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ABSTRACT In Wi-Fi fingerprint positioning, what we should most care about is the distance relation-
ship between the user and the reference points (RP). However, most of the existing weighted k-nearest
neighbor (WKNN) algorithms use the Euclidean distance of received signal strengths (RSS) as distance
measure for fingerprint matching, and the RSS Euclidean distance is not consistent with the position
distance. To address this issue, this paper analyzes the relationship between RSS similarity and position
distance, propose a novel WKNN based on signal similarity and spatial position. Firstly, we obtain the
weighted Euclidean distance (WED) by balancing the size between the RSS difference and the signal
propagation distance difference according to the attenuation law of the spatial signal. Then, we obtain
the approximate position distance (APD) by making full use of the position distances and WEDs between
RPs. Finally, the nearest RPs can be selected more accurately based on the APDs between the user and
different RPs, and the position of user can be estimated by the proposed WKNN based on the APD
(APD-WKNN) algorithm. In order to fully evaluate the proposed algorithm, we use three fingerprint
databases for comparison experiments with eight fingerprint positioning algorithms. The results show that
the proposed algorithm can significantly improve the positioning accuracy of WKNN algorithm.

INDEX TERMS Fingerprint positioning, weighted k-nearest neighbor, RSS similarity, position distance.

I. INTRODUCTION
With the rapid development of Location-based Services
(LBS), many positioning technologies and signal processing
methods [1]–[5] have been proposed. Due to the obstruction
of the building, the usability of indoor navigation satellite
signals is poor. This makes the Global Navigation Satellite
System (GNSS) unable to guarantee satisfactory position-
ing performance in the indoor environment [6]. Therefore,
various indoor positioning technologies have been proposed,
among which the Wi-Fi fingerprint positioning is widely
used because it can achieve positioning using only existing
network facilities.

The basic idea of Wi-Fi fingerprint positioning is to
use the received signal strength (RSS) of Wi-Fi signal to
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characterize the spatial position. The positioning process can
be divided into the offline and online stages. In the offline
stage, the surveyors select some points with known coordi-
nates as reference points (RP), collect RSS from different
access points (APs) at each RP, and use all RPs’ RSS and
coordinates to establish a fingerprint database. In the online
stage, the RSS received by the user will be matched in the
fingerprint database, and the user’s position can be estimated
based on the best matching RPs. In positioning experiments,
some points with known coordinates are usually selected as
test points (TP), so the positioning accuracy can be evaluated
according to the estimated and actual positions of these TPs.

The method based on the nearest neighbor mechanism is
most widely used in fingerprint positioning, the Weighted
K-Nearest Neighbor (WKNN) [7] is the representative one.
The existing WKNN algorithms generally use the Euclidean
distance between RSS as the distance measure of fingerprint
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matching, which is called as Euclidean-WKNN in this paper.
However, the RSS similarity is not equal to the closeness of
the position, it is inaccurate to use RSS Euclidean distance to
measure the position distance between points in space, which
is mainly reflected in the following aspects:

(1) In Wi-Fi fingerprint positioning, what we should most
care about is the position distance between the TP and differ-
ent RPs. However, for an ideal signal environment, the dif-
ferences in RSS at different positions actually reflect the
difference in signal propagation distance.

(2) The free-space signal attenuation model [8] shows that
the RSS attenuation and the variation of propagation distance
are not a simple linear relationship.

(3) The propagation path of indoor signals is very com-
plicated, using only RSS information to estimate the position
distance will cause large positioning error. Therefore, in order
to accurately describe the position distance between points,
we must utilize the known position information in the posi-
tioning environment.

Therefore, this paper designs a new distance measure
based on the RSS similarity and spatial position distance,
and the WKNN based on approximate position distance
(APD-WKNN) algorithm is proposed.

