
Received January 4, 2020, accepted February 7, 2020, date of publication February 11, 2020, date of current version February 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973286

Content-Based Superpixel Matching Using
Spatially Constrained Student’s-t Mixture
Model and Scale-Invariant Key-Superpixels
PENGYU WANG, HONGQING ZHU , (Member, IEEE), AND XIAOFENG LING , (Member, IEEE)
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Corresponding author: Hongqing Zhu (hqzhu@ecust.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61872143, and in part by the Natural
Science Foundation of Shanghai under Grant 19ZR1413400.

ABSTRACT This paper addresses an image matching methodology designed for correspondence problem in
computer vision. Firstly, a novel superpixel segmentation model driven by spatially constrained Student’s-t
mixture model (SMM) is proposed. The tails of Student’s t-distribution are heavier than that of traditional
Gaussian distribution, therefore, SMM is more insensitive to outliers and noise. In this model, a spatially
constraint term based on Markov random field (MRF) is designed, so that good boundary adherence and
intensity homogeneity would be achieved. Next, by constructing an adaptive superpixel Gaussian filter and
a superpixel salient detector, this paper establishes an innovative key-superpixel detectionmethod by building
a superpixel scale-space pyramid. Different from conventional keypoint based detection, two images could
then be matched directly in a superpixel-to-superpixel manner. During the matching process, a combinatorial
feature descriptor that merges color, shape, gradient and texture features is set up to distinguish each
considered key-superpixel. One main advantage of this approach is that implementation time would be
largely reduced by less matching demand for key-superpixels and few corresponding local features. Some
experiments on datasets at the end would demonstrate a relatively better performance of our model.

INDEX TERMS Superpixel segmentation, spatially constrained Student’s-t mixture model, key-superpixel
detection, superpixel descriptor, superpixel matching.

NOMENCLATURE
i Pixel index.
I Input image.
H Input image height.
W Input image width.
N Number of pixels.
Vx Initial superpixel length.
Vy Initial superpixel width.
j Superpixel index.
K Number of superpixels.
zi Observation value.
Z Observation set.
�i Superpixel label of pixel.
f Density function.
P Joint conditional density function.

The associate editor coordinating the review of this manuscript and
approving it for publication was Senthil Kumar.

πij Prior probability.
5 Prior probability set.
S Multivariate Student’s t-distribution.
2j Model parameters set.
µj Mean value.
6j Covariance.
vj Freedom degree of Student’s t-distribution.
ζ Mahalanobis squared distance.
0 Gamma function.
ψ Digamma function.
4 Smoothing prior.
Mij Smoothing factor.
L Log-likelihood function.
J Objective function.
∂ Neighborhood set.
m Neighborhood index.
δ Seed index of superpixel.
E Image entropy.
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rij Posterior probability.
wij Expected weight.
t Number of iteration.
SGj Superpixel-based Gaussian kernel.
NGj Normalized superpixel-based Gaussian kernel.
SI Superpixel intensity image.
SL Superpixel image.
uj Pixel set of superpixel.
Uj Pixel number of superpixel.
on Intensity of pixel in superpixel.
SF Superpixel Gaussian filtering image.
th Threshold of saliency superpixel detector.
OS Saliency superpixel set.
KS Key-superpixel set.
Z̄pq Zernike moment.
p Order of Zernike polynomials.
q Repetition of Zernike polynomials.
s Superpixel standard distance.
F Manhattan distance.
Ō Key-superpixel descriptor.

I. INTRODUCTION
Image matching has been widely used recent years due to
their potential applications in surveillance systems [1], visual
tracking [2], object recognition [3], etc. Nowadays, a major-
ity of available algorithms adopt keypoint based matching
scheme to stitching images [4], [5]. But some of these
methods, including ORB [6] and SURF [7], may encounter
difficulties when images are recorded under imperfect cir-
cumstances, including poor light, camera defocus, affine
transforms, scene motion, etc. Besides, keypoint detection is
usually realized by building a scale-space pyramid, such as
SIFT [8]. It needs long matching time and high dimension
feature vector. Therefore, pixel-based processing strategies
may limit their use in real-time applications.

The essence of superpixel segmentation is partitioning an
image into a number of connected and unified pixel groups
with perceptual significance. Adopting superpixel images can
minimize computational cost in subsequent feature extracting
processes [9]–[11]. However, real-world image pairs with
perfect alignment could hardly be found so that any slightly
difference would lead to a completely different superpixel
description.

This study is consisted of two main steps, image seg-
mentation and matching based on superpixels. In the first
part, the superpixel segmentation algorithm is driven by
Student’s-t mixture model (SMM), incorporated with a spa-
tially constraint term Markov distribution, so that the super-
pixels obtained would achieve better boundary adherence and
regularity. The main advantage of the Student’s t-distribution
is that it is heavily tailed than Gaussian distribution. There-
fore, SMM provides a more powerful and flexible approach
for probabilistic data clustering compared with the classical
Gaussian mixture model (GMM). Besides, a fast and robust
parameter estimation scheme would be realized by replacing

covariance matrix with a fixed diagonal matrix associated
with image global entropy as well. Next, a key-superpixel
based image matching framework could be constructed by a
series of processes. (i) Superpixel Gaussian kernel would be
adopted to set up an adaptive superpixel filter; (ii) in terms
of superpixel neighborhood of different levels, a saliency
superpixel detector regarding based on color, shape, gradient
& texture features would be developed; (iii) by collaborat-
ing the superpixel filter and feature detector, a multiscale
superpixel pyramid would be designed for key-superpixel
detecting. Finally, by extracting the centroid of each key-
superpixels found, the two images could be matched.

The rest of this paper is organized as follows: Section II
gives a brief view of some existing works on superpixel
segmentation and feature matching. Section III presents the
proposed superpixel segmentation model. Section IV pro-
poses a model about multiscale key-superpixel detection and
description. Section V discusses the experimental results and
Section VI summarizes this paper.

