)QL0L(m)
T
+ Rη,L (62)

9L =

Np∑
m=1

0L(m)QLÂ
m
η (63)

where Rη,L is depending on RL . The detailed deduction and
expression of the above equations are omitted for the sake of
page limitation.

From (55) and (59), we have ν(k) = 1ν(k) +
ν(k − 1), 1ν(k) = 1ν̂(k) = ML(0)γ L . Consequently,
the constraints (19) and (20) can be reformed as

ML(0)γ L ≤ 1νmax

ML(0)γ L ≤ νmax − ν(k − 1)
−ML(0)γ L ≤ −1νmin

−ML(0)γ L ≤ −1νmin + ν(k − 1)

(64)

Based on (54), we have xη(k) = x̂η(k). Substituting xη(k) =
x̂η(k) into (61), the optimization procedure of LMPC method
is to find the optimal solutions γ ∗L that satisfy the con-
straints (64) and minimize the following cost function

J (k) = γ TL2Lγ L + 2γ TL9Lxη(k) (65)

where the third item in (61) is constant and omitted.
Finally, the desired νd at time k is generated by

νd (k) = ML(0)γ ∗L + ν(k − 1). (66)

2) STABILITY ANALYSIS
The detailed stability analysis of kinematic loop can be found
in Appendix A.

C. DYNAMIC CONTROLLER DESIGN
1) CONTROLLER DESIGN
In the kinematic loop, the desired νd for the dynamic loop is
calculated based on the LMPC controller. To track the desired
νd subject to input saturation and unknown disturbances,
an SMC controller with a reduced-order ESO and an anti-
windup compensator is employed.

According to the dynamic equation in (16), the expanded
form of dynamic model can be written as

u̇ = fu + buτu + buqτq + du
v̇ = fv + bvτv + bvpτp + dv
ẇ = fw + bwτw + dw
ṗ = fp + bpτp + bpvτv + dp
q̇ = fq + bqτq + bquτu + dq
ṙ = fr + brτr + dr

(67)
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Due to the non-diagonal elements in (18), the dynamic model
has control coupling problem. To solve this problem, the cou-
pling terms can be treated as internal uncertainties and clas-
sified into the unknown disturbances. And then we define

d∗u = buqτq + du
d∗v = bvpτp + dv
d∗w = dw
d∗p = bpvτv + dp
d∗q = bquτu + dq
d∗r = dr

(68)

Hence, the dynamic equations can be transformed into

ν̇ = f ν + B
∗τ + d∗ (69)

with

B∗ = diag{bu, bv, bw, bp, bq, br } (70)

d∗ =
[
d∗u , d

∗
v , d
∗
w, d
∗
p , d
∗
q , d
∗
r

]T
(71)

Assumption 5: Each component of the disturbances d∗i
is continuous and bounded by unknown constant, namely
|d∗i | ≤ d̄

∗
i for i = u, v,w, p, q, r.

In order to attenuate the unknown disturbance d∗ in the
dynamic equation (69), d∗ is regarded as the extended state of
the dynamic model. Since ν can be measured directly, based
on the design procedure of the reduced-order ESO in [35],
a reduced-order ESO is defined as follows

˙̂d∗ = b�ν̇ − b�
(
f ν + B

∗τ + d̂
∗
)

(72)

where b� = diag{b�u, b�v, b�w, b�p, b�q, b�r } represents

the observer gain, and d̂∗ =
[
d̂∗u , d̂∗v , d̂∗w, d̂∗p , d̂∗q , d̂∗r

]T
repre-

sents the estimation of d∗. To avoid aggravating the measure-
ment noises generated by the direct numerical differentiation
of signal ν, we define a new state as

� = d̂
∗
− b�ν (73)

Based on the above new state, the reduced-order ESO (72)
can be rewritten as{

�̇ = −b��− b2�ν − b�(f ν + B
∗τ )

d̂∗ = �+ b�ν
(74)

where the initial value of d̂∗ is set as d̂∗(t0) = 0, and the
initial value of � is set as �(t0) = −b�ν(t0).
Theorem 1: For the system (69), given the reduced-order