II. RELATED WORKS
In actual positioning, the RSS value will present strong fluc-
tuations, the general approach is to collect raw RSS data dur-
ing a certain time at each position, then use the average value
as the offline or online RSS for fingerprint positioning. For
the Euclidean-WKNN algorithm, the RSS Euclidean distance
between the RP and the TP is calculated by:

EDi,∗ =

√√√√ M∑
u=1

(
RSSui − RSS

u
∗

)2 (1)

where EDi,∗ represents the RSS Euclidean distance between
the i-th RP and the TP. The RSSui and RSSu∗ are the average
value of the RSS collected at the i-th RP and the TP, where
the upper corner u indicates that the RSS came from the u-th
AP. M is the number of APs.
Then select the RPs with the minimum RSS Euclidean

distances from the TP as the nearest RPs and calculate the
coordinate weights of nearest RPs. Finally, the position of
the TP can be estimated by weighting the coordinates of the
nearest RPs, as shown in (2) and (3).

wi =
1
/
EDi,∗

K∑
i=1

(
1
/
EDi,∗

) (2)

(x, y) =
K∑
i=1

wi · (xi, yi) (3)

where K is the number of the nearest RPs, wi and (xi, yi) are
the weight and the coordinate of the i-th RP, respectively.
Obviously, Euclidean-WKNN considers that a smaller RSS
Euclidean distance means that the RP is closer to the TP, so it

is assigned a larger weight to improve its contribution to the
TP position estimation.

Niu et al. [9] points out that different distance measures
have a significant impact on the nearest neighbor-based algo-
rithm. Kaemarungsi and Krishnamurthy [10] also points out
that using a simple RSS Euclidean distance for position esti-
mation may cause poor positioning performance. To address
this issue, many improved positioning algorithms are pro-
posed. In [9], the experimental results show that the WKNN
with Manhattan distance has better positioning performance.
In [11], to deal with the noise in the Euclidean distance cal-
culation, different weights are assigned to RSS according to
their importance. Ma et al. [12] improves Euclidean distance
by introducing the standard deviation of RSS to smooth the
signal fluctuation. Niu et al. [13] proposes a weighted KNN
method to assign different weights by defining the correlation
coefficient between APs and achieve room-level positioning
accuracy. Xue et al. [14] proposes the concept of the uneven
spatial resolution of RSS and designs a weighted algorithm
based on the signal attenuation model. However, the indoor
Wi-Fi signal propagation is very complicated, this algorithm
relies too much on the signal attenuation model and an accu-
rate path loss exponent is difficult to obtain [15], whichmakes
it have poor adaptability to various signal environments in
practice. Bi et al. [16] proposes a cluster-filtered WKNN
algorithm. It uses affinity propagation clustering algorithm to
cluster the nearest RPs according to their position distances
from each other, and the outliers are filtered out to reserve the
subset with a larger number of RPs. However, the selection
of RPs by this method is not based on the position distance
between the RP and the TP. Therefore, some RPs close to the
TPmay be discarded as outliers, resulting in large positioning
errors.

However, the methods mentioned above have not
addressed the problem of the inconsistency between the RSS
similarity and the position distance.

III. THE PROPOSED ALGORITHM
A. ANALYSIS OF THE RELATIONSHIP BETWEEN
DIFFERENT DISTANCES
Taking the Euclidean distance-based WKNN as an example,
the core idea of algorithm is to find the RPswith theminimum
Euclidean distances of RSS, and convert the coordinates of
RPs into the estimated position of the TP. We can see that
the purpose of calculating the RSS Euclidean distances is to
measure the position relationship between points. However,
to evaluate these position distances, we can only rely on the
RSS information. To make it easier to understand, we show a
situation where there is a TP, two RPs and an AP. As shown
in Fig.1, TP,RPi and RPj (the black points) represent the
test point, the i-th RP and the j-th RP, respectively. PD∗,PDi
and PDj (the black dotted lines) represent their corresponding
signal propagation distances. θi and θj represent the angle
between different signal propagation paths, which range from
0◦ to 180◦. RDi and RDj (the black solid lines) represent the
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FIGURE 1. The schematic diagram of the relationship between the real
position distance and the signal propagation distance.

real position distance from the TP to RPs. It should be noted
that the propagation paths of indoor signal are very complex,
the signal propagation distances mentioned in this paper only
refer to the distances represented by linear propagation path.

