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ABSTRACT Due to the increasing utilization of electric vehicles (EVs), future power grids may face
challenges of system peak load that are usually solved by means of grid reinforcements. By providing
flexibility, acquired from flexible consumers, such as EVs, the need for grid reinforcements can be
avoided or postponed. Therefore, in order to solve the peak load problem, this paper focuses on the provision
of flexibility services through the local market. It presents a framework for the participation of aggregated
electric vehicles in the local market, considering the operating constraints of the grid. In the proposed
framework, aggregators interact in a transactive, market-based manner, with a transactive energy (TE)
operator and distribution system operator (DSO) to resolve operational problems. For the market-based
operation, a bidding model is proposed and formulated as an optimization problem that minimizes the total
cost of DSO for acquiring flexibility services from EVs. The proposed model uses EVs as flexible loads to
illustrate the method, and it is tested with case-studies conducted on two IEEE test systems.

INDEX TERMS Demand flexibility, distributed energy resources, electric vehicles, transactive energy.

NOMENCLATURE
A. Indices
m, n ∈ B Power buses
mn ∈ l Power lines from bus m to n
d ∈ D Power demand
t ∈ T Index of time
i ∈ I Index of aggregator
e ∈ Ei Index of electric vehicles under aggregator i
j Power bids
ts Length of each time slot
u Power generation units

B. Constants
NE
i Number of EVs under aggregator i

NJ Number of bids
NT Number of time slots
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approving it for publication was Pierluigi Siano .

Nagg Number of aggregators
NB Number of buses

C. Variables
1pi,j,t flexibility bid power at aggregator i, bid j,

time t
PEve,t evth charging power at time t
Pu,t output power from a generator at time t
fmn,t power flow from bus m to bus n at time t
θn,t phase angle of bus n at time t

D. Parameters
λe,t Predicted day-ahead electricity price vector
ϕi,j,t Flexibility bid price for aggregator i, bid j,

time t
Pe Maximum charging rate of individual EV
Ecap,e Battery capacity of EV e
Pi,j Maximum power offered for aggregator i in

bid j
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Fmn,t Maximum Power flow of line mn at time t
Xmn Impedance of power line mn
Pld,t Power load d at time t

I. INTRODUCTION
With the increasing integration of distributed energy
resources (DER), like electric vehicles, the ever-evolving
power system needs enhanced and flexible operation [1],
especially at the distribution system level, since the increasing
penetration of DERs is raising challenges from an opera-
tional point of view. For instance, at the distribution level,
the network’s power quality may face reverse flows, voltage
limit violations, and congestion problems. To address these
challenges, the distribution system operator (DSO) could
decide for reinforcement and extension of grids, which may
not be a cost-environment friendly solution, or for an alternate
solution like demand response [2], [3] programs, where,
the smart grid paradigm enables the employment of demand
flexibility at the distribution level.

Demand flexibility (DF) is usually used for a large cus-
tomer; however small customers are also an efficient resource
of flexibility [4]. To provide DF from small customers to
the DSO, a new entity called an aggregator (AGR) is used,
who represents these customers in electricity markets and is
responsible for managing and operating their flexibility [5].
The aim of such markets, at the demand side, is to provide
market access to these flexibility providers, and a support
tool for the DSO to manage technical complications. To this
point, the efforts on the development of appropriate market
mechanisms in existing market structures are inadequate,
which has impeded the full potential of DF.

To exploit the flexibility potential available at the demand
side and to encourage significant involvement of the end-
user in electricity markets, policymakers are paying more
attention to transactive energy systems and market-based
mechanisms [6], [7]. A survey on local energy markets and
transactive energy systems is given in [8]. To facilitate the
transactions between the buyers and the providers of DF a
medium such as a regulated flexibility market is impera-
tive. Furthermore, the new market mechanism must work in
coordination with existing electricity markets, to avoid any
negative impacts on other markets on account of flexibility
activations [9].