II. RELATED WORKS
In this section, a review of some relevant algorithms on
superpixel segmentation and keypoint matching is provided.

A. SUPERPIXEL SEGMENTATION
Many models have been reported for superpixel segmenta-
tion, and could be classified into three categories: graph-
based, gradient-based, and clustering-based algorithms.

Graph-based approaches [12]–[15] took account of image
brightness, contour and texture, and produced superpixels
with relatively good visual compactness. A typical exam-
ple of these methods is NC superpixel [12]. After this,
Liu et al. [13] introduced entropy rate superpixel (ERS),
which based on the entropy rate of random walk and an equi-
librium term. It helps to create superpixels with high segmen-
tation precision. Another commonly used graph-based model
is lazy random walk (LRW) [14]. LRW mainly considers the
texture cues of image. Recently, Zhou et al. [15] reported
a bilateral geodesic distance superpixel (BGDS) generation
strategy. Spatial and color distance difference between nodes
in graph is combined, and the seed-dependent gradient for-
mulation made this method achieve generally higher speed
and better results.

Generally, gradient-based superpixel segment-
ation [16]–[18] can provide a good adherence to object
boundaries. As one of the most popular and widely used
gradient-based method, Turbopixels [16] adopted level set
technology to build superpixels with linear computational
complexity. In addition, watershed-based scheme has also
been considered. For example, Machairas et al. [17] intro-
duced marker-controlled watershed transformation for super-
pixel segmentation. They used spatially regularized gradient
to achieve approximately identical sub-regions. Recently,
Zhang et al. [18] proposed an efficient distance-based super-
pixel algorithm that could satisfied the boundary adherence
and intensity homogeneity.
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Clustering-based algorithms [19]–[25] set up superpix-
els using linear iterative strategy that had lower com-
putational complexity compared to graph-based model.
Achanta et al. [19] first applied k-means clustering method
(SLIC) to generate superpixels. SLIC can control the balance
between color and spatial similarity well with short running
time. The intrinsicmanifold SLIC [20] is an improved version
of classical SLIC that can better handle superpixels with small
size and high intensity in content-dense regions. Another pop-
ular superpixel approach called VCells [21], which was more
advanced compared to SLIC on eliminating problems such as
boundary crossing, collision, etc, was built based on the edge-
weighted centroidal Voronoi tessellations. Besides, linear
spectral clustering (LSC) [22] is another effective superpixel
algorithm, which designs a kernel function to approximate
similarity metric in high-dimensional feature space.

In a recent study [23], Xiao et al. introduced a content-
adaptive superpixel (CAS)model. It adopted clustering-based
discriminability measure to evaluate the importance of color,
contour, texture, and spatial features, and achieved rela-
tively moderate segmentation precision and regularity. More
recently, the statistical-based superpixel approach driven
by Gaussian mixture model scheme (GMMS) [24] was
addressed to have the highest boundary recall, and relatively
high running speed. Similar to GMMS, ultra-fast superpixel
extraction method (USEAQ) [25] divides pixels into different
groups in a one-pass mode through employing maximum
posteriori probability.

B. KEYPOINT MATCHING
SIFT descriptor [8] is a general recognized method that
detects keypoints by difference of Gaussian (DOG) pyramid.
However, it is difficult to access real-time application due
to the amount of computation needed for dominant gradient
direction. As a similar but an accelerated version of SIFT,
SURF [7] builds a keypoint descriptor by calculating the
Haar-wavelet feature in a circular neighborhood. Alterna-
tively, Calonder et al. [26] proposed BRIEF model to real-
ize local feature description. BRIEF builds a 256-bit binary
descriptor by selecting and comparing 256 pairs of random
pixels. This approach is very fast, but has no rotation and scale
invariance. Later, Rublee et al. [6] presented an ORB using
a scale-space pyramid and corner measure. ORB solves the
shortcoming that BRIEF is sensitive to rotation. In addition,
Duval-poo et al. [27] proposed a scale invariant descriptor
which relied on multiscale signal analysis framework. Many
subsequent efforts focused on improving keypoint matching
accuracy. In [28], Alcantarilla et al. structured a nonlinear
scale-space detector by using a second-order partial differ-
ential equation to enhance the robustness against noise and
photometric. Another leading approach that accelerate key-
point detection in nonlinear scale-space is named as A-KAZE
[29]. Recently, some attention has been paid to match two
images in superpixel manner. For example, a low dimensional
superpixel descriptor (LDSD) for video correspondence esti-
mation was presented by Du et al. [30]. They extracted shape,

texture, and color features from superpixel. More recently,
Yang et al. [31] introduced a novel superpixel region binary
descriptor (SRBD) as a multilevel semantic feature for
robust template matching. A rotation-invariant SRBD can be
obtained by coding the orientation difference vector to one
binary vector.

As deep learning technologies are developing, some new
approaches have been introduced into the fields of key-
point detection and matching by means of convolutional
neural networks [32]–[34]. For example, A research by
Ono et al. [32] reported a deep neural network LF-Net that
predicted keypoints. Even though learning-based approaches
appear to see an improvement compared to traditional meth-
ods, training data is still very crucial. Hence, deep net-
works aligned features by minimizing distance function
across the domains were used in some approaches [35], [36].
Besides, large number of manual labels on keypoints required
also limits the expanding of deep networks in real-time
operation.

III. SUPERPIXEL SEGMENTATION USING STUDENT’S-T
MIXTURE MODEL
The implementation of our framework consists of three
steps: (i) superpixel segmentation using spatially constrained
Student’s-t mixture model; (ii) multiscale key-superpixel
detection and description; (iii) superpixel matching and
stitching. Fig. 1 displays a block diagram of the whole frame-
work.