We can approximately regard the real position distance
and signal propagation distance as a triangular relationship.
We use the triangle cosine theorem to express the position
distance in terms of the propagation distance:

RDi,∗=
√
PD2

i+PD
2
∗−2PDi ·PD∗ ·cos θi,∗

=

√
(PDi−PD∗)2+2PDi ·PD∗ ·

(
1−cos θi,∗

)
(4)

RDj,∗=
√
PD2

j +PD
2
∗−2PDj ·PD∗ ·cos θj,∗

=

√(
PDj−PD∗

)2
+2PDj ·PD∗ ·

(
1−cos θj,∗

)
(5)

RDi,∗
RDj,∗

=

√
(PDi−PD∗)2+2PDi ·PD∗ ·

(
1−cos θi,∗

)√(
PDj−PD∗

)2
+2PDj ·PD∗ ·

(
1−cos θj,∗

) (6)

The θi,∗ ranges from 0◦ to 180◦, and (1− cos θi) is
greater than 0. Both (PDi − PD∗)2 and 2PDiPD∗ (1− cos θi)
are the second-order function of the propagation distance.
Therefore, we assume that their contributions to RDi are basi-
cally consistent. Moreover, in nearest neighbor-based algo-
rithms, the proportion of the distances from different RPs to a
TP, that is RDi,∗

/
RDj,∗, should be what we care about, not the

specific values of distances (the values of RDi,∗ and RDj,∗).
In other words, based on the proportion of different position
distances, we can determine the contribution of different RPs
to the position estimation. Motivated by these considerations,
under the condition that the proportion of position distance
does not deviate greatly, we make approximations to (6).
The proportionate relationship of position distances can be
described by:

RDi,∗
RDj,∗

≈

√
(PDi − PD∗)2√(
PDj − PD∗

)2 ·
√
2PDi · PD∗ ·

(
1− cos θi,∗

)√
2PDj · PD∗ ·

(
1− cos θj,∗

)
=
4PDi
4PDj

·

√
2PDi ·

(
1− cos θi,∗

)√
2PDj ·

(
1− cos θj,∗

) (7)

4PDi =
√
(PDi − PD∗)2 (8)

4PDj =
√(

PDj − PD∗
)2 (9)

where 4PD represents the propagation distance difference.
The above analyses indicate that the proportion of real

position distance is related to the proportion of signal prop-
agation distance difference, and they have a non-linear rela-
tionship. Therefore, this paper considers two relationships:
the relationship between the RSS and signal propagation
distance difference; the relationship between the real position
distance and signal propagation distance difference.

B. WEIGHTED EUCLIDEAN DISTANCE OF RSS
Now, let us analyze the relationship between the RSS
and signal propagation distance difference theoretically.
In Wi-Fi positioning systems, the information we can easily
get from the receiver is the RSS, name and position address of
the AP. Therefore, the RSS is necessary information for esti-
mating the signal propagation distance. Many signal atten-
uation models are summarized in previous work [17]. For
convenience, the log-distance model is adopted in this paper.
As indicated in [8], it can be described by:

PL
(
PDui

)
= PL (PD0)− 10ηlog10

(
PDui
PD0

)
(10)

where PDui represents the signal propagation distance from
the u-thAP to the i-thRP.PD0 is the reference signal propaga-
tion distance and usually set to 1 m. PL

(
PDui

)
represents the

RSS value of the u-thAP at the i-thRP. η is the path loss expo-
nent, which varies with different signal propagation paths
and generally ranges from 1 to 6 in indoor environment [18].
According to (10), the RSS difference can be described by:

4RSSui,∗ = RSSui − RSS
u
∗

=

(
PL (PD0)− 10ηlog10

(
PDui
PD0

))
−

(
PL (PD0)− 10ηlog10

(
PDu∗
PD0

))
= −10ηlog10

(
PDui
PD0

)
+ 10ηlog10

(
PDu∗
PD0

)
= −10η

(
log10

(
PDui

)
− log10

(
PDu∗

))
(11)

where 4RSSui,∗ is the difference between RSSui and RSSu∗ .
We can see that the RSS difference has a logarithm relation-
ship with the propagation distance.

Table 1 lists the simulated values of RSS and propagation
distance calculated by the signal attenuation model. The path
loss exponent η is 3, the reference distance PD0 is 1 m and
PL (PD0) is –35 dBm. We can see that for the same size of
RSS difference, the sizes of propagation distance difference
under different RSS values are different. In other words,
given the same size of 1RSS, a pair of small RSS values
produces a large 1PD. This phenomenon is called as the
uneven spatial resolution of RSS in [14]. As indicated in (1),
the size of Euclidean distance depends only on the difference
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TABLE 1. RSS value and signal propagation distance based on simulation
data.

value of RSS, without considering the overall value of RSS.
Therefore, the Euclidean distance cannot accurately measure
the signal propagation distance difference.