ESO (74), if the disturbance d∗ satisfies Assumption 5, then

‖Eo‖ ≤
max(d̄∗i )

min(|b�i|)
, i = u, v,w, p, q, r (75)

where Eo = d∗ − d̂∗.
Proof: Based on (69) and (74), the derivative of Eo is

calculated as

Ėo = ḋ∗ −
˙̂
d∗ = ḋ∗ − (�̇+ b�ν̇)

= ḋ∗ + b��+ b2�ν + b�(f ν + B
∗τ )− b�ν̇

= ḋ∗ + b��+ b2�ν + b�(f ν + B
∗τ )

− b�(f ν + B
∗τ + d∗)

= ḋ∗ + b��+ b2�ν − b�d
∗

= ḋ∗ + b�d̂∗ − b�d∗

= −b�Eo + ḋ∗. (76)

For any given positive-definite matrix Qo, choosing b�i > 0,
there exists a positive-definite matrix Po such that

bT�Po + Pob� = Qo (77)

Choosing the following Lyapunov function

V1 =
1
2
ETo PoEo, (78)

the time differentiation of V1 along (76) yields

V̇1 = −
1
2
ETo (b

T
�Po + Pob�)Eo + E

T
o Poḋ

∗

≤ −
1
2
EToQoEo + ‖Eo‖‖Po‖‖ḋ

∗
‖

≤ −
1
2
‖Eo‖2Qo + ‖Eo‖‖Po‖max(d̄∗i )

≤ −‖Eo‖2‖Po‖min(|b�i|)+ ‖Eo‖‖Po‖max(d̄∗i )

≤ −‖Eo‖‖Po‖(‖Eo‖min(|b�i|)−max(d̄∗i )). (79)

Consequently, the estimation error is bounded by

‖Eo‖ ≤
max(d̄∗i )

min(|b�i|)
(80)

The sliding surface is defined as

s = νe (81)

where νe = ν−νd is the tracking error of dynamic controller.
Thus, the first derivative of s is written as

ṡ = ν̇e = ν̇ − ν̇d
= f ν + B

∗τ + d∗ − ν̇d . (82)

By applying FPRRL (7), the dynamic control law τ 0 can be
designed as

τ 0 = (B∗)−1(ν̇d − ρs− k|s|αsgn(s)− f ν − d
∗) (83)

where τ 0 =
[
τ0u, τ0v, τ0w, τ0p, τ0q, τ0r

]T .
Considering input saturation, the actual control signal is

defined as

τ = fsat(τ 0) (84)

with the difference defined as

1τ = τ − τ 0 (85)

To avoid the calculation of ν̇d , a command filter is defined
as follows{

4̇1 = 42

4̇2 = −23ωn42 − ω
2
n(41 − νd )

(86)
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where ωn = diag{ωnu, ωnv, ωnw, ωnp, ωnq, ωnr } is the natural
frequency and 3 = diag{3u,3v,3w,3p,3q,3r } is the
damping ratio. Then, the estimation of derivative ν̇d is defined
as ˆ̇νd = 42.
Remark 3: With an appropriate 3 and a sufficiently

large ωn, the command filter can guarantee fast tracking of
the derivative of desired signal νd . Therefore, the estimation
error defined by ˜̇νd = ν̇d − ˆ̇νd is bounded.
Assumption 6: The command filter estimation error ˜̇νd is

bounded by unknown constant, namely ‖˜̇νd‖ ≤ δν̇d .
To alleviate the adverse impact of input saturation, an anti-

windup compensator is proposed as follows

ε̇i=

−bεiεi −
|bisi1τi|+ 1

2 (1τi)
2

|εi|2
εi+1τi, |εi| ≥ ιi

0, |εi| < ιi

(87)

where i = u, v,w, p, q, r .1τi = τi− τ0i is the ith element of
1τ ; si is the ith element of s; εi is the state of above auxiliary
system; bεi > 0 is the design parameter; ιi is a small positive
constant.