A. SUPERPIXEL SEGMENTATION MODEL
Let i represents the pixel index of an input image I with height
H and width W , where i = (1, 2, . . . ,N ), and N = H ×W
is the number of pixels. Our model adopts a five-dimensional
vector zi = (li, ai, bi, xi, yi)T to represent each pixel, where
xi and yi denote the pixel coordinates in the image plane.
(li, ai, bi) is its color components in CLELAB color space.
For a specified number of superpixels K , length Vx and width
Vy of the initial superpixel are defined as

Vx = Vy =
√
W × H/K . (1)

To label N pixels into K superpixels, each superpixel is
associated with a Student’s t-distribution.

Our scheme assumes that each observation zi is indepen-
dent of the label �i ∈ [1,K ]. The density function of an
observation zi = (li, ai, bi, xi, yi)T is described by

f (zi|5,2) =
K∑
j=1

πijS(zi|2j), (2)

where 5 = {πij}, i = (1, 2, . . . ,N ) is the prior probability,
which satisfies the following constraints

0 ≤ πij ≤ 1 and
K∑
j=1

πij = 1, (3)
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FIGURE 1. Framework of the proposed method.

and S(zi|2j) denotes the multivariate Student’s t-distribution
with mean µj, covariance 6j, and freedom degree vj.

S(zi|2j) =
0
(
(vj + D)/2

)
|6j|
−

1
2

(πvj)
D
2 0
( vj
2

) [
1+ vj−1ζ (zi|µj, 6j)

]((vj+D)/2) ,
(4)

where 2j = {µj, vj, 6j}, D is the observation variable
dimension (here D = 5), |6j| is the determinant of
6j, ζ (zi|µj, 6j) = (zi − µj)T6

−1
j (zi − µj) is the Maha-

lanobis squared distance, and 0(x) =
∫
+∞

0 yx−1 exp(−y)dy
is the Gamma function. Thus, for observation set Z =

(z1, z2, . . . , zN ), the joint conditional density of observation
data can be modeled by

P(Z |5,2) =
N∏
i=1

f (zi|5,2) =
N∏
i=1

K∑
j=1

πijS(zi|2j). (5)

Superpixel segmentation is sensitive to illumination
change, noise, and wiggly boundaries. Therefore, in this
study, we introduce MRF distribution [37] to consider the
spatial correlation between the pixels.

P(5) = A−1 exp
{
−
1
B
4(5)

}
, (6)

where A and B are normalizing parameters and 4(·) is the
smoothing prior. According to Bayes’ rules, the posterior
probability density function (PDF) can be defined as

P(5,2|Z ) ∝ P(X |5,2) · P(5). (7)

Then, the log-likelihood function of (7) could be written as

L(5,2|Z ) = log (P(5,2|Z ))

=

N∑
i=1

log{
K∑
j=1

πijS(zi|2j)} − logA−
1
B
4(5).

(8)

There are various selections for smoothing prior, our model
selects smoothing prior 4(5) used by Nguyen et al. [37].

4(5) =
N∑
i=1

K∑
j=1

Mij logπij, (9)

whereMij is the smoothing factor. It is defined as a superpixel
that is a weighted sum of neighborhood posterior probability
rmj and prior probability πmj.

Mij = exp

 1
Ni

∑
m∈∂i

(rmj + πmj +
1
K
)

 , (10)

where ∂i represents the set of neighborhoods around the
observation zi, and Ni stands for the number of pixels in
the window. We regard the initial prior probability 1

/
K as

a regularization term. For a square window of size 5 × 5,
Ni = 25. From (10), it is quite obvious that the weighted
sum of neighborhood posterior probability can effectively
improve the robustness of model against noise. From (6) and
(9), the final MRF distribution function is in the form

P(5) = A−1 exp

− 1
B

N∑
i=1

K∑
j=1

Mij logπij

 . (11)

Based on above equations, the complete log-likelihood func-
tion (8) of proposed model is rewritten as

L(5,2|Z ) =
N∑
i=1

log{
K∑
j=1

πijS(zi|2j)} − logA

−
1
B

N∑
i=1

K∑
j=1

Mij logπij. (12)

Finally, according to the Jason’s inequality [38], the hidden
variable, i.e. posterior probability rij is introduced in follow-
ing objective function. Then, maximizing the log-likelihood
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function in (12) would lead to the maximizing of the follow-
ing expression.

J (5,2|Z ) =
N∑
i=1

K∑
j=1

rij
{
logπij + log S(zi|2j)

}

− logA−
1
B

N∑
i=1

K∑
j=1

Mij logπij. (13)

So far, the superpixel segmentation model has been finished.

B. PARAMETER INITIALIZATION
Parameter initialization has some influence on model perfor-
mance. This paper records the initial prior probability as

πij = 1
/
K , i = (1, 2, . . . ,N ), j = (1, 2, . . . ,K ), (14)

To check the seed index of the j-th superpixel in observation
set Z conveniently, we define the seed index of the j-th
superpixel as

δ = Vx(j mod
W
Vx

)+ jVxVy +
1
2
(WVy + Vx). (15)

Then, the color component µj,c of mean µj are calculated as

µj,c(lj, aj, bj) =
1
Nδ

∑
m∈∂δ

zm,c(lm, am, bm), (16)

where ∂δ represents the neighborhood set of the δ-th observa-
tion. Nδ stands for the number of neighboring pixels around
the seed. And a square window of size 7 × 7 is used in our
method. The spatial component µj,s of mean µj is

µj,s(xj, yj) = zδ,s(xδ, yδ). (17)

This definition would be able to incorporate the consideration
of neighborhood pixel intensity value and local spatial infor-
mation. Therefore, our superpixel model could withstand the
influence of noise.

During the initialization, the covariance is set to a 5 by
5 diagonal matrix. Since the direct optimization of covariance
matrix for a large number of superpixels is very expensive,
we provide an approachwhich each element of the covariance
matrix would be fixed to a constant by adopting entropy. The
reasons why entropy might be effective are shown below:
(i) entropy is a statistical measure of the uncertainty asso-
ciated with random variable that provides a natural way of
finding disorder contained in an image; (ii) if an image has
rich detail information, its global entropy is relatively large.
In this case, if the intensity of each pixel is regarded as
an observation, the variance of each uncertain observation
variable (pixel value) tends to become greater also. Therefore,
entropy can characterize information as well by describing
the uncertainty of data. In our method, each element in the
variance matrix, represented by entropy, is defined as [39]

E = −
∑G−1

g=0
λ–g log λ–g, (18)

where λ–g is the probability of the grayscale g in given image,
which can be obtained by gray histogram. And G represents

the number of grayscale. For example, a 8-bit gray image
allows G = 256 grayscales (from 0 to 255). In this way,
the covariance matrix is defined as follows.