To describe the difference between difference propaga-
tion distance using the RSS more accurately, we present the
weighted Euclidean distance (WED). The specific approach
is as follows:

For each pair of TP and RP, we use the average value
to represent the overall RSS value associated with each AP,
denoted by:

MRSSui,∗ =
1
2

(
RSSui + RSS

u
∗

)
(12)

where MRSSui,∗ is the average RSS of the i-th RP and the
TP, and u denotes the u-th AP. Then, we balance the size of
RSS difference and that of Euclidean distance by assigning
weights to the RSS from different APs. This weight is called
as the signal weight (SW) and denoted by λ. For the i-th RP,
the SW associated with the u-th AP is calculated by:

λui,∗ =

(
MRSSui,∗

)2
M∑
u=1

(
MRSSui,∗

)2 (13)

In this paper, the RSS readings from the receiving device
are in dBm and negative. Therefore, a pair of small MRSS
can produce a large SW. According to the previous analysis,
we know that for the same RSS difference value, a pair
of small (large) RSS values will produce a large (small)
propagation distance difference. Therefore, considering the
contribution of RSS differences from each AP to the size of
propagation distance difference, the WED is calculated by:

WEDi,∗ =

√√√√ 1
M

M∑
u=1

λui,∗

(
RSSui − RSS

u
∗

)2 (14)

where WEDi,∗ represents the WED between the i-th RP and
the TP. M denotes the number of the same APs detected
at the RP and TP. Since the value of M is not constant at
different points, to ensure the fairness of distance comparison,
the WED is averaged by M . It can be concluded that the

introduction of the SW can well balance the relationship
between RSS and the signal distance. In other words, com-
pared with Euclidean distance, the WED can be more accu-
rate in describing the signal propagation distance difference.

C. THE WKNN ALGORITHM BASED ON APPROXIMATE
POSITION DISTANCE
Let us continue to analyze the non-linear relationship
between the real position distance and signal propagation
distance difference. To our knowledge, the angle θ in (6) is
difficult to obtain under the current Wi-Fi positioning sys-
tems. In addition, due to the complexity of indoor signal prop-
agation, we cannot get a unified expression of this non-linear
relationship. Therefore, the non-linear relationship should be
described specifically for each pair of points. The distance
weight (DW), denoted by γ , is introduced and the complex
non-linear relationship of (6) is simplified into a proportional
relation:

RDi,∗
RDj,∗

=
4PDi
4PDj

· γi,j (15)

where γi,j denotes the DW associated with the i-thRP, the j-th
RP and the TP, which represents the non-linear relationship
between the real position distance and the signal propagation
distance difference.

Firstly, we calculate the WEDs between the TP and all
RPs, and C RPs with the shortest WED are selected, called
initial RPs. Then, we continue to calculate theWEDs and real
position distances between initial RPs.

The WED between the i-th and j-th RPs is calculated by:

WEDi,j =

√√√√ 1
M

M∑
u=1

λui,j

(
RSSui − RSS

u
j

)2
(16)

The real position distance is calculated by:

RDi,j =
√(

xi − xj
)2
+
(
yi − yj

)2 (17)

Now, the DW of the i-th RP, can be obtained by:

γi =
1

C − 1

∑
j∈{1,...,C},j6=i

RDi,j
WEDi,j

(18)

where γi describes the proportional relation of the real posi-
tion distance to the WED between the i-th RP and the other
initial RPs. It can be concluded that for each initial RP,
the position distance between it and the TP can be approx-
imately estimated by its DW and the corresponding WED.
Therefore, we design a new distance measure, called approx-
imate position distance (APD), to describe the real position
distance between points and enhance the WKNN algorithm.
The APD between the i-th RP and the TP can be calculated
by:

APDi,∗ = γi ·WEDi,∗

= γi

√√√√ 1
M

M∑
u=1

λui,∗

(
RSSui − RSS

u
∗

)2 (19)
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We further select K RPs with the shortest APDs in the
initial RP set, which are called as the nearest RPs. The
coordinate weight (CW) of the nearest RPs, denoted by ω,
can be calculated by:

ωi =

1
APDi,∗

K∑
i=1

1
APDi,∗

(20)

where ωi is the CW of the i-th RP. Finally, the position of the
TP can be estimated by:

(x, y) =
K∑
i=1

ωi · (xi, yi) (21)

The flow chart of the proposed algorithm is shown in Fig.2,
and the symbol expression and definition of the main vari-
ables in this paper are also listed in Table 2.