Applying the reduced-order ESO (74), the command fil-
ter (86) and the anti-windup compensator (87), the dynamic
control law τ 0 is designed as

τ 0 = (B∗)−1( ˆ̇νd − ρ(s− ε)− k|s|αsgn(s)− f ν − d̂
∗
) (88)

where ε =
[
εu, εv, εw, εp, εq, εr

]T .
2) STABILITY ANALYSIS
Theorem 2: Consider the dynamic model (69) under input

saturation τ = fsat(τ 0) and the disturbance d∗, suppose
that Assumption 5 and 6 are satisfied, if the dynamic con-
troller law is obtained from (88) under the reduced-order
ESO (74), the command filter (86) and the anti-windup
compensator (87), then the tracking error νe will ultimately
converge to a compact set around zero.

Proof: Choosing the following Lyapunov function

V =
1
2
sT s+

1
2
εT ε, (89)

the first-order derivative of V is

V̇ = sT ṡ+ εT ε̇

= sT (f ν + B
∗(τ +1τ )+ d∗ − ν̇d )

+ εuε̇u + εvε̇v + εwε̇w + εpε̇p + εqε̇q + εr ε̇r . (90)

Substituting (87) and (88) into (90), we have

V̇ = sT (f ν + ( ˆ̇νd − ρ(s− ε)− k|s|αsgn(s)− f ν − d̂
∗
)

+B∗1τ )+ d∗ − ν̇d )

+ εu(−bεuεu −
|busu1τu| + 1

2 (1τu)
2

|εu|2
εu +1τu)

+ εv(−bεvεv −
|bvsv1τv| + 1

2 (1τv)
2

|εv|2
εv +1τv)

+ εw(−bεwεw −
|bwsw1τw| + 1

2 (1τw)
2

|εw|2
εw +1τw)

+ εp(−bεpεp −
|bpsp1τp| + 1

2 (1τp)
2

|εp|2
εp +1τp)

+ εq(−bεqεq −
|bqsq1τq| + 1

2 (1τq)
2

|εq|2
εq +1τq)

+ εr (−bεrεr −
|brsr1τr | + 1

2 (1τr )
2

|εr |2
εr +1τr )

≤ sT (−ρs− k|s|αsgn(s)− ˜̇νd − Eo)

− εT bεε −
1
2
1τT1τ + εT1τ + sTρε. (91)

Because of the facts

sTρε ≤
1
2
sTρ2s+

1
2
εT ε,

εT1τ ≤
1
2
εT ε +

1
2
1τT1τ , (92)

substituting (92) into (91), we have

V̇ ≤ sT (−(ρ −
1
2
ρ2)s− k|s|αsgn(s)− ˜̇νd − Eo)

− εT (bε − I)ε (93)

Note that, if bεi ≥ 1, (93) can subsequently be written as

V̇ ≤ sT (−(ρ −
1
2
ρ2)s− k|s|αsgn(s)− ˜̇νd − Eo). (94)

Since ˜̇νd and Eo are bounded, there exists |δ| ≤ δ̄ such that

V̇ ≤ sT (−(ρ −
1
2
ρ2)s− k|s|αsgn(s)+ δ). (95)

According to Lemma 2, the tracking error νe will ultimately
converge to a compact set around zero if 0 ≤ ρi ≤ 2 is
satisfied.

IV. SIMULATION
This section presents the numerical simulation results to eval-
uate the proposed control scheme. The required parameter
values for the stratospheric airship used throughout this paper
are obtained from [19].

A. SIMULATION COMPARISONS OF DIFFERENT
MPC METHODS
To verify the computational efficiency of the proposed LMPC
method, a discrete MPC method [43] and a nonlinear MPC
method [44] are employed as the comparativemethods, which
refer to DMPC and NMPC respectively. The simulation in
this subsection is only involved in the kinematic loop of the
airship. The simulation is performed by MATLAB R2019b,
which is running on a computer with the CPU frequency
locked at 2.60GHz. The total simulation time is 1000 seconds
and the step size is 1 second. Since the computational burden
mainly depends on the control horizon Nc and prediction
horizon Np, the efficiency of each method is studied by
calculating the average time consumption of each method
under different Nc and Np. For each pair of Nc and Np,
the comparative simulation is performed five times.
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The initial conditions are p = [1960, 2040, 18960]Tm,
ξ = [0, 0, π6 ]