6j = α · E · I = α ·


E 0 0 0 0
0 E 0 0 0
0 0 E 0 0
0 0 0 E 0
0 0 0 0 E

 ,
j = (1, 2, . . . ,K ), (19)

where I is identity matrix, and α is a regularization parameter.
Then, we rewrite the Mahalanobis squared distance as

ζ (zi|µj, 6j) = |zi − µj|2
/
αE . (20)

C. SUPERPIXEL PARAMETER ESTIMATION
Given the Student’s t-distribution (4), the objective function
in (13) can be rewritten in the form

J (5,2|Z ) =
N∑
i=1

K∑
j=1

rij

{
logπij −

1
2
log |6j|

+ log0
(vj + D

2

)
− log0

(vj
2

)}
−

N∑
i=1

K∑
j=1

rij

{
D
2
log(πvj)

+
vj + D

2
log

[
1+ v−1j ζ (zi|µj, 6j)

]}
−

N∑
i=1

K∑
j=1

Mij logπij, (21)

where parameters A and B are set to 1 for simplicity. The
unknown parameter 2j = {µj, vj, 6j} can be estimated by
maximizing the log-likelihood function (21). Thus, the pos-
terior probability can be calculated as

r (t+1)ij =
π
(t)
ij S(zi|2

(t)
j )

K∑
k=1

π
(t)
ik S(zi|2

(t)
k )

, (22)

We maximize J (5,2|Z ) over the mean µj for obtaining
the following updating function

∂J
∂µj
=

N∑
i=1

rij

[
−6−1j

αE(vj + D)
(
µj − zi

)
αEvj +

∣∣zi − µj∣∣2
]
. (23)

In the expression above, let

w(t+1)
ij =

αE(v(t)j + D)

αEv(t)j +
∣∣∣zi − µ(t)

j

∣∣∣2 . (24)

By calculating ∂J (5,2|Z )/∂µj = 0, the estimation of µj
can be obtained at the (t + 1) step.

µ
(t+1)
j =

∑N
i=1 r

(t)
ij w

(t)
ij zi∑N

i=1 r
(t)
ij w

(t)
ij

. (25)
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Setting the derivative of the objective function J (5,2|Z )
with respect to πij at the (t + 1) iteration step, and using the
Lagrange multiplier ηi for each pixel, we have

∂

∂πij

J − N∑
i=1

ηi(
K∑
j=1

πij − 1)

 = rij
πij
−
Mij

πij
− ηi. (26)

From (26), the estimates πij can be computed as follows:

π
(t+1)
ij =

r (t)ij −M
(t)
ij∑K

k=1 (r
(t)
ik −M

(t)
ik )
. (27)

The fixed covariance matrix (19) that help reduce comput-
ing cost would be applied to all Student’s t-distributions.

Next, to optimize the degrees of freedom vj, we need to set
the derivative of function J (5,2|Z ) with respect to vj at the
(t + 1) iteration step using

ψ

(
v(t)j + D

2

)
− ψ

(
v(t+1)j

2

)
− log

(
v(t)j + D

2

)

+ log

(
v(t+1)j

2

)
+ 1+

N∑
i=1

r (t)ij (logw
(t)
ij − w

(t)
ij )

N∑
i=1

r (t)ij

= 0, (28)

where ψ(x) = ∂ (ln0(x))
/
∂x is the digamma function. The

solution of (28) does not exist in a closed form. A closed form
approximation of this equation has been devised heuristically
by Shoham [40].

After the parameter estimation is finished, the label of each
pixel could be calculated using

�i = argmax
j∈K

πijS(zi|2j)
K∑
k=1

πikS(zi|2k )

. (29)

To have our model strengthen the connection between
boundaries, the post-processing [19] should factor into the
generated superpixels: (i) superpixel, which size is smaller
than Vx pixels, should be merged into other adjacent super-
pixels in terms of color information; (ii) impose a morpho-
logical closing operation on each superpixel, and subtract the
original superpixel from its result. The obtained pixels are
reallocated to the nearest superpixels for smoother boundary.
After post-processing, some small superpixels are removed,
and superpixel becomes more regular. The steps of the pro-
posed superpixel segmentation model can be summarized as
Algorithm 1.

IV. MULTISCALE KEY-SUPERPIXEL DETECTION AND
DESCRIPTION
The detection of key-superpixel would be implemented by
three steps: (i) superpixel Gaussian filter; (ii) saliency super-
pixel detector; (iii) scale-space saliency superpixel detection.

Algorithm 1 Spatially Constrained Student’s-t Mixture
Model Superpixel Segmentation
Input: Image I , superpixels number K .
Output: The superpixel label �i ∈ [1,K ] of each pixel.
1: Initialize the color and spatial components of µj using

(16) and (17), πij using (14), and entropy-based 6j
using (19), respectively.

2: For t = 1 to iterations do
3: Update rij, wij, µj, πij, and vj using (22), (24),

(25), (27) and (28).
4: End for
5: Compute the superpixel label for each pixel using (29),
and generate K superpixels.

6: Superpixel refinement for pleasant visual effects.

FIGURE 2. Superpixel and its neighborhood, where green pentagon
represents first-level neighborhood and blur asterisk stands for
second-level.