In this respect, to manage flexible energy sources opti-
mally, [10], [11] introduced a planning framework for deter-
mining the bidding curves and their focus was on price
elasticity. In [12] a Universal Smart Energy Framework
(USEF) for building smart energy products and services is
suggested. The USEF framework aims to maximize the value
of DF. Moreover, it follows a market-based coordination
mechanism. Approaches examined in the relevant literature to
achieve the effective participation of DF in electricity markets
mostly revolve around concept development. In [13], [14],
a novel market framework is proposed, which facilitates
the involvement of demand flexibility in electricity markets.
In the work of [15], an optimization problem is proposed

to facilitate the DSO requests on flexibility. The proposed
problem is for a novel aggregator named smart energy ser-
vice provider, responsible for managing all flexible energy
sources. It also serves as a platform for flexibility trading
in a local electricity market. Similarly, [16] proposed an
algorithm for the optimal schedule of the flexible devices in
both day-ahead and real-time periods. This work contributes
to considering the unpredictability of flexible loads; however,
it neglects grid constraints in the optimization process.

For a day-ahead market structure, [17] proposed a
framework for a flexibility market called a flexibility
clearinghouse. The objective of the market is to promote the
integration of small scale DERs as flexibility sources. This
market works in parallel to existing markets and aims to assist
the DSO in mitigating grid congestions such as overloading
and voltage fluctuations. Furthermore, a market mechanism
called De-Flex-Market is presented in [18], [19]. It is based
on the traffic lights control system and aims to offer flexibility
services to the DSO tomitigate capacity constraints and avoid
network reinforcements.

It is worth noting that the researches mentioned above,
significantly contribute to the concept development and rel-
evant bidding processes. However, despite its importance,
the potential of DF to reduce system peak load and relieving
network congestions has not been well investigated. Besides,
these works have neglected grid power flow constraints,
which is crucial to practically model the impact of DF. The
methodology presented here builds upon the authors’ pre-
vious work [20] and further advances towards proposing a
pragmatic approach for the application of flexibility services
in a local market at the distribution level. The contributions
of this work are three-fold:

1) A new bidding model is proposed for the EV participa-
tion in the local market by considering the interaction
between the TE operator, the DSO, and aggregators.
The bidding model is formulated as an optimization
problem that minimizes the total cost of DSO for
acquiring flexibility services from EVs.

2) The optimization problem considers power flow con-
straints along with bidding model constraints. We show
that the consideration of these constraints ensures the
technically viable solution, and it is vital to model the
impact of demand flexibility practically.

3) The effectiveness of the proposed model in response
to various settings, such as with network constraints,
without network constraints, a sensitivity study of
aggregator prices and scalability test of the proposed
model has been investigated. We highlight the need for
considering the network constraints, the adeptness of
the model under different prices and scalability of the
model for a large test system.

The rest of this study is organized as follows. Section 2 pro-
vides the transactive energy system for aggregated electric
vehicles, as well as the key actors, are introduced. The
optimization problem defined in this paper is detailed in
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FIGURE 1. Illustration of interactions between TE system participants for
day-ahead operation.

Section 3. Section 4 presents the case study, to evaluate the
performance of the proposed model. The main conclusions
are drawn in section 5.

II. CONTROL FRAMEWORK
Fig. 1 presents the transactive energy system for aggregated
electric vehicles to reduce system peak load. In the sys-
tem, several aggregators are responsible for managing DERs
and interacting with TE operator and DSO, for eliminating
peak load. The current system introduces a TE operator that
facilitates the interaction between DSO and AGRs. AGRs
are responsible for representing the interests of flexible con-
sumers, i.e., EV owners. Their aim is to minimize the operat-
ing cost of consumers by generating the aggregated optimal
energy power schedule for the complete scheduling period,
and to participate in the localmarket. During these operations,
the DSO’s network security constraints should not be violated
that is ensured by enabling control techniques such as the
transactive-energy approach. The TE operator is therefore
introduced to facilitate the interactions between DSO and
AGRs. If the actions of AGRs cause network problems and
there is a violation, the flexibility call is activated by the TE
operator to resolve the issue. The operational functions of the
three actors are presented as follows:

A. AGGREGATORS
The role of aggregator here is divided into two stages:
aggregated energy schedule generation for electric vehicles
and flexibility provision, accumulated from DERs. In the
first stage, the aggregator collects the charging requirement
of an individual electric vehicle. Based on these require-
ments an initial aggregated charging schedule of electric
vehicles is created and an energy profile is provided to the
DSO. In the second stage, if the flexibility call is activated,
the aggregators accumulate the available flexibility from con-
sumers to offer bids in the form of flexibility profiles with
the information about electric vehicles that will refrain from

charging. Note that the flexibility offer must be aligned with
the DSO request.