T rad, v = [0, 0, 0]Tm/s,ω = [0, 0, 0]T rad/s.
The desired trajectory is described as follows:

pd (t) =

xdyd
zd

 =
2000(sin(0.005t)+ cos(0.0025t))2000(sin(0.0025t)+ cos(0.005t))

−0.1t − 19000

m

(96)

The state constraints are

νmax = [15, 4, 2, 0.01, 0.01, 0.02]T

νmin = −[0, 4, 2, 0.01, 0.01, 0.02]T

1νmax = [6, 1.6, 0.8, 0.004, 0.004, 0.008]T

1νmin = −[0, 1.6, 0.8, 0.004, 0.004, 0.008]T (97)

The detailed parameters of the proposed controller are
listed in Table 1. The weight matrixR of the LMPC controller
is chosen as an identity matrix. The weight matrices Q,R of
the DMPC and NMPC controllers are also set to be identity
matrices.

TABLE 1. The proposed controller parameters.

The time consumptions of three MPC methods under dif-
ferent Np and Nc are listed in Table 2. In LMPC method,
the predicted control sequence is approximated by Laguerre
functions, which means the control horizon Nc in LMPC is
equal to the prediction horizon Np. Therefore, Nc and Np
are set to be identical in the comparative simulations. It is
obvious that the time consumption of NMPC method is far
greater than the LMPC and DMPC methods and exceeds
the total simulation time (1000 seconds) since Np ≥ 20,
which is unacceptable in practical application. The number
of the input variables in the kinematic loop is six and each
predicted control input sequence is approximated by five
basis functions with five coefficients. Hence, the number of
the optimization variables is 30 in LMPC, while the num-
ber of the optimization variables in DMPC is equal to Nc.
As shown in Table 2, the time consumption of LMPCmethod
grows more slowly than the DMPC method as Nc increases.
Especially, after Nc is greater than 30, the LMPC method
shows a better efficiency than the DMPC method under large
prediction horizon.

Figure 3 and 4 illustrate the trajectory tracking responses
and tracking errors of three MPC methods with Nc = 30 and

FIGURE 3. Trajectory of the stratospheric airship in xOy with Nc = 30 and
Np = 30.

FIGURE 4. Position error of the stratospheric airship with Nc = 30 and
Np = 30.

Np = 30. As shown in Figure 3, the tracking performances of
LMPC and DMPC are similar, but LMPC has a higher track-
ing accuracy than DMPC. Although the NMPC method has
a faster response in eliminating the tracking errors than the
LMPC method at the beginning, the LMPC method provides
better convergence rate and smaller steady-state error.

B. SPATIAL STRAIGHT-LINE TRACKING
This section evaluates the effectiveness and robustness of
the proposed control scheme. The parameters of the pro-
posed controller are defined in Table 1. The initial conditions
are p = [2000, 2400, 18960]Tm, ξ = [0, 0, π6 ]

T rad, v =
[10, 0, 0]Tm/s,ω = [0, 0, 0]T rad/s. The desired trajectory is
described as follows:

pd (t) =

xdyd
zd

 =
 2000+ 10t

2000+ 10t
−0.1t − 19000

m (98)

The state constraints are defined in (97) and the limits of
actuators are

τmax = 103 × [2, 2, 2, 6, 6, 8]T

τmin = −103 × [0, 2, 2, 6, 6, 8]T (99)
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TABLE 2. The time consumption comparison of three MPC methods.

The following two controllers are compared:
1) The proposed method with conventional ESO (marked

as Controller 1): In Controller 1, the reduced-order
ESO applied in this paper is replaced by a conven-
tional ESO [33]. The detailed expression is given in
Appendix B and the parameters for two observers
are the same and defined as b� = β =

diag{10, 10, 10, 10, 10, 10}.
2) Backstepping based controller [12] with reduced-order

ESO (marked as Controller 2): The control law is given
in Appendix C and the parameters of the Controller
2 are 31 = 32 = I6×6,P1 = P1 = I6×6.