A. KEY-SUPERPIXEL DETECTION
1) DESIGNING SUPERPIXEL GAUSSIAN FILTER
Superpixels are often used to replace pixel-grid to promote
speed. In this study, we design a superpixel Gaussian filter.
Unlike the pixel-grid scheme, as shown in Fig. 2, the num-
ber, shape and size of each superpixel’s neighborhood are
uncertain. In order to describe our algorithm, we specify that
the superpixels directly adjacent to central superpixel (see the
place indicated by yellow hexagon) are the first-level neigh-
borhood (marked in a green pentagon). Those who directly
adjacent to its first-level neighborhood are the second-level
neighborhood (drawn in blur asterisk).

Next, this paper defines a 2-dimensional superpixel-based
Gaussian kernel function as follows:

SGj(Xm,Ym)=
1

2πσ 2 exp

[
−
(Xm−Xj)2+(Ym − Yj)2

2σ 2s2

]
, (30)

where s =
√
W · H/K is the superpixel standard distance,

and σ 2 is the standard deviation, which is similar to traditional
Gaussian distribution. m refers to the index of neighborhood
superpixel, m ∈ ∂j. The distribution is assumed to have
zero mean. For the j-th superpixel, ∂j is its neighborhood
superpixel set including itself. (Xj,Yj) is the centroid of
j-th superpixel. By normalizing kernel function (30), we have

NGj(Xm,Ym) =
SGj(Xm,Ym)∑

k∈∂j
SGj(Xk ,Yk )

. (31)
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FIGURE 3. The process of superpixel Gaussian filtering.

Thus, we could obtain each superpixel value, by calculated

SI (j) =
1
Uj

∑
n∈uj

on, (32)

where uj and Uj denote the pixel set and the pixel number
of the j-th superpixel, on represents the intensity of the n-th
pixel in the j-th superpixel. Applying our superpixel Gaussian
filter to the superpixel intensity image by updating the value
of each superpixel with the following expressing (33), and
this image at the moment could be regarded as a superpixel
Gaussian filtering image.

SF(j) =
∑
m∈∂j

SI (m) · NGj(Xm,Ym). (33)

Fig. 3 shows the block diagram of the proposed superpixel
Gaussian filter with a zero mean and a standard deviation
of 0.5. In this diagram, first-level neighborhood is used.

2) SALIENCY SUPERPIXEL DETECTOR
In this study, we define an effective saliency superpixel detec-
tor engaging the consideration of neighbouring superpixels.
This detector could help detect two types of salient super-
pixels. By applying detector to the j-th candidate superpixel,
first-level neighbourhood superpixels would help identify
corner-like saliency superpixels, and second-level neighbor-
hood superpixels could be used to find the superpixels with
a significant difference on concentrations with the surround-
ings. Superpixel that satisfies either one of the following
neighbourhood conditions ((34) or (35)) would be regarded
as a saliency superpixel.

We label the j-th candidate superpixel as a saliency super-
pixel if Int(0.5 · N (1)

j + 0.5) superpixels in its first-level
neighborhood are conformed to

|SI (m(1))− SI (j)| ≥ th(1), m(1)
∈ ∂

(1)
j . (34)

Then, this candidate superpixel is defined as a corner-like
prominent superpixel. If at least Int(0.8 · N (2)

j + 0.5) super-
pixels exist in its second-level neighborhood which satisfy[
(SI (m(2))− SI (j) > 0) ∨ (SI (m(2))− SI (j) < 0)

]
∧

[∑
m(2)∈∂

(2)
j
|SI (m(2))− SI (j)| ≥ th(2)

]
. (35)

The intensity of this candidate superpixel would be signifi-
cantly different from those around it. In (34) and (35), th(1)

(or th(2)) stands for the threshold. Int(·) is the integer-valued

function. SI (j) denotes the value of candidate superpixel,N (1)
j

(or N (2)
j ) is the number of pixels in the first-level neigh-

borhood ∂ (1)j (or second-level neighborhood ∂ (2)j ). SI (m(1))
(or SI (m(2))) represents the value of the m(1)-th (or m(2)-th)
superpixel in the first-level (or second-level) neighborhood.

3) SCALE-SPACE SALIENCY SUPERPIXEL DETECTION
Our approach is inspired by the work of pixel-level keypoint
detection [41]. In order to achieve scale invariance, which is
crucial for saliency superpixel, a scale-space pyramid using
superpixel Gaussian filter and saliency superpixel detector
is constructed. Our scale-space pyramid layers consist of
four octaves, and each octave is characterized by superpixel
Gaussian filtering with standard deviation σ shown stacked
in Fig. 4. After defining the superpixel scale-space pyramid,
we adopt superpixel detector to obtain the saliency super-
pixel sets of each octave and record them as OS(1), OS(2),
OS(3), and OS(4), respectively. The rule of detecting key-
superpixel is designed to be an idea that key-superpixel needs
to be detected as a saliency superpixel in all octaves. Thus,
we gather the intersection of these sets as the key-superpixel
set KS.

KS = OS(1) ∩ OS(2) ∩ OS(3) ∩ OS(4). (36)

We summarize the scale-space pyramid in Algorithm 2.

Algorithm 2 Superpixel Scale-Space Pyramid (See Fig.4)
Input: Original image I .
Output: Key-superpixel set KS
1: For t = 1 to 4 do
2: If t = 1 do
3: Compute superpixel image SL(t) using Algo-
rithm 1
4: Else
5: Compute SL(t) by sub-sampling SL(t−1)

6: End if
7: Compute superpixel intensity image SI (t) of SL(t)

using (32)
8: Compute superpixel Gaussian filtering image SF (t)

of SI (t) using (33)
9: Compute saliency superpixel setsOS(t) of SF (t) using
(34) and (35)
10: End for
11: Compute key-superpixel set KS using (36)

B. KEY-SUPERPIXEL DESCRIPTORS
In order to match images successfully, the key-superpixel in
target image that has high similarity with the key-superpixel
obtained in current image needed to be found. This paper
designs a superpixel descriptor to describe the local fea-
tures of each key-superpixel, so that we can select similar
superpixel pairs between the current image and the reference
image. The low-level visual features of a superpixel, such as
color, shape, gradient and texture are directly related to the
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FIGURE 4. Block diagram of superpixel scale-space pyramid.

superpixel content. These features are encoded into a high-
dimensional feature vector.