FIGURE 2. Flow chart of the proposed algorithm.

TABLE 2. The symbol and definition of main variables.

To evaluate the performance of the designed distance mea-
sure APD in the ideal signal environment, we get the sim-
ulation data from the signal attenuation model and make

the comparison with the Euclidean distance. For conve-
nience, two APs, three RPs and six TPs are considered in
a two-dimensional coordinate system. Table 3 lists the coor-
dinates and RSS used for the comparison. Table 4 lists the
ratios of the distances from the TP to three RPs, and the sum
of the ratios equal to 1 for each TP. It should be noted that
no matter which distance measure is used to measure the real
position distance between location points, there will still be
deviations, which is inevitable. We can see that compared
with the Euclidean distance, the ratio error between APD
and real position distance is less than Euclidean distance,
that is, the distance ratio with APD is closer to the real
position distance. The designed distance measure has better
performance in measuring the position distance, which is
favorable for position estimation.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS
In this section, we adopt three fingerprint databases (namely
Database1, Database2, Database3) and introduce eight algo-
rithms to fully evaluate the performance of our proposed
algorithm. The databases represent different RP distributions
and data sizes in real indoor environments, the algorithms
used for comparison can be divided into two types: the nearest
neighbor-based algorithms and the machine learning-based
algorithms.

A. EXPERIMENTAL DATA
For the Database1 and Database2, the Wi-Fi fingerprints are
both collected on the second floor of the laboratory building
in Harbin Engineering University, and the collection device
is Xiaomi MIX2 Android smartphone with the Wi-Fi signal
sampling frequency of 1 Hz. During the RSS collection of
all RPs and TPs, the smartphone is pointing north. As shown
in Fig. 3, for Database1, 10 APs are deployed, 197 points
(denoted by the black solid dots) are selected as the RPs,
and 109 points (denoted by the green squares) are selected
as the TPs. The distance between adjacent RPs is 1.2 m,
which can be considered as an intensive RP distribution. The
collecting durations of each RP and TP durations of each RP
and TP are 120s and 60s, respectively. For the positioning
using the machine learning-based algorithms, the RPs and
TPs are recorded as the training dataset and testing dataset,
respectively.

To evaluate the proposed algorithm under different RP
densities, we reduce the number of RPs in the Database 1
to get the Database 2. In Database2, the number of APs
and the collecting duration of each point are the same as
the Database1. As shown in Fig. 4, there are 100 RPs and
109 TPs in Database2. The number of RPs is nearly half
that of Database 1, and the distance between RPs is also
increased, which is considered as a sparse RP distribution
in this paper. It should be noted that the RSS value can be
influenced by the multipath effect caused by signal reflection,
refraction and diffraction, as well as the signal occlusion by
body [19]. Therefore, to reduce these influences, the RSS
preprocessing method in [20] is adopted in the establishment
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TABLE 3. The coordinates and RSS calculated by the signal attenuation model.

TABLE 4. The distance measurement comparison based on simulation data.

FIGURE 3. The sampling positions of Database1 with an intensive distribution of RPs.

of the Database1 and Database2. In the offline and online
stages, the strongest RSS observations of each point are
averaged as the RSS measurement for positioning. In this
way, the processed RSS values are smoother, which can help
achieve better positioning performance.

Many works have been done to solve the Wi-Fi fingerprint
positioning problem. However, each method uses its own
database to display the positioning results, which makes it
difficult to objectively compare the performance of these
methods. Therefore, to evaluate our proposed algorithm with
other algorithms more fairly, the public fingerprint database
UJIIndoorLoc [21] is used in the comparison experiments and
called as Database3. UJIIndoorLoc was used by participants
in the Evaluating Ambient Assisted Living (EvAAL) compe-
tition at IPIN 2015 [22], where the participants subjected their
Wi-Fi fingerprinting solutions to a competitive benchmarking
test. The database is a multi-building and multi-floor indoor

fingerprint database, the data are collected by 25 different
Android devices and 20 different participants in the buildings
of University of Jaume I (UJI), Spain. The database consists
of 19937 training samples and 1111 testing samples, which
can be considered as a large database. The testing samples
are taken four months later than the training ones, thus the
obtained positioning error with the UJIIndoorLoc can be
more realistic.