B. DSO
The DSO is an entity that interacts with the aggregators and
TE operator, to buy flexibility from the aggregators and is
responsible for the network security. In addition, the initial
power schedule of aggregators is also shared with the DSO
to detect potential network problems. After receiving the
energy profile from an aggregator, the DSO performs risk
analysis and checks the possibility of network violation due
to the charging schedule provided by aggregators during the
following day of operation. If such risk is predicted (i.e.
operational limits of the network are violated), the DSO sends
the request of flexibility needs (i.e. flexibility call is activated)
by announcing the power quantity to be reduced (i.e. refrain
electric vehicles from charging at a certain time for the cer-
tain duration). Moreover, the DSO may also recommend the
initial rate for price discovery and maximum amount DSO is
willing to pay along with network information to TE operator.
In addition, the DSO also shares the technical information
such as system state and location of flexibility needed.

C. TRANSACTIVE ENERGY OPERATOR
The TE operator serves as a trading platform, and is an
authorized entity responsible for clearing the market by deter-
mining the activated bids and prices, after receiving flexi-
bility request and offers from the DSO and the aggregators,
respectively. Afterward, the TE operator announces the result
and shares the required information with aggregators and the
DSO. As a result, aggregators adjust their energy profile to
reduce peak loads.

It should be noted that after the TE operator announces
the results, aggregators would again optimally generate their
charging schedule according to the decision obtained from the
TE operator. In other words, maximum power allowed to be
consumed by aggregators will be updated in the aggregator
model.

The method development and mathematical formulation
of the proposed model are presented in the next section.
However, the commonly used assumptions and simplifica-
tions are presented as follows:

1) This paper uses a basic linear programming-based
optimization to generate the optimal charging sched-
ule [21], [22], neglecting the EVs uncertainties such as
driving patterns and charging efficiency.

2) In power systemmodeling, to show the effectiveness of
the proposed model with power flow constraints, only
DC-power flow is considered [23], and AC power flow
will be adopted in future work.

III. METHOD DEVELOPMENT
In this section, first, the modeling of the aggregator’s opti-
mization problem is presented, who aims to minimize the
charging cost for generating the optimal charging schedule,
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and the interaction of aggregators with TE operator is
described. Second, the DSO’s operational objective is pre-
sented where a bidding model is formulated as an optimiza-
tion problem to minimize the cost of DSO for acquiring
flexibility service from flexible consumers, to reduce the
system peak load.

A. AGGREGATOR’S OPERATION
The optimization problem formulated for the charging of
aggregated EVs is based on the requirements of EV own-
ers and forecasted energy prices. For the optimal charg-
ing process of EVs, several methods can be found in the
literature [24]–[26]. In this study, the aggregator optimization
problem proposed in [22], [25] is adopted to minimize the
charging cost as well as to fulfill the EV owners charging
requirements. The optimal charging schedule for EVs is gen-
erated by formulating a linear programming-based optimiza-
tion problem.

The objective function given in (1) reflects the minimiza-
tion of EVs charging cost and of satisfying the individual
EV’s energy needs for the period of the next 24 hours. For
each aggregator, the solution is introduced similarly

min
NE
i∑

e=1

NT∑
t=1

λe,tPEve,t .ts (1)

subject to

SOC0,e × Ecap,e +
NT∑
ts=1

PEve,t .ts = SOCe × Ecap,e (2)

0 ≤ PEve,t ≤ Pe (3)

In (1), PEve,t is the optimization variable for EV charging power
and λe,t is the DA predicted electricity price.

Equation (2) ensures the balance between the charged and
requested energy for each EV. Equation (3) limits the charg-
ing rate from exceeding the maximum rate of the charger. It is
crucial for aggregator(s) to provide charging locations of all
schedules to DSO. It is assumed that the aggregators know the
charging locations of EVs. The power requirement for each
EV under aggregator i in time interval t at bus l is represented
as PEvi,t,l in (4). Whereas, i= 1, . . . . Nagg, ts = 1. . .NT and B=
1. . .NB.