1) SUPERPIXEL COLOR DESCRIPTOR (HSVHist)
Color information is the most elementary local feature of
images [30]. Considering that intensity information in RGB
(red, green, blue) color space is susceptible to illumination,
we use the three channels of HSV (hue, saturation, value)
color space as the color feature. This can be achieved by
computing the 16 bins histogram of H, S, and V channels,
respectively. In this way, the color feature of 48-dimensional
vector could be obtained.

2) SUPERPIXEL SHAPE DESCRIPTOR (SZM)
The matching of superpixels independent of their position
and orientation is important in our model. The second part of
our superpixel feature descriptor is based on Zernike moment
invariants, which would not be affect by rotation transform.
Zernike moment is orthogonal inside the unit circle [42].
The 2-D continuous Zernike moment of an image intensity
function I (ρ, θ) is defined as follows

Z̄pq =
p+ 1
π

∫ 2π

0

∫ 1

0
I (ρ, θ)V ∗pq(ρ, θ)ρ dρdθ, (37)

where Zernike polynomials of order p with repetition q is
defined as

V ∗pq(ρ, θ) = Rpq(ρ) exp(−iqθ). (38)

The real-value Zernike radial polynomials is defined by

Rpq(ρ)=
(p−|q|)/2∑
h=0

(−1)h(p− h)!ρp−2h

h!((p+|q|)/2− h)!((p− |q|)/2−h)!
, (39)

where p ≥ |q| ≥ 0, and (p− |q|) mod 2 = 0.
Due to the irregular geometry of superpixels, preprocess-

ing is needed before calculating Zernike moment of super-
pixel. Fig. 5 shows a diagram of computing Zernike moment
for superpixel. Taking the centroid as the center of a square,
the side of it is 1.2s. Then, for each square

_

I (x, y) containing
superpixel (see Fig. 5), the image coordinate transformation
to the interior of the unit circle is given by

ρ =

√
(d1x + d2)2 + (d1y+ d2)2,

θ = tan−1
(
d1y+ d2
d1x + d2

)
, (40)

with

d1 =
√
2/(

_

N − 1) and d2 = −1/
√
2, (41)

where
_

N denotes the number of pixel of
_

I (x, y). The mag-
nitude of Zernike moment is regarded as a rotation invariant
feature of the underlying superpixel. Thus, our rotation invari-
ant descriptor is constructed as an 8-dimensinal vector listed
below[
|Z̄00|, |Z̄11|, |Z̄20|, |Z̄22|, |Z̄31|, |Z̄33|, |Z̄40|, |Z̄42|

]
. (42)
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FIGURE 5. Superpixel feature descriptor.

3) SUPERPIXEL GRADIENT AND TEXTURE DESCRIPTOR
(ZLBP)
An important step for our matching model is to describe
each key-superpixel by extracting gradient feature. However,
gradient is sensitive to noise. To overcome this problem,
the one order Zernike moment descriptor has been taken into
account to this feature vector, because |Z̄11| contains oriented
gradient feature and is rotation invariant to graphic transform.
Therefore, for each pixel inside superpixel, we calculate its
Zernike moment |Z̄11| in a small window of 7 × 7. Thus,
the resulted image reflects the gradient information of the
image (see Fig. 5).

Texture feature is another important feature closely
related to human perception since users recognize objects
through regular patterns of the spatial arrangement of pixel.
To describe the texture feature, rotation invariant local binary
pattern (LBPROT) [43] would be applied. For each super-
pixel, the histogram of LBPROT is calculated using method
in [43], and thus resulting in a 36-dimensional vector. There-
fore, the proposed feature vector integrates the oriented
gradient with texture features, so that extracted features are
rotationally invariant to texture feature.

Finally, by combining the 48-dimensional color descriptor,
8-dimensional shape descriptor and 36-dimensional gradient
& texture descriptor, we establish a 92-dimensional local
feature descriptor of each key-superpixel. Fig. 5 shows the
framework of our superpixel descriptor.

C. KEY SUPERPIXEL MATCHING AND IMAGE STITCHING
Since one key-superpixel could only be matched with one
in target image, key-superpixel pairs need to be collected
from the possible selections. We could calculate Manhattan
distance to obtain real key-superpixel pairs with the following
formula.

F(Ō1, Ō2) =
∑C

c=1

∣∣Ō1(c)− Ō2(c)
∣∣, (43)

where Ō1 and Ō2 are two different key-superpixel descriptors,
and the feature dimension C = 92.
Next, the centroid of each matched key-superpixel would

be extracted and used to implement corresponding image
stitching using APAP algorithm [44].

FIGURE 6. Some examples of superpixel segmentation using our method,
the first column without constrained term; the second column with
MRF-based spatially constrained term.

FIGURE 7. Quantitative evaluation of superpixel segmentation on two
natural images (113016 and 296059) from BSDS500 dataset.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section will comprehensively evaluate the proposed
method. All algorithms are carried out on the Intel(R)
Core(TM) i5-9400f, 4.1GHz, and 6GB NVIDIA GTX
1660 Ti with MATLAB 2018a in Window 10 system.
To evaluate the effectiveness of the proposed method, several
state-of-the art algorithms are considered for comparison,
including TP [16], ERS [13], SLIC [19], LRW [14], LSC [22],
GMMS [24], SIFT [8], SURF [7], ORB [6], A-KAZE [29],
and LDSD [30] respectively.

A. DATASETS DESCRIPTION AND EVALUATION CRITERIA
All test images are collected from three public available
datasets: Berkeley segmentation dataset (BSDS500) [45],
Oxford dataset [29], and Iguazu dataset [28]. The Berkeley
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dataset consists of 500 natural images with the resolution of
481× 321, or 321× 481. While the Oxford dataset contains
blur, light, zoom, rotation, JPEG compression. Each category
contains six test images. The Iguazu dataset is composed of
six images with size of 900 × 675 pixels, each of them is
contaminated by Gaussian noise. As image index number
increases, the level of noise varies will increase as well.

