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ABSTRACT Netflow log files commonly contain massive transfer records in tiny time interval, making
analytical works complex and burdensome. By combining human cognition abilities with computerized
techniques, visual analytics systems have become efficient tools for showing network states and locating
abnormal behaviors. However, traditional visual analytics systems tend to be designed for solving certain
problems and unable to synthesize various types of data sources. Despite recent advances in network security
visualization, academia still starves for a proper solution to visualize IPv4 address behavior modes and
IPv4 connection patterns within limited drawing space. Thus, we propose a visual analytics system called
‘Owleyes’ which reprocesses Netflow log data with simple statistical operations in basic dimensions and
fulfills the aforementioned requirements with proper novel graphs such as ‘sunburst-hive-plot graph’ (SHG)
and link-wheel graph (LW). The SHG provides a stable and comparable means of visualizing connection
patterns efficiently in a limited drawing space. The LW represents the hourly connection counts of main ports
in a specific IPv4 connection during one day. With the use case dealing with the ChinaVis 2016 Challenge
I data, the efficiency and practicability of Owleyes are demonstrated.

INDEX TERMS Visual analytics, network security, sunburst-hiveplot graph, link wheel graph, user-centric
interaction.

I. INTRODUCTION
In recent decades, network technologies have been applied in
many fields because of the development of data science and
the increasing areas of its usage.Meanwhile, large amounts of
malicious attacks appeared in network applications and place
considerable demands on network security analytics systems
[1], [2]. Netflow log data, such as logs from Intrusion Detec-
tion System (IDS) [3] recording time-dependent transmission
details, has become an increasingly important data source for
network security supervision and protection.

Extracting basic dimensions to get integrated results is an
ideal way of reprocessing original Netflow log data for further
analytical works. In most cases, the original Netflow log data
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contain problems. Firstly, to avoid the disclosure of sensitive
information, some kinds of Netflow log data may be desen-
sitized before being put into use for security analysis, which
means certain information about file content will be erased.
Secondly, Netflow log data from different sources may have
plenty of dimensions and are in different formats, leaving
the integration operation necessary. Thirdly, Netflow log data
from specific sources such as firewall logs or other network
security software logs may be difficult to integrate for their
overcomplicated format or oversized volume. Finally, data
redundancy and storage wasting may also occur. Extracting
basic dimensions such as IPv4 address and port numbers from
original Netflow log data can solve these problems by inte-
grating network related information from multiple sources in
uniformed format and low data complexity, making further
analytical works easier.
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The basic dimensions of NetFlow log data are determined
by the aspects of one file transmission behavior, including the
frame involved in the transmission process and the content
information. The basic framework of a transmission process
is contained in the network layer (OSI model), where the
IPv4 address, port number, and transmission time describe
the main connection process. In the application layer (OSI
model), the content information of the file itself may include
file size, file format, header file, basic content, etc. These
contents have different focuses, but only the file size can
cover the content, form, and characteristics of a specific file,
which is concise enough and is also included in most Netflow
log data content. Therefore, the transmission time, source
IPv4 address, destination IPv4 address, source port number,
and destination port number recorded in the network layer,
and the transmission file size recorded in the application
layer can be combined as the basic dimensions for integrating
multi-source data.

However, even with the basic dimensions extracted,
the increasing volume of data has placed a massive cognitive
burden on analysts [4].

Visual analytics systems combine data analytical works
with interactive visualization approaches, allowing analysts
to comprehend network situations hidden in a large volume
of data, which guarantees the ability to analyze the processed
data with basic dimensions efficiently.

IPv4 nodes are the basic constituent elements of the net-
work layer which can be regarded as the skeleton of the
network. The distribution characteristics of IPv4 addresses
can be visualized clearly by representing the hierarchical
structure of their segments. Among the many visualization
schemes, the sunburst graph can represent the hierarchical
relationships and statistical values of the elements in Netflow
log data within a limited drawing space. Moreover, compared
to the basic tree graph and bubble tree graph, the sunburst
graph is more flexible and can be combined with other graphs
easily for its radial layout.