PEvi,t,l =
∑
e→B

PEve,t,B (4)

The aggregated charging profile of electric vehicles, pre-
sented here is used by the DSO to predict the upcoming grid
contingencies occurring on the subsequent day of operation.
DSO is responsible for avoiding demand peaks in the system.
Therefore, in the planning stage, DSO identifies the needs
of acquiring flexibility services based on historical data or a
time series baseload, assumed to be known. Once the need for
acquiring flexibility service is determined, the DSO gathers
the requirements of flexibility by identifying the type of
flexibility needed, location of resources providing flexibility,

and the required quantity of flexibility [27]. After the identifi-
cation of requirements, a flexibility call is activated, the DSO
recommends the requested quantity of a certain type of flexi-
bility service and all aggregators are informed. Based on the
information received from the DSO, the aggregator gathers
the available flexibility offers from their flexible consumers
to offer ahead-bids, to satisfy the corresponding service of
DSO. Ahead bids are offered to TE operator, an independent
entity, who chooses the suitable offers from the aggregators
and clears the market.

B. DSO’S OPERATIONAL OBJECTIVE
The DSO’s objective is to buy flexibility and keep the net-
work in a secure state, in response to the network operation
violations caused by the charging schedule of aggrega-
tors. Therefore, the approach presented here aims to reduce
the system peak load by activating the flexibility service
requested by DSO in the presented framework. The DSO
acquire flexibility services from the EVs to reduce the system
peak load to a reasonable extent, by incurring a certain cost
of flexibility. The objective function given in (5) reflects
the minimization of the DSO’s total cost for acquiring the
flexibility service. Flexibility cost (ϕ) under each bid comes
from the flexibility contract [6], [15] between the flexibility
providers and aggregators. The time resolution t is a flexible
parameter in the problem; however, the trading period for
one hour is considered here which is in accordance with
the criteria of many European electricity markets. The TE
operator, who receives information from both aggregators and
the DSO, is responsible for clearing the market considering
the constraints given in (6) - (14), where (6) - (10) represents
bidding model equations and (11) - (14) represents network
constraints. Note, for optimization variables in the bid, only
active power is considered.

min
NT∑
t=1

NB∑
i=1

NJ∑
j=1

1pi,j,tϕi,j,t (5)

where in (5) 1pi,j,t represents the quantity (i.e. power needs
to be reduced) for each bid and ϕi,j,t represents the price for
the power reduced in period t , bid j for aggregator i. It should
be noted that the objective function given in (1) provides
the aggregated charging schedule, which is used to predict
the peak demand in the subsequent day of operation, and by
doing so identifies the need of acquiring flexibility service.
Whereas, the objective function given in (5) minimizes the
total cost of DSO for acquiring flexibility service and is
solved by TE operator.

1) BIDDING MODEL
In this model, EVs are used as a flexible load, which refrains
from consuming energy according to an earlier schedule, and
aggregators, on behalf of EVs, bid for the flexibility it can
offer. The amount of energy refrained from consuming is
offered in terms of flexibility bids by the aggregator. Flexi-
bility bids, submitted by aggregators, consist of the quantity
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FIGURE 2. Quantities and prices of flexibility.

of the bid, i.e. power to be reduced for that bid 1pi,j,t and
its price ϕi,j,t . Fig. 2 illustrates the flexibility bid model with
blocks of quantities and prices of flexibility based on the
flexibility contracts. Bid prices of flexibility providers are
sorted from the low-priced (high comfort level) to high-priced
(low comfort level) offers.

Fig. 2, exemplifies a flexibility bid structure, which con-
siders the optimal benefits to the connected EVs, i.e.,
the unserved power demands of EVs are penalized to guaran-
tee the maximum social welfare for EVs. The bid price sub-
mitted by the aggregator is the optimal price that is decided by
considering the profit for EVs while fulfilling their charging
requirements and the profit from activating the flexibility bid
to guarantee the comfort and profitability of EVs.