The performance of superpixel segmentation is quantita-
tively evaluated by four criteria, boundary recall (BR) [22],
under-segmentation error (UE) [22], achievable segmenta-
tion accuracy (ASA) [24] and weighted isoperimetric quo-
tient (WIPQ) [24]. BR testifies the percentage of superpixels
boundaries coinciding with ground truth boundaries

BR = SP
/
GP, (44)

where SP is the number of boundary pixels in segmentation
results which meet the condition that at least one pixel in
the 3 × 3 neighborhood should be the boundary pixel of
ground truth. GP stands for total boundary pixel numbers
of the segmentation results. High BR represents the number
of real boundaries that are rarely missed. UE computes the
proportion of over-segmentation superpixels, while UE value
comes close to zero, superpixels would approaches to the
ground truth. UE is defined by

UE = −1+
1
N

∑
|uj∩ uγ | > ω |uj|

|uj|, (45)

where uj and uγ are the pixel sets of the j-th superpixel and
ground truth, respectively. Parameter ω is set to 0.05 for well-
established [24]. The lower the UE, the fewer superpixels
across multiple objects. Similar to UE, ASA measures the
extent accuracy of superpixel segmentation could achieve
when each of them is assigned a ground truth label that
covers the biggest portion. A higher ASA indicates better
segmentation accuracy.

ASA =
1
N

∑K

j=1
max

{
|uj ∩ uγ |

}
. (46)

In addition to above metrics for the segmentation accuracy,
we also evaluate the regularity by WIPQ

WIPQ =
1
N

∑K

j=1

4π |uj|2

BP2j
, (47)

where BPj is the number of the boundary pixels of j-th
superpixel.

The following four metrics are used to measure the perfor-
mance of superpixel matching approaches: Accuracy, Match-
ing score (MS), Recall, and Precision. The higher values they
have, the better performance descriptor would achieve.
Accuracy can also be called repeatability, which measures

the ratio of correct matching between the detected keypoints
in two images of the same scene

Accuracy =
CK
MK
× 100%, (48)

where CK is the number of corresponding keypoints andMK
is the minimum number of detected keypoints in both images.

FIGURE 8. Performance of our method with difference parameters α.

MS functions as an accuracy assessment and is defined as
follows

MS =
#correct matches

#features
. (49)

This expression describes the number of initial features that
would result in correct matches. Recall is computed as a
ratio where the number of corrected matches divided by
total number of correspondences (possible correct matches),
defined as

Recall =
#correct matches
#correspondences

. (50)

The number of correct matches out of total matches is repre-
sented by Precision.

Precision =
#correct matches

#correct matches+ #false matches
. (51)

B. PRIOR ANALYSIS
The first experiment would discuss the effect of the
MRF-based spatially constrained term on superpixel segmen-
tation. Two performances are engaged, one with constrained
term, and the other without. Fig. 6 shows the segmentation
results to two nature images (113016 and 296059) in the
BSDS500 dataset. It could be seen that by incorporating
constrained term into Student’s-t mixture model, the effect
of noise could be reduced due to the filtering characteristics
of MRF-based spatially constrained term. Also, this method
tends to be less sensitive to noise, and superpixels generated
show better boundary adherence and regularity. We also qual-
itatively evaluate the superpixel segmentation results of these
images. As illustrated in Fig. 7. The proposed approach with
constrained term gives better segmentation for complex scene
according to the BR and WIPQ.

C. PARAMETER SETTINGS
Our approach has one primary parameter α in (19). This
parameter is related to the selection of covariance matrix
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FIGURE 9. Superpixel segmentation results, from top to down is TP, ERS, SLIC, LRW, LSC, GMMS, and Ours, respectively.

which helps our superpixel segmentation implement more
effectively. This subsection conduces an experiment to dis-
cuss the setting of parameter α. We set the parameter α
from 0.1 to 1 continuously and obtain the corresponding
quantitatively evaluation results. Fig. 8 shows the values of
BR, UE, ASA, and WIPQ versus varying values of α. It is
clear from the figure that the most suitable empirical value of
α would be around 0.2, because the less value of α will lead
to a less steep probability distribution slope that affects the
discrimination of pixel.

D. SUPERPIXEL SEGMENTATION
In this subsection, we compare SMMS to several popu-
lar algorithms including TP,1 ERS,2 SLIC,3 LRW,4 LSC,5

1http://www.cs.toronto.edu/ babalex/research.html
2https://github.com/mingyuliutw/ers
3http://ivrl.epfl.ch/research/superpixels
4https://github.com/shenjianbing/lrw14
5http://jschenthu.weebly.com/projects.html

and GMMS.6 For these algorithms, the implementations
are based on publicly available codes from their respective
websites. Fig. 9 provides the segmentation results of each
approach, where 400 superpixels are extracted in four images
and 200 in the other two. As shown in Fig. 9, ERS shows deli-
cate segmentation details. But because of the rough boundary,
the overall visual effect seems to be the worst among seven.
LRW tends to be slightly better than TP. LSC outperforms
GMMS in terms of regularity. Synthetically, LSC andGMMS
show considerably competitive visual effect. Our approach
achieves similar regularity with the current advanced LSC.
An area of interest is amplified as displayed in Fig. 10. The
comparison in this figure demonstrates that the accuracies
of LRW and TP are moderately poor. The segmentation by
TP tends to have indiscernible boundaries between different
areas. Fig. 11 provides our experimental results of different
superpixels, and each image is segmented approximately
into 800\400.

6https://github.com/ahban/GMMSP
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FIGURE 10. Visual comparison of detailed parts (200 superpixels), from left to right is TP, ERS, SLIC, LRW, LSC, GMMS, and Ours, respectively.

FIGURE 11. Images are segmented approximately into 800\400
superpixels using our method.