B. INFLUENCE OF THE C-VALUE ON THE PROPOSED
ALGORITHM
In our proposed APD-WKNN algorithm, we select the initial
RPs based on the WSD. Therefore, it is necessary to analyze
the influence of the number of the initial RPs (C-value) on
the performance of the proposed algorithm. To ensure the
objectivity of the results, we compare the effects of different
C-values given K -values on the results. It should be noted
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FIGURE 4. The sampling positions of Database2 with a sparse distribution of RPs.

TABLE 5. The positioning result under different K-values and C-values on Database1 and Database2.

TABLE 6. The positioning result under different K-values and C-values on Database3.

that for our proposed algorithm, only when C-value is not
less than K -value and 2, the DWs can affect the position-
ing results. Considering the densities of RPs in different
databases, for the Database1 and Database2, the C-values
ranging from 3 to 10 are tested with the K -values from 3 to 4.
For the Database3, the C-values ranging from 3 to 20 are
tested with the K -values from 3 to 6. Tables 5 and 6 list
the mean error and root mean square error (RMSE) under’

different K -values and C-values in the Database1, Database2
and Database3. The positioning error is the straight-line dis-
tance between the real position and estimated position.

As shown in Table 5, on the condition of the K -values are
3 and 4, the average positioning error reaches the minimum
of 2.32 m and 2.24 m when the C-values are 8 and 7, respec-
tively. Because of the intensive RP distribution in Database1,
a largeC-value within a certain space range can provide more
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accurate measurement of the numerical relation between the
WED and the position distance. If setting an excessively
small C-value, some valid RPs near the TP may be lost.
For the Database2, we can see that the average positioning
error reaches the minimum of 3.08 m and 3.27 m when the
C-values are 4 and 6, respectively. The distances between
RPs in Database2 are larger than Database1, which can be
regarded as a sparse RP distribution. If setting an oversize
C-value, the coverage of initial RPs increases accordingly.
This will cause that, for a TP and its nearest RPs, the calcu-
lated DWs may not reflect the relation between their WEDs
and position distances well.

As shown in Table 6, for the Database3, when the K -value
ranges from 3 to 6, the best positioning results are obtained
with the C-values of 9, 13, 11 and 14, respectively. We know
that the RSS in Database3 come from different devices and
have not been preprocessed, which cause that for each pair
of initial RPs, the proportions of their real position distance
to the WED will vary more. Therefore, adding or subtracting
an initial RP can have a greater impact on the calculation of
APD and hence the positioning results.

Based on the experimental results in three databases,
we can find that the effect ofC-value on the positioning result
is insignificant when theC-value is within a certain range. For
a constantK -value, the standard deviations of the mean errors
under different C-values are between 0.33 m and 0.57 m with
Database1 and Database2, between 0.54 m and 0.91 m with
Database3. A suitableC-value should be determined based on
the site size and the RP distribution. In this paper, we provide
an empirical method to set the C-value: For the intensive
distribution of RPs, the C-value can be selected in the range
of 1 to 3 timesK -value; For the sparse distribution of RPs, the
C-value can be selected in the range of 1 to 2 times K -value.

C. POSITIONING PERFORMANCE COMPARISON WITH
NEAREST NEIGHBOR-BASED ALGORITHMS
In this section, we compare the positioning accuracy of
the proposed APD-WKNN algorithm with four nearest
neighbor-based algorithms (Euclidean-WKNN, Manhattan-
WKNN, Xue et al. [14] and Bi et al. [16]) on three
Databases. The Euclidean-WKNN and Manhattan-WKNN
are the WKNN algorithms that use the Euclidean distance
andManhattan distance as the distance measure, respectively.
Xue proposed a physical distance of RSS for indoor position-
ing, and the path loss exponent used in Xue’s algorithm is
set to 3 in the comparison experiments. Bi used the affinity
propagation clustering (APC) algorithm to cluster the nearest
RPs based on their position distances, and the most probable
sub-cluster is reserved for position estimation by comparing
the number of RPs. The positioning error in terms of the
cumulative distribution function (CDF) on three databases is
shown in Fig. 5, 6 and 7, respectively. Tables 7, 8 and 9 list
the error statistics of these algorithms.