The following two scenarios are considered:
1) Case 1: To verify the robustness of the proposed con-

troller against the internal parameter uncertainties, it is
assumed that the airship’s mass m and the moments of
inertia IO are decreased by 10% with respect to their
nominal values. In practical application, for the strato-
spheric airship, a slight helium leakage is inevitable
which will lead to a decrease of mass and moments of
inertia [45].

2) Case 2: To verify the robustness of the proposed con-
troller against the internal parameter uncertainties and
external disturbances, on the basis of Case 1, it is also
assumed that the external disturbances are generated by
the wind field given as vw = [5m/s, 0m/s, 0m/s]T [31].

FIGURE 5. Straight-line tracking with Case 1.

The simulation results of straight-line tracking with
Case 1 are shown in Figures 5–10. Figure 5 shows that
all three controllers are capable of tracking the predefined
straight-line trajectory. However, it should be noted that the
backstepping based controller (Controller 2) exhibits over-
shoot phenomenon, which will be analyzed in the following.

FIGURE 6. Attitude error of straight-line tracking with Case 1.

FIGURE 7. Linear velocity of straight-line tracking with Case 1.

In Figure 6, the attitude errors of straight-line tracking under
internal parameter uncertainties demonstrate that the pro-
posed controller has a faster response than Controller 1,
which owes to better performance of the reduced-order
ESO than the conventional ESO. In addition, Controller 2
exhibits oscillation behavior in attitude tracking. Linear and
angular velocity contrasts of three controllers are shown
in Figures 7 and 8, where the red dotted line represents the
constraints (97). Due to the large initial errors, the linear
and angular velocity of Controller 2 change quickly and
exceed the prescribed range in order to drive the airship to the
desired position and attitude rapidly at beginning of the track-
ing process. Consequently, as shown in Figures 9 and 10,
the actuators under Controller 2 encounter severe satura-
tion phenomenon and work at full capacity situation for
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FIGURE 8. Angular velocity of straight-line tracking with Case 1.

FIGURE 9. General force of straight-line tracking with Case 1.

FIGURE 10. General torque of straight-line tracking with Case 1.

a long time, which is harmful to the life span of actua-
tors. Moreover, the input saturation results in the perfor-
mance degradation of Controller 2, which are manifested as
the overshoot and oscillation phenomenon in the position
and attitude tracking. In contrast, the changes of linear and
angular velocity in the MPC-based controllers are relatively
mild due to the constraints and never violate the limitations.

As a result, the responses of general force and torque of
the MPC-based controllers are consistent with the expecta-
tion. The initial control inputs τu, τv, τw, τp, τq, τr of the pro-
posed method reach the maximum capacity of the actuators
in Figures 9 and 10. Then, the input saturation is effectively
compensated by the anti-windup compensator.

FIGURE 11. Straight-line tracking with Case 2.

FIGURE 12. Attitude error of straight-line tracking with Case 2.

The simulation results of straight-line tracking with
Case 2 are shown in Figures 11–16. The results in
Figure 11 and 12 indicate that all three controllers have suf-
ficient performance in driving the airship to the desired
straight-line trajectory under internal parameter uncertainties
and external disturbances. The tracking performance of the
proposed controller is almost the same as in Case 1 with
the help of reduced-order ESO, whereas the performance of
Controller 2 deteriorates. Because the unknown wind field
in Case 2 increases the burden on the actuator, which leads
to more severe saturation phenomenon in Controller 2 than
Case 1, as shown in Figures 15 and 16. The same conclusion
can be drawn based on the results in Figures 13 and 14 that
the linear velocity u, v,w and angular velocity p, q, r of the
airship in Controller 2 suffer more fluctuation than in Case 1.
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FIGURE 13. Linear velocity of straight-line tracking with Case 2.

FIGURE 14. Angular velocity of straight-line tracking with Case 2.

FIGURE 15. General force of straight-line tracking with Case 2.