The flexibility contracts stipulate the details of bid power
and prices. The range of bid power depends on aggregators’
experience [28], whereas, the bid prices depend on several
factors. According to [27] the price of offered flexibility
can be constituted from activation cost of each flexible load,
the operation cost of affiliated DERs, flexibility service reser-
vation cost, and possible penalty cost as well. In practice,
the prices are based on the comfort level and operating plans
of flexibility providers [15]. Flexible loads with high comfort
levels (i.e. less required resources to consumers) offer their
flexibility at low prices as compared to the loads with a
lower comfort level. Resources offering flexibility at low
prices will be activated prior to the ones with high prices that
are already fulfilled in the proposed bidding model. Note,
that pay-as-bid structure [29] is followed here for flexibil-
ity revenues, i.e., optimal bids directly receive their bidding
prices.

The bidding equations are given in (6)-(10). The bid power
range for each bid offered by aggregators is given in (6-8) and
it ensures that the value of load-reduced is not greater than the
offered bid. The bid power balance constraint is given in (9)
where power reduced for each aggregator is equal to the sum
of power reduced in all bids. Equation (10) limits for the shed
power for each aggregator.

0 ≤ 1pi,j,t ∀i, j, t (6)

1pi,j,t ≤ Pi,j − Pi,j−1 ∀i, j, t > 1 (7)

1pi,j,t ≤ Pi,1 ∀i, j, t = 1 (8)

1pi,t =
ni∑
i=1

1pi,j,t ∀i, t (9)

PEvi,t,l ≥ 1pi,t ∀i, t (10)

The model presented here advances on earlier studies by
taking into account the network constraints. The effectiveness
and practicality of the proposed model are shown with the
consideration of power flow equations. Due to their complex-
ity, modeling the power flow equations can be problematic.
However, to practically model the impact of DF at the distri-
bution side, considering power flow equations in the model
is imperative. In addition, considering them will also have a
significant impact on the activated bids, as technically infea-
sible bids will not be activated and hence this will modify the
DSO’s total cost of flexibility procurement.

2) POWER FLOW EQUATIONS
The power flow equations must be taken into account to
only activate the technically feasible flexibility bids. Usually,
the flexibility markets are operating at the distribution side,
and using AC power flow is important due to the sensitivity
of bus voltages on the reactive power. However, it intro-
duces computational problems due to the non-linearity of
AC power flow equations. Moreover, the presented work
considers power flow equations in modeling the impact of
DF. Therefore, to show the effectiveness of the proposed
model, the DC power flow model, which is commonly used
in the literature [30], [31] even for distribution networks [23],
is considered, andAC power flow adoption is our futurework.
The DC power flow model is included in the optimization
problem and can be considered as power flow constraints for
the objective function given in (5). As a result, the power
flow equations modeled in this study are given in (11)-(14).
In (11) power balance equation at any node is modeled where
D(n) is a subset of power loads at power bus n. The phase
angle of each bus is limited through (12) and the power flow
at each line or the line capacity of the network is reflected
through (13). The DC power flow is calculated using (14)
from the phase angle difference.

Pu,t + fmn,t =
∑

d∈D(n)

Pld,t +
∑
i∈I (n)

(PEvi,t,l −1pi,t ) ∀n, t

(11)

−π ≤ θn,t ≤ π ∀n, t (12)

Fmn,t ≤ fmn,t ≤ Fmn,t ∀mn, t (13)

fmn,t =
θm,t − θn,t

Xmn
∀mn, t, (m, n) ∈ l (14)

IV. CASE STUDY
In this section, the proposed methodology of acquiring the
flexibility service for peak load reduction is illustrated with
the help of case studies. The aim here is to present the
effectiveness of the proposed methodology in the handling of
multiple flexibility bids with the minimum cost incurred by
the DSO. The optimization problem presented in this study
is validated with the help of three case studies. In the first
case study, the optimization problem is solved using bidding
constraints only. In the second case study, the power flow
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TABLE 1. Power requirements for aggregators during peak hours.

FIGURE 3. EV charging requirement at each bus.

equations are also included with bidding constraints. The
third case study, presents the sensitivity study of aggrega-
tors prices. In the last case study, the scalability test of the
proposed model is presented using a modified IEEE test
system.

Two aggregators, AGR1 andAGR2,managing controllable
consumption in grid area are considered. The number of EVs
managed by AGR1 and AGR2 is 6 and 3, respectively. In the
given network, EVs are connected at different locations. The
battery capacity for EVs is set to 24kWh, initial battery SOC
to 20% and maximum charging power is restricted to 3.7 kW.
The optimal schedules for EVs under both aggregators are
calculated according to (1).