It is equally important to describe the characteristics of
IPv4 connections [5], which can be abstracted as a subset
of the entire network and involve the field of network visu-
alization. In the academic of recent decades, connections
among nodes in a network were tended to be visualized
via force-directed graph [6] or parallel coordinate graph [7],
which either have complex structure, poor stability, or limited
visualization abilities and may cause visual deviations or
require additional expertise and experience to understand the
internal information. By contrast, the hive plot graph has
the advantages of using simple drawing algorithms, high
space utilization, intuitive, easy to understand, flexible, and
easy to be combined with other radial graphs. Meanwhile,
the hive plot graph builds a stable and comparable coordi-
nate system that can help users visually compare different
connection patterns and distinguish different IPv4 connec-
tion modes clearly and intuitively. Hence, we decide to
use the hive plot graph as the main method of visualizing
IPv4 connections.

TABLE 1. Services of specific port numbers.

By combining the hive plot graph and sunburst graph
with appropriate interactions, we created a new novel radial
graph [3] named Sunburst-Hiveplot Graph (SHG) to achieve
a macro representation of the hierarchical relationships of
IPv4 segments and the structure of IPv4 connections at the
same time.

Next, the detail information of certain IPv4 addresses and
IPv4 connections need to be visualized. First of all, the infor-
mation of a certain IPv4 address includes data statistics
results such as the count of connections, port usage details,
and file transfer records in a specific period. The functions
of the IPv4 address can be summarized from different port
usages (see Table.1). Thus we use stream graph, boxplot
graph, and scatter graph to visualize the detail statistical val-
ues of connection counts and port usages one IPv4 addresses
related to. Then, a force-directed graph and a novel graph
called LinkWheel graph (LW) are used to visualize the infor-
mation of a certain IPv4 connectionwhich include connection
counts and port usage to help users analyze connection pat-
terns in the network.

At last, we combine SHG with other graphs using proper
interactions in user-centric design principles [8]. By inte-
grating IPv4 address behavior modes and IPv4 connection
patterns, users can determine the functions of IPv4 addresses
in the network, summarize their overall running modes, and
locate exceptional behavior through comparisons.

In summary, the main contributions of this paper include:

• We propose the SHG graph. As a combination of sun-
burst graph and hiveplot graph, SHG is capable of repre-
senting the IPv4 address behavior modes and IPv4 con-
nection patterns over different periods and different fil-
tering conditions.

• We propose the LW graph, which is a new designed
graph representing the hourly connection counts of main
ports in a specific IPv4 connection during one day.

• The interaction design process is under User-centric
design principle. Reasonable interactions are added to
the graphs and the entire Owleyes system to generate
complete analytical processes.

• The system supports efficient anomaly detections. The
system can accurately locate anomalies in the network
by enabling users summarizing behavior patterns of enti-
ties and support intuitive comparison among visualized
results.

The remainder of this paper is organized as follows.
Section 2 contains an introduction to the design process and
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the visual analytic system. Section 3 list the related works.
In Section 4 we describe the details of the design principles
of graphs and interactions in the whole system. In Section 5,
we verify the availability of Owleyes by performing use case
studies with data presented in Chinavis’2016 challenge I.
Section 6 contains a summary of our work. Section 7 high-
lights also some areas of deficiency and offering suggestions
for further development.

II. RELATED WORKS
Numerous researches were referring to network security
visual analytics in the literature, which introduced plenty
of visual analytics systems to help analysts to understand
network structure, detect exceptional behavior, and summa-
rize typical patterns of cyberattacks. In general, visualization
of the IPv4 address behavior modes and IPv4 connection
patterns is the starting point of all analytic works for network
security, which can help users identify possible exceptional
behaviors by summarizing specific behavior patterns of enti-
ties in the network.