The comparison of disturbances in Case 1 and Case 2 is
shown in Figure 17.With the unknownwind field, the lumped
disturbances in Case 2 is apparently greater than the parame-
ter uncertainties in Case 1. The disturbance estimation errors
of conventional ESO and reduced-order ESO in Case 1 and
Case 2 are shown in Figures 18 and 19. The conventional ESO
is applied in Controller 1 and the reduced-order ESO is used
in the proposed controller. It is obvious that the reduced-order
ESO has a faster transient response with less overshoot than

FIGURE 16. General torque of straight-line tracking with Case 2.

FIGURE 17. Disturbance of straight-line tracking.

FIGURE 18. Disturbance estimation error of straight-line tracking.

the conventional ESO, implying a better estimation perfor-
mance is achieved through reduced-order ESO.

C. SPATIAL CURVE TRACKING
This section evaluates the effectiveness and robustness
of the proposed control scheme in tracking the complex
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FIGURE 19. Disturbance estimation error of straight-line tracking.

FIGURE 20. Spatial curve tracking with Case 2.

FIGURE 21. Attitude error of spatial curve tracking with Case 2.

spatial curve trajectory under lumped disturbances. The
initial conditions are p = [2000, 2400, 18960]Tm, ξ =
[0, 0.0087, π6 ]

T rad, v = [10, 0, 0]Tm/s,ω = [0, 0, 0]T rad/s.
The desired spatial curve trajectory is defined by (96). The
state constraints are defined by (97) and the limits of the
actuators are defined by (99). Controller 1 and Controller 2,
which are defined in the straight-line tracking simulation, are
compared. The lumped disturbances contain internal parame-
ter uncertainties and external unknown wind field, which are
the same as Case 2.

FIGURE 22. Linear velocity of spatial curve tracking with Case 2.

FIGURE 23. Angular velocity of spatial curve tracking with Case 2.

FIGURE 24. General force of spatial curve tracking with Case 2.

The simulation results are shown in Figures 20–27. It can
be seen in Figures 20 and 21 that the position tracking per-
formance of three controllers is similar, but it takes a long
time for the attitude of the airship to converge to the desired
value using Controller 2 due to its oscillation behavior. In the
spatial sophisticated trajectory tracking situationwith lumped
disturbances, the backstepping based controller would result
in the drastic velocity change shown in Figures 22 and 23
and even lead to input saturation shown in Figures 24 and 25.
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FIGURE 25. General torque of spatial curve tracking with Case 2.

FIGURE 26. Disturbance of spatial curve tracking with Case 2.

FIGURE 27. Disturbance estimation error of spatial curve tracking with
Case 2.

This speed jump problem is solved by the proposed
MPC-based controller with proper constraints, and the con-
straints (97) are never violated.

The lumped disturbances in spatial curve tracking are
shown in Figure 26. It can be seen that the lumped distur-
bances are irregular and time-varying. The performances of
the reduced-order ESO used in the proposed controller and
the conventional ESO used in Controller 1 are compared
in Figure 27. According to the comparative results, it is

obvious that the reduced-order ESO has a better estimation
of the lumped disturbances than the conventional ESO. The
small estimation error is inevitable when the disturbances
change abruptly, but it will converge eventually.

V. CONCLUSION
This paper proposes a novel trajectory tracking control
scheme for a stratospheric airship subject to state constraints,
input saturation and unknown disturbances. In the kinematic
loop, by applying the LMPC controller, not only the con-
straints are handled conveniently and never violated, but also
the speed jump problem under large initial error condition is
avoided. In addition, taking advantage of the orthonormal-
ity of Laguerre functions, each predicted control sequence
in MPC method is expressed as a linear combination of
Laguerre functions. Therefore, the optimization procedure
turns into finding the optimal linear combination coefficients
rather than the optimal predicted control sequence. Since the
number of the coefficients is far less than the number of
variables in predicted control sequence under large prediction
horizon, the complexity of optimization problem reduces.
This conclusion is also verified by the comparative simula-
tion. In the dynamic control loop, by employing the reduced-
order ESO, the irregular, time-varying unknown disturbances
are estimated and compensated. The proposed FPRRL-based
SMC dynamic controller can guarantee that the dynamic loop
can track the desired velocity signals. Moreover, the anti-
windup compensator is employed to alleviate the effect of
input saturation. The results of comparative simulations about
spatial straight and curve trajectory tracking under parametric
uncertainties and unknown wind field verify the effectiveness
and robustness of the proposed control scheme.