On Database1, the K -value is set to 3 for all algorithm, and
the C-value of the proposed algorithm is set to 8. As shown
in Fig. 5, the proposed algorithm obtains the best positioning

FIGURE 5. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database1.

accuracy. For instance, when the error threshold is 3 m and
5 m, the CDF of the proposed algorithm is 75.26% and
91.35%, which is higher than the 53.34% and 73.98% of
Euclidean-WKNN, the 48.90% and 73.05% of Manhattan-
WKNN, the 63.29% and 88.12% of Xue, and the 69.56% and
89.84% of Bi. As shown in Table 7, compared with other
four algorithms, the mean positioning error improvements
of APD-WKNN are 45.28%, 27.27%, 39.74% and 20.82%,
the RMSE improvements are 48.33%, 20.80%, 36.09% and
15.24%, respectively.

TABLE 7. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database1.

On Database2, the K -value is set to 3 for all algorithm, and
the C-value of the proposed algorithm is set to 4. As shown
in Fig. 6, the proposed algorithm obtains the best positioning
accuracy. When the error threshold is 3 m and 5 m, the CDF
of the proposed algorithm is 70.53% and 87.12%, which is
higher than the 46.92% and 77.82% of Euclidean-WKNN,
the 43.85% and 74.43% of Manhattan-WKNN, the 62.56%
and 82.15% of Xue, and the 58.41% and 83.90% of Bi.
As shown in Table 8, the mean positioning error improve-
ments of APD-WKNN are 33.04%, 38.03%, 14.68% and
18.52%, and the RMSE improvements are 36.46%, 40.14%,
21.60% and 28.16%, respectively.

On Database3, theK -value andC-value are set to 5 and 11,
respectively. As shown in Fig. 7, when the error threshold
is 4 m and 6 m, the CDF of APD-WKNN is 53.94% and
70.03%, which are higher than the 42.11% and 61.25% of
Euclidean-WKNN, the 34.58% and 49. 05% of Manhattan-
WKNN, the 30.08% and 43.57% of Xue, and the 48.14%
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FIGURE 6. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database2.

TABLE 8. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database2.

FIGURE 7. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database3.

and 65.31% of Bi. Xue uses the signal propagation model
with fixed path loss exponent to estimate the space distance
between points, while the database3 has a very large cover-
age, so the difference of signal propagation environment in
different positions is more intense, which makes the algo-
rithm have the worst positioning accuracy on Database3. For
APD-WKNN and Bi, these two algorithms both select the
RPs twice, and use the position distance between the RPs in
the second selection of the nearest RPs, which can reduce the
deviation of distance measurement caused by only using RSS
in a large database. Therefore, we can find that the perfor-
mance of APD-WKNN is slightly better than Bi, and both

TABLE 9. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database3.

two algorithms outperform the others. As shown in Table 9,
the mean error improvements of APD-WKNN are 20.60%,
39.67%, 44.12% and 7.40%, and the RMSE improvements
are 6.61%, 35.25%, 33.86% and 3.81%, respectively.

D. POSITIONING PERFORMANCE COMPARISON WITH
MACHINE LEARNING-BASED ALGORITHMS
In addition to the classical deterministic algorithms based
on the nearest neighbor mechanism, many Wi-Fi finger-
print positioning algorithms have been proposed using
various machine learning methods. Therefore, to evaluate
the proposed algorithm more fully, we compare the pro-
posed algorithm with four machine learning-based algo-
rithms (Wang et al. [23], Khatab et al. [24], Xu et al. [25]
and Yu et al. [26]). Wang implemented a tree fusion-based
regression model for fingerprint positioning. Khatab intro-
duced the autoencoder (AE) to extract Wi-Fi features and
used the Extreme Learning Machine (ELM) for fingerprint
positioning. Xu adopted the AE for feature extraction and
used the Multi-Layer Perceptron (MLP) for position estima-
tion. Yu utilized the Radial Basis Function-based Support
Vector Machine (RBF-SVM) for fingerprint positioning and
achieved high accuracy. The parameters of these algorithms
are set to the same as them in the literatures, and no changes
are made in this paper. The K -values and C-values are also
the same as the previous section. The positioning error in
terms of CDF is shown in Fig. 8, 9 and 10, respectively.
Tables 10, 11 and 12 list the positioning error statistics.