A. ANALYSIS OF NETWORK LOG FILES
Netflow log data record the file transfer process and com-
munication history among entities in the network, which
generate a time-oriented data format and is appropriate for
time-series visualization methods. Wu et al. [9] satisfied this
requirement by developing the Pianola system to visualize
multivariate time-series security event data with low cogni-
tive overhead. However, because of the tiny time interval
when recording log files, the original Netflow log data are
always cumbersome and redundant. Cappers et al. proposed
an alert-oriented method known as Contextual analyzed net-
work traffic alerts to help users analyze network traffic [10].
Yoo [11] proposed LongLine to enable visual analytics of
large-scale audit logs.

B. IP HIERARCHICAL STRUCTURE VISUALIZATION
Visualization of the hierarchical structure of the IP addresses
segments is important for visual analytics of the network.
In academia, a hierarchical structure was generally repre-
sented by a basic tree graph, a bubble tree graph, or a sunburst
graph. To visualize the hierarchical structure, Lin et al. [12]
developed a discovery and visualization system for time
series patterns called VizTree based on augmenting suffix
trees, which can be used to transform the time series into a
symbolic representation. Wang et al. [13] proposed a new
type of tree structure called a diamond tree, which begins
with a simple spatial layout using geometric theory, and is
continually improved until a design that makes the best use
of the screen estate is achieved. Mansmann et al. [14] super-
imposed a hierarchy on the IP address space, and considered
the suitability of the treemap variants for each level of the
hierarchy.

Although graphs based on the basic tree graphs were clear
and intuitive, as a node-link diagram, they occupied plenty
of display space and lead to poor visualization efficiency.

Due to the need for clearly representing the connections
between parent and child nodes, the number of leaf node
elements could not generally exceed one-tenth of the pixel
counts of the screen width.

The circle packing graph with nested circles was also an
ideal method of representing hierarchical structure data [15].
Jochen et al encoded hierarchically structured data along
with their uncertainties in a combined diagram called Bubble
Treemaps [16].

Compared with the basic tree graph, the circle packing
graph could be used to comprise more node elements in a
limited drawing space, but there is still a limitation on the
number of layers to be visualized; four layers are taken to
be the limit regarding effects on user perception. Moreover,
the circle packing graph has limited scalability and cannot be
combined with other types of graphs harmoniously.

With the Self-Adapting Sunburst Algorithm (SASA) [17],
the sunburst graph dynamically determined thewidth of every
sector elements by their attribute value and had a compact
radial format that uses a space-filling presentation method to
show explicitly the proportion of the total value represented
by each node [18]. Liu and Wang [19] adopted the Necklace
Sunburst algorithm to optimize the overall arrangement via
dynamic expansion and contraction of related nodes. In com-
parison with other hierarchical data visualization methods,
the sunburst had high utilization of space and good scalability,
was easy to add interaction or to be combined with other
graphics, and was suitable for visualizing the hierarchical
relationship of IP addresses.

C. NETWORK CONNECTION VISUALIZATION
The force-directed model was widely used in massive visu-
alization projects related to social networks, biological net-
works, 3D modeling, citation networks for the simplicity of
its algorithm, and its high stability and versatility. With the
increase in the amount of researches on large-scale com-
plex networks, the use of force-directed models to visualize
large-scale node graphs have become a key point in most
relevant fields [20].

In the visualization result of [21], several obvious central
nodes divide the hosts in the network into different areas,
in which is more likely to form centers due to unusual net-
work scanning behaviors. Dzwinel et al. [22] proposed a
new and fast graph-drawing method called ivga to support
visual analysis for complex networks consisting of |V| 106+
vertices. Böhringer and Paulisch [23] added user constraints
when generating the final layout, which can generate a more
aesthetic rendering result and increase the usefulness of the
current layout. Wang et al. [24] presented an improved stress
majorization method that incorporates various constraints,
including directional constraints, without the necessity of
solving an optimization problem. For network simplification,
Guozheng [25] proposed an attribute-based edge bundling
algorithm that displays similar edges in nearby locations,
achieving better clustering effects by grouping similar edges
together.
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However, the rendering result heavily depends on the selec-
tion of algorithms. The different algorithms would lead to
different layouts, even under the same situation. Moreover,
these algorithms tend to be sensitive to small changes in
network structure, which could lead to large differences in
the final rendering result. This incompetence in generating a
robust visual layout meant that a force-directed graph is not
ideal for comparing different network connections patterns.