In the future, trajectory tracking control for the
under-actuated airship based on MPC will be studied.

APPENDIXES
APPENDIX A
STABILITY ANALYSIS OF KINEMATIC LOOP
In the kinematic loop, in order to obtain the incremental
expression of the discrete-time model (23), the augmented
model (30) is designed. The side effect is that matrix Aη
in (30) has eigenvalue locating at the boundary of unit circle,
which means the augmented model is unstable. If the cost
function is defined as (43), the numerical ill-conditioning
problem will occur in calculating Amη under a large prediction
horizon.

In order to solve the numerical ill-conditioning problem,
following the work in [46], an exponential weighting factor
αw > 1 is applied to modify the cost function (43), and an
exponentially weighted cost function Jα is defined as follows

Jα(k) =
Np∑
m=1

α−2mw xη(k + m|k)TQxη(k + m|k)

+

Np−1∑
m=0

α−2mw 1ν(k + m)TR1ν(k + m) (100)

VOLUME 8, 2020 31467



J. Yuan et al.: Trajectory Tracking Control for a Stratospheric Airship Subject to Constraints and Unknown Disturbances

Theorem 3: The optimal solution subject to the exponen-
tially weighted cost function Jα and model (30) is identical to
the optimal solution subject to the cost function defined by

Ĵ (k) =
Np∑
m=1

x̂η(k + m|k)TQx̂η(k + m|k)

+

Np−1∑
m=0

1ν̂(k + m)TR1ν̂(k + m) (101)

and model (57).
Proof: First, substituting (54) and (55) into (100),

then the cost function (101) can be obtained easily. Second,
according to the definitions of x̂η(k+m|k),1ν̂(k+m), Âη, B̂η
in (54)–(56), we have

x̂η(k + m+ 1|k)

= α−(m+1)w xη(k + m+ 1|k)

= α−(m+1)w (Aηxη(k + m|k)+ Bη1ν(k + m))

= α−1w (Aηx̂η(k + m|k)+ Bη1ν̂(k + m))

= Âηx̂η(k + m|k)+ B̂η1ν̂(k + m) (102)

which has the same expression of model (57).
Therefore, by defining the exponentially weighted cost func-
tion Jα , the augmented model (30) with (Aη,Bη) can be
replaced by (57) with (Âη, B̂η) during optimization, and
the eigenvalue of Âη will be inside the unit circle if
αw > 1 is properly designed. Consequently, the numerical
ill-conditioning problem of calculating Âmη can be avoided,
and the prediction horizon Np can be set large.
Remark 4: As shown in [37], [42], if Np is set to be suf-

ficiently large to approach the infinite horizon, based on the
model (Âη, B̂η), the optimal solution subject to Ĵ is equivalent
to the solution of the discrete-time linear quadratic regula-
tor (DLQR) subject to the same cost function. According to
the optimal control theory, the stable control law based on
DLQR is calculate by

1ν̂(k + m) = −Kx̂η(k + m|k) (103)

with

K = (R+ B̂
T
η P∞B̂η)

−1B̂
T
η P∞Âη (104)

where P∞ is the solution of the following algebraic Riccati
equation

Â
T
η [P∞ − P∞B̂η(R+ B̂

T
η P∞B̂η)

−1B̂ηP∞]Âη + Q

−P∞ = 0 (105)

According to Remark 4, substituting the stable control
law (103) into (57), we have

x̂η(k + m+ 1|k) = (Âη − B̂ηK)x̂η(k + m|k) (106)

where the eigenvalue of (Âη − B̂ηK) is inside the unit circle.
Then, substituting (54) and (55) into (106), we have

xη(k + m+ 1|k) = αw(Âη − B̂ηK)xη(k + m|k) (107)

Since αw > 1, the eigenvalue of αw(Âη−B̂ηK) maybe outside
the unit circle, thus the stability of the original model (30) can
not be guaranteed.