Table 1 presents the details about the number of EVs
connected at each bus, total charging power required by
connected EVs for whole charging period and charging power
needed by connected EVs during peak hours i.e. hour number
15, 16 and 17. The charging requirement for electric vehicles
connected at each bus is given in fig. 3. It can be seen from
the figure that hours with high power requirements are at the
start of the charging period.

The scheduling period for EVs, considered here is from
14 to 4 and an hourly interval is used. The baseload profile
of the system with an aggregated charging schedule, for the
day-ahead operation, and actual market prices in e/kWh
obtained from the Nord pool market [32] is given in fig. 4.
Based on the aggregated charging schedule and baseload
profile, the expected load at hours 15 to 17 will cause a
peak in demand. It can be addressed by either reinforcing
the network or by acquiring flexibility services from cus-
tomers, i.e. to reduce consumption at peak hours. In this study,

FIGURE 4. Load profile with aggregated EV charging schedule and market
prices.

flexibility service is used to handle this peak load during
hours 15 to 17.

A. CASE STUDY I: OVERLOAD MANAGEMENT BY DEMAND
FLEXIBILITY WITHOUT CONSIDERING POWER
FLOW CONSTRAINTS
In order to test the proposed model without network con-
straints, this section provides a case study assuming that
the flexibility bid powers, which are based on the different
comfort levels of EV owners, are known by the aggregators.
Note that the flexibility service prices are independent of
actual market prices and depend on competition and contract-
ing agreement of aggregators. Moreover, a small number of
electric vehicles are considered here to illustrate the proposed
model; however, it is scalable to include a large number of
EVs. Power requirements for both aggregators, at hours of
peak load, are given in table 1.

After receiving the requested amount of power reduced
and offered aggregated bids, the TE operator is responsible
for determining the suitable bids and prices, which accounts
for required load reduction. According to fig. 4, the hours
at which load reduction is required are hours 15, 16 and 17.
Hour 15 is considered here to illustrate the effectiveness of the
proposed method. Based on the comfort level of EV owners,
each aggregator submits its bids with the number of EVs they
will refrain from charging at peak hours.

Table 2 presents the aggregated bids (AGRBID) offered
by AGRs and the power requirement of each EV under
both aggregators for hour 15. In addition, the amount of bid
power and, their corresponding prices based on EV owners’
comfort level are also shown. It should be noted from the
table that the flexibility offered by AGR1 and AGR2 under
each bid is in ascending order according to price. High prices
reflect the level of customers’ sensitivity to alter their charg-
ing plans. Moreover, each bid is sorted from the cheapest
offer to the most expensive one, and the expensive prices
show the unwillingness of the AGR for the flexibility to be
activated.

The aggregated bids for both aggregators at each bus
includes different blocks of flexibility. AGR1BID1 includes
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TABLE 2. Power requirement and flexibility offered at Hour 15.

TABLE 3. Power reduced for each aggregator bid in day-ahead operation
at peak hours without power flow constraints.

four blocks of flexibility, BID2 includes five blocks
and BID3 includes two blocks of flexibility, whereas,
AGR2BID1 and AGRBID2 include two and one blocks of
flexibility, respectively. Blocks of flexibility, under each bid,
are arranged in a non-decreasing manner based on their
prices. Flexible power offered by AGR1 under each bid
depends on the comfort level of EV owners. The difference
in prices for different blocks of flexibility, as seen in Table 2,
can be justified as the precedence of EV owner to change
its charging plan. Table 3 summarizes the result of acti-
vated blocks from AGRBIDs without power flow constraints,
by the TE operator, for peak hours.

The optimal combination of bids activated for load reduc-
tion from both aggregators is illustrated in Fig. 5. The flex-
ibility activated in the first bid of AGR1 is 2.0376 kW,
where the first block of bid1 is activated in full and from
the second block, only a part of the bid is activated as shown
in Fig. 5(a). In the second bid, the only first block is activated
with the amount of 2.2021 kW as shown in Fig. 5(b), whereas,
for the third bid, one block offered in this bid is activated
completely corresponding to the amount of 1.4680 kW as
shown in Fig. 5(c). Moreover, For AGR2, the first block was
activated from bid 1, not selecting the second block, and
the bid 2 flexibility offer was activated in full, as shown in
Fig. 5(d-e).