FIGURE 8. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database1.
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The positioning error on Database1 is shown in Fig. 8 and
Table 10. The 50%, 75% and mean error of the APD-WKNN
are 1.58m, 3.06m and 2.32m, which are smaller than 1.79m,
3.34 m and 2.74 m of Wang, 1.70 m, 3.83 m and 2.98 m of
Khatab, 2.15 m, 4.09 m and 3.35 m of Xu, 2.75 m, 4.59 m and
3.89 m of Yu. Compared with the listed neighbor-based algo-
rithms, the mean error improvements of the APD-WKNN on
Database1 are 15.33%, 22.15%, 30.75% and 40.36%, and
the RMSE improvements are 9.15%, 18.71%, 26.65% and
34.74%, respectively.

TABLE 10. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database1.

The positioning error on Database2 is shown in Fig. 9 and
Table 11. The 50%, 75% and mean error of the APD-WKNN
are 1.97m, 3.37m and 3.08m, which are smaller than 2.40m,
3.90 m and 3.53 m of Wang, 2.29 m, 4.16 m and 3.96 m of
Khatab, 2.78 m, 4.49 m and 4.33 m of Xu, 2.71 m, 5.19 m and
4.74 m of Yu. Compared with the listed neighbor-based algo-
rithms, the mean error improvements of the APD-WKNN on
Database2 are 12.75%, 22.23%, 28.87% and 35.02%, and

FIGURE 9. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database2.

TABLE 11. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database2.

the RMSE improvements are 9.51%, 19.08%, 28.74% and
32.44%, respectively.

FIGURE 10. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database3.

TABLE 12. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database3.

The positioning error on Database3 is shown in Fig. 10 and
Table 12. We can find that our proposed algorithm, Wang’s
and Khatab’s algorithms obtain similar positioning accuracy.
The 50% errors of the three algorithms are 4.30 m, 3.93 m,
4.85 m, and the 75% errors are 8.22 m, 7.81 m, 8.89 m. Their
mean errors are 7.05 m, 6.32 m and 7.23 m, respectively.
Among them,Wang’s algorithm has the highest average posi-
tioning accuracy. The method with the lowest accuracy is still
Yu’s, and its average positioning error is only 10.64m.We can
see that the positioning accuracywith Database3 is lower than
Database1 and Database2, this is because the sampling data
of Database3 are the original data without averaging or other
preprocessing, collected by 25 different devices and 20 differ-
ent participants, this data feature makes it more challenging
to use nearest neighbor-based algorithm for positioning. For
machine learning-based algorithms, the fingerprint feature
extraction can reduce the influence of heterogeneous devices’
RSS inconsistency on positioning. Besides, the powerful clas-
sification and fitting capabilities of machine learning enable
them to cope with such large database. Nevertheless, we can
see that, by using the more effective distance measure and
accurate weigh, the mean positioning error of the proposed
algorithm is still at a low level, which is 10.19% less than Xu
and 33.74% less than Yu.

Moreover, compared with the positioning methods based
on machine learning, our proposed algorithm has no training
process and does not need adjusting numerous parameters.
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Therefore, the complexity of the proposed algorithm is lower
than that of machine learning-based algorithms, which is very
important for indoor positioning based on mobile devices
such as smartphones.

V. CONCLUSION
This paper proposes a novel WKNN algorithm based on
a new distance measure for Wi-Fi fingerprint positioning.
We first analyze the relationship between RSS similarity
and signal propagation distance difference, and present the
weighted Euclidean distance based on the attenuation law
of the spatial signal. Then, by combining the weighted
Euclidean distance with the known position information of
RPs, the approximate position distance is designed and used
for improving the WKNN algorithm. The positioning exper-
iments are conducted with three databases, and the pro-
posed algorithm is compared with eight different types of
algorithms to evaluate the performance. The results show
that the designed approximate position distance outperforms
other distance measures in describing the position relation
of points. The mean positioning accuracy of the proposed
algorithm outperforms the Euclidean-WKNN by 45.28%,
38.41% and 20.60%, outperforms the SVM-based algorithm
by 40.36%, 37.94% and 33.74% in three databases, respec-
tively. In addition to the K-value and C-value, the algorithm
does not need to set additional parameters, and the effect of
C-value on the positioning result is insignificant when the
C-value is within a certain range. In future work, we will
focus on the automatic construction and update of database
to reduce the work of offline field survey.
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