In order to guarantee the stability of (30), a scaling factor
0 < λw < 1 is introduced, and the cost function is defined
as (49), eventually.
Theorem 4: The optimal solution subject to cost func-

tion (49) and model (30) is identical to the optimal solution
subject to the cost function defined by

Jλ(k) =
Np∑
m=1

xη,λ(k + m|k)TQxη,λ(k + m|k)

+

Np−1∑
m=0

1νλ(k + m)TR1νλ(k + m) (108)

with

xη,λ(k + m|k) = λ−mw xη(k + m|k) (109)

1νλ(k + m) = λ−mw 1ν(k + m) (110)

Proof: By defining Aη,λ = λ−1w Aη and Bη,λ = λ−1w Bη,
it is easy to verify that xη,λ(k +m|k) and1νλ(k +m) satisfy

xη,λ(k + m+ 1|k)=Aη,λxη,λ(k + m|k)+ Bη,λ1νλ(k + m)

(111)

According to Remark 4, the optimal solution subject to the
cost function (108) is solvable through the algebraic Riccati
equation

ATη,λ[P∞ − P∞Bη,λ(R+ B
T
η,λP∞Bη,λ)

−1Bη,λP∞]Aη,λ
+Q− P∞ = 0 (112)

Multiplying all A and B matrices in (112) by αw
αw

, we have

αw

λw

ATη
αw

[P∞ − P∞
αw

λw

Bη
αw

(R+
αw

λw

BTη
αw

P∞
αw

λw

Bη
αw

)−1

×
αw

λw

Bη
αw

P∞]
αw

λw

Aη
αw
+ Q− P∞ = 0 (113)

With further simplification, we have

ATη
αw

[P∞ − P∞
Bη
αw

((
λw

αw

)2

R+
BTη
αw

P∞
Bη
αw

)−1

×
Bη
αw

P∞]
Aη
αw
+

(
λw

αw

)2

Q−
(
λw

αw

)2

P∞ = 0 (114)

According the definitions of QL (50) and RL (51), (114) can
be reformed as

ATη
αw

[P∞ − P∞
Bη
αw

(
RL +

BTη
αw

P∞
Bη
αw

)−1
×
Bη
αw

P∞]
Aη
αw
+ QL − P∞ = 0 (115)

It should be noted that the equation (115) is the algebraic
Riccati equation for the cost function (49).
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Therefore, according to Remark 4, the stable control law
subject to the cost function (108) and model (111) is

1νλ(k + m) = −Kλxη,λ(k + m|k) (116)

where Kλ is the related feedback gain. Then, we have

xη,λ(k + m+ 1|k) = (Aη,λ − Bη,λKλ)xη,λ(k + m|k) (117)

where the eigenvalue of (Aη,λ − Bη,λKλ) is inside the unit
circle. Then, substituting (110) and (109) into (117), we have

xη(k + m+ 1|k) = λw(Aη,λ − Bη,λKλ)xη(k + m|k) (118)

Since 0 < λw < 1, the eigenvalue of λw(Aη,λ − Bη,λKλ)
is still inside the unit circle, thus the stability of the original
kinematic model (30) is guaranteed.

APPENDIX B
CONVENTIONAL ESO
According to the dynamic model 69, the conventional ESO is
constructed as follows:{

ż1 = z2 + 2β(ν − z1)+ (f ν + B
∗τ )

ż2 = β2(ν − z1)
(119)

where z1 and z2 represent the estimations of ν and d∗, respec-
tively. β > 0 is the tuning parameter.

APPENDIX C
BACKSTEPPING BASED CONTROLLER
Based on [12], the backstepping based control law is given as
follows:

τ =
(
B∗
)−1G−1(−32e2 − P−12 P1e1 − Ġν + P̈d
−31e2 +32e1)+ (B∗)−1

(
f ν + d

∗
)

(120)

with

e1 = η − ηd (121)

e2 = Gν − η̇d +31e1 (122)

where 31,32,P1,P2 are the positive definite design
matrices.
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