FIGURE 5. Without Power flow constraints (a-c) bids for AGR1 and (d-e)
bids for AGR2.

FIGURE 6. Bus system with EV load.

B. CASE STUDY II: OVERLOAD MANAGEMENT BY
DEMAND FLEXIBILITY CONSIDERING POWER
FLOW CONSTRAINTS
Here, the power flow equations are included along with the
bidding constraints in the optimization problem. The pro-
posed method is tested on IEEE 13 bus system with two
aggregators where the battery capacity, initial SOC and max-
imum charging power for both aggregators are considered the
same. Fig. 6 depicts the topology of the power system used
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TABLE 4. Power reduced for each aggregator bid in day-ahead operation
at peak hours with power flow constraints.

and the details of the bus system with EV loads are provided
in [33].

Each bus is feeding different loads including several DERs,
electric vehicles in our study, with a different comfort level.
DERs with high comfort levels (less sensitive and can eas-
ily provide flexibility) offer flexibility at lower prices as
compared to lower comfort level DERs. Similar to the first
case study, the number of EVs connected here are 6 for
aggregator 1 and 3 for aggregator 2. In the given network,
EVs are used for flexibility services and are connected at
five different buses. The test system has 8 loads connected at
different buses and EVs are connected with buses 3, 6, 8, 10,
and 12. EVs connected at bus 3, 10 and 12 are managed by the
AGR1whereas; EVs at bus 6 and 8 aremanaged by the AGR2.
The flexibility power bid and prices are the same as those
considered in the previous case study. The TE operator selects
the optimal bids for peak load reduction while respecting the
network constraints.

With the network constraints, the optimal bids activated to
reduce peak load are illustrated in Fig. 7. For AGR1BIDs, the
flexibility blocks activated from first, second and third bids
amount to 1.7616 kW, 2.2021kW and 0.77674kW, respec-
tively, as shown in Fig. 7(a-c). The first flexibility blocks
of both BID1 and BID2 are activated in full, and remaining
are not activated as shown in Fig. 7(a) and 7(b), respectively,
whereas, flexibility activated from BID3 is only a part of the
block as shown in Fig. 7(c). Furthermore, for AGR2BIDs,
in BID1, the first block is activated along with some power
from the second block with a total amount of 3.9034kW as
shown in Fig. 7(d) and, the BID2 were activated in full, as
shown in Fig. 7(e).

It should be noted from Fig. 5 and 7 that the amount of
flexibility activated under different bids when power flow
constraints are included is different when comparedwith flex-
ibility activated without power flow constraints. Although the
total amount of power activated under all bids (i.e. 11.58 kW,
17.12 and 12.52 for Hour 15, 16 and 17, respectively) in both
cases is similar, the activated bids and their shed power are
different in case of using the power flow constraints. That
indicates the importance and effectiveness of considering
the power system constraints. Table 4 summarizes the result

FIGURE 7. With Power flow constraints (a-c) activated bids for AGR1
(d-e) activated bids for AGR2.

of activated blocks, with power flow constraints, at peak
hours.

C. CASE STUDY III: SENSITIVITY STUDY OF
AGGREGATOR PRICES
In this scenario, we have emphasized on the analysis of the
sensitivity study for different aggregator prices. In the first
case, the bid prices are assumed based on the discussion given
in section III. These prices are used to calculate the total
cost incurred by DSO for total power shed at peak hours
for each aggregator. In the second case, it is assumed that
AGR1 changes its bidding price and bids only 90 % of its
original prices. Similarly, in the third case, AGR1 bids 70%
of the base price. The effect of this change in strategy can be
seen from Table 5, where the total cost incurred by DSO and
total power reduced for AGR1 and AGR2 change.