The quality obtained by the proposed method is sub-
jectively assessed and compared to other algorithms.
Fig. 12 illustrates the comparative performance between our
algorithm and other approaches on test images of BSDS500.
All the results given are derived from averaging the results.
The numbers of superpixels are set to 200, 400, 600, and
800, respectively. From this figure, we can arrive at the fol-
lowing conclusions: (i) both GMMS and LSC obtain good
compactness and accuracy since BR is higher than 0.93;
(ii) superpixel generated by LRW and TP have more regular
shapes, and theWIPQ is much higher than any other methods
at above 0.53; (iii) as shown in Fig. 12, the UE value in
our method is the lowest among all methods, this means
that a better compactness of superpixel segmentation can be
achieved.

FIGURE 12. Comparison of superpixel segmentation performances.

FIGURE 13. Superpixel detector response to various attacks.

E. KEY-SUPERPIXEL DETECTOR RESPONSE FOR VARIOUS
ATTACKS
In this experiment, we conduct the experiments to assess the
robustness of our superpixel detector for a variety of attacks,
including blur, zoom-rotation, JPEG compression and
Gaussian noise. Test images are selected from public avail-
able Oxford [29] and Iguazu [28] datasets. We compare our
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FIGURE 14. Visual comparison of matched images, from top to down is SIFT, SURF, ORB, A-KAZE, LDSD and Ours, respectively.

algorithm with SIFT [8], SURF [7], ORB [6], A-KAZE [29]
and LDSD [30], respectively. The purpose of this experiment
is to demonstrate that our method can be applied to different
superpixel images and conserves good characteristics under
various attacks. The gather of these attacks and their detection
accuracies is depicted in Fig. 13. Generally, since blur tends
to cause uncomfortable viewing experience, such an attack
may bring down the accuracy of a detector. To test the robust-
ness of our approach to blur attacks, the first experiment is
carried out on six test images on increasing blur subset of
Oxford dataset. As shown in Fig. 13 (a), our method has a
relatively good result, second only to A-KAZE with a tiny
difference. Besides, image rotation is another common form
of geometric attacks. The proposed experiment considers that
images are simultaneously attacked by rotation and scale. The
proposed experiment calculates detection accuracy on each
attacked images. As shown in Fig. 13 (b), we found that key-
superpixels are well detected by A-KAZE and our method.
In JPEG test, it could be observed that while JPEG com-
pression ratio increases, our detector achieves moderately
lower accuracy. This phenomenon shows that the proposed
superpixel detector is slightly sensitive to JPEG compression.
To evaluate the robustness of our detector with regard to
Gaussian noise, we compare the accuracies of the six images.
Fig. 13 (d) displays that our proposed detector outperforms
other approaches on all six test images of Iguazu dataset.

FIGURE 15. Matching results of various approaches under all attacks.

F. SUPERPIXEL MATCHING UNDER VARIOUS ATTACKS
In order to assess the performance of our proposed superpixel
descriptor, we compare the image matching results of the
other five well-known algorithms with our method on test
images in [44]. In this test, we specified the superpixel num-
ber K as 800, and parameter α = 0.2. In Fig. 14, compared
with these detectors, the proposed approach could achieve
relatively higher quality even when there are less feature
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FIGURE 16. Visual comparison of stitched images, from top to down is SIFT, SURF, ORB, A-KAZE, LDSD and Ours, respectively.

points (centroid of key-superpixels). This would help save
matching time.

For quantitative analysis, MS, recall and precision are
utilized to assess the performance on Oxford and Iguazu
datasets. The results for the selected algorithms can be
observed in Fig. 15. In Zoom + Rotation test, SIFT tends
to be better performed in recall and precision, while similar
results with SURF and A-KAZE are obtained in Matching
Score. For JPEG test, A-KAZE and our algorithm achieve
relatively higher precision and recall. In Fig. 15, we also pro-
vide the matching accuracy results under scale and rotation
transforms, our method achieves similar results as A-KAZE
does. These results demonstrate that the superpixel pyra-
mid provides scale invariance for detected key-superpixels,
the change of image scale actually results in some losses
of image information, and would affect the performance
of our method to some extent. In Gaussian noise test, our
method sacrifices Matching Score to improve the overall
performance. The main advantage that have this method
outperformed others in terms of recall and precision is that

the proposed superpixel pyramid engaged in key-superpixel
detecting considers not only the information of neighborhood
superpixels, but also their intensities. One can observe from
Fig. 15, the LDSD is still more accurate than ORB, SURF
and SIFT in Gaussian noise case.

To further investigate, Fig. 16 shows the alignment results
respectively on test images in [44]. In this test, in order to
fairly compare the effectiveness of each feature descriptor,
we apply the same stitching algorithm described in [44] to
stitch full panoramas. It is clear that all algorithms can find
accurate keypoints, whereas the stitched images generated by
our algorithm has better and distinct local details in most of
the image pairs (indicated by red ellipse in Fig. 16).

VI. CONCLUSION
In this paper, a novel approach of superpixel-based matching
was provided for image stitching. The main conclusions of
the study could be summarized as follows: (i) a spatially
constrained Student’s-t mixture model was used to drive
superpixel segmentation, which was an innovative method
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and should be considered as main contribution of this paper.
We had demonstrated that our new superpixel segmenta-
tion model with MRF-based spatially constrained term was
superior to other algorithms on regularity and accuracy;
(ii) this work addressed superpixel Gaussian filter, superpixel
detectors, and superpixel scale-space pyramid that no pre-
vious study has drawn attention to so far and many new
directions for future research. Utilizing superpixel match-
ing to replace individual keypoint matching, this is the
key point to speed up our approach; (iii) fusing LBP and
Zernike moment invariants would help obtain oriented gradi-
ent and texture features at once; (iv) the designed superpixel
descriptor explored the content and shape of each gener-
ated key-superpixel to find the matched superpixels between
image pairs. The experiments on Oxford and Iguazu datasets
demonstrated the performance of this approach, and the rela-
tively better results compared to other existing feature match-
ing approaches were shown.
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