If the prices for AGR1 is changed to 90% from the base
price, the total power reduces for AGR1 and AGR2 changes
merely, however, a significant change can be observed in the
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TABLE 5. Change in pricing strategy from one aggregator.

total DSO cost for each aggregator. If the price for AGR1 is
changed to 70% of its base price, the power reduced and the
total cost of DSO for each aggregator changes significantly.
Owing to lower prices than AGR2, the complete flexibility
offered by AGR1 is selected first whereas the remaining flex-
ibility power is selected from AGR2. If the price is lowered
further, the total power reduced does not change as the offered
power from AGR1 is selected first however, the price for
AGR1 is reduced further.

D. CASE STUDY IV: SCALABILITY TEST OF
THE PROPOSED MODEL
In this section, we select amodified IEEE 123-Bus power sys-
tem with 5 aggregators and 340 electric vehicles, connected
at different busses, as a largescale test system. The proposed
bidding model is used to determine its scalability. The test
system topology, parameters, and flexibility power bid and
prices are described in further detail in [33]. The system has
124 power lines, 10 power generators, 85 power loads, and
340 electric vehicles connected at 13 different buses. EVs
connected at bus 4, 5 and 6 are managed by the AGR1, EVs at
bus 19, 20 and 22 are managed by the AGR2, AGR3manages
the EVs connected at bus 41, 43 and 46. AGR4 manages
the EVs connected at bus 82, 83 and AGR5 manages the
EVs connected at bus 104, 107. The TE operator selects
the optimal bids for peak load reduction while respecting the
network constraints.

Table 6 summarized the numerical results under different
cases, namely, the small system without and with power sys-
tem constraints, the modified IEEE 123-bus system without
and with power system constraints, respectively. The opera-
tional cost of DSO, the total power reduced by all aggregators
during the flexibility activation, and the total execution time
are listed. The total costs of aggregated charging schedules
during and after solving the network security violations are
also mentioned in the table.

From table 6, for a small test system, consideration of
network constraints has caused an increase in the total cost
incurred by DSO for acquiring flexibility services. More-
over, the consideration of network constraints also affects the
total unserved power, which can be equal or more than the
power unservedwithout considering network constraints. The
aggregator’s net cost before bidding is similar for both cases
however after the bidding model is executed the aggregator’s
net cost has increased for considering network constraints due

TABLE 6. Simulation results of bidding model under different system
settings.

to the increase in the DSO flexibility cost. Similarly, for a
large test system, the increase in DSO flexibility cost and
aggregator net cost after the bidding is more significant when
network constraints are considered. For a large test system,
the cost incurred by DSO with no network constraints is
increased by 49% with network constraints and the net cost
of aggregators is increased by 1% as compared to without
network constraints. In the end, the computation time (s) for
all four cases is presented. With the inclusion of network
constraints in the bidding model, the computational time
increased. The computational time is influenced more by the
large test system than the small test system. However, due to
the linearity of the proposedmodel alongwith DC power flow
equations, the proposed model is executed in a very fast time.

V. CONCLUSION AND FUTURE WORK
A market-based control framework is presented to facilitate
the interaction of the AGR, the DSO, and the TE operator.
In the presented model, the aggregators’ role is to perform
two tasks (1) energy profile of aggregated charging schedule
(2) interaction with the TE operator in case of need for acti-
vating flexibility service. On the other hand, the TE operator
is responsible for determining the activated flexibility bids for
all aggregators and DSO to reduce system peak load. For this
purpose, an optimization problem is formulated that models
the total cost incurred by DSO while respecting the network
constraints. To illustrate the effectiveness of the proposed
methodology numerical simulations has been conducted on
two test systems. The results show that the proposed bidding
model optimally provides the decisions for the TE operator,
who coordinates the decision with the DSO and flexibility
providers. Consideration of power system constraints pro-
vides different solutions to the TE, which indicates the effec-
tiveness of the proposed model to activate only the technical
feasible flexibility bids. In addition, the sensitivity of aggre-
gators’ prices has been discussed to show the adeptness and
optimality of the model. Finally, computational efficiency
analysis has been validated by a modified IEEE 123-Bus
system interacted with five aggregators to deliver power
for 340 EVs. The results show that the overall framework
can be solved in less time, as the model is based on linear
programming.
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Future work includes the consideration of EV driving pat-
terns, battery degradation for a more accurate model, consid-
ering the impact of EV load on voltage constraints, therefore,
adoption of the AC-power flow model and understanding the
impact of activating flexibility in real-time operation.
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