Relatively, parallel coordinates could visualize multidi-
mensional data efficiently. Yao et al. presented a new method
to add a time dimension, which can extend parallel coor-
dinates into 3D space [26]. In [27], Hanssan introduced a
study evaluating the usability of 2D and 3D parallel coordi-
nates for pattern identification in temporal multivariate data.
However, limitations on drawing could have large impacts on
the number of dimensions visualized in parallel coordinates,
and large areas of overlap among line elements might occur
when too much data needs to be visualized. Meanwhile,
the intersections of oblique lines meant that visual errors can
be introduced in parallel coordinate plots. In general, the dis-
advantages included rendering results with unfixed structure,
too much occlusion between elements and unsuitable for
limited drawing space, all of which could be conquered by
introducing a visually coordinate system.

A stable coordinate system was necessary to help arrange
the syntagmatic relationships among the graphical elements
in the rendered layout, which could be satisfied perfectly in a
hive plot, as introduced in 2011 by Krzywinski et al. for net-
work structure visualization [28]. The use of an appropriate
coordinate system could keep the layouts of network elements
consistent if they had similar structural profiles and can be
tuned to reveal specific patterns. This consistency made the
hive plot layout appropriate for comparing network differ-
ences, monitoring their evolution, and analyzing changes in
the connectivity of individuals in a network over time. In [29],
Engle et al. applied hive plots to message-passing commu-
nication networks. The efficient drawing space utilization
meant a hive plot can generate a comparable layout in a
limited drawing space, and it was possible to combine it with
other types of graphs thanks to its circular format.

However, in a real network, IPv4 addresses were divided
into different groups with different functions. Directly using
the original hive plot graph to represent complex connections
was inadvisable because of its inability to represent different
connections between and within different IPv4 groups, all of
which needed further research.

D. VISUALIZATION ON BEHAVIOR PATTERNS
A security attack contained a sequence of related events,
which could be a pre-planned set of simple incidents. Accord-
ing to the respective characteristics and presentation capa-
bilities of different graphs, Yelizarov and Gamayunov [30]
combined histograms, glyphs, scatter plots, color maps and
parallel coordinate axes into a single visualization system
to demonstrate the multifaceted nature of one cyber-attack.
Different attacks [31] may show different patterns in visual

systems due to their different characteristics. Chen et al. [32]
proposed a connection streamgraph that contains six axes
representing different attributes in the packet data, and
Lee et al. [33] designed a visual signature view to show the
attack pattern. For a firewall log, Ghoniem et al. [34] pro-
posed a visualization system called VAFLE to help analysts
to interpret firewall log events, which allows multiple coordi-
nated interactive visualizations. Chen et al. [32] proposed the
OCEANS system of visual analytics to provide close cooper-
ation among analysts and greater situational awareness, and
Simsek [35] proposed a lattice-based visualization method to
capture the correlation between malicious hosts within the
Intranet of an enterprise.

In summary, whether implemented by visually or other
analytical methods, proper definition and comparison in
behavior patterns are of paramount importance [36].

III. VISUAL DESIGN
In this section, we discuss the design principles of the
Owleyes system including the visual graphs and interactions.
The visual methods comprise SHG, LW, a force-directed
graph, a stream graph, a boxplot graph and two scatter graphs.
The interactions are under the user-centric principle.

A. SUNBURST HIVEPLOT GRAPH
The SHG model consists of a sunburst graph, a modified
hive plot graph, and proper interactions. The sunburst part
represents the hierarchical relationships and link count size
comparisons among IPv4 addresses, while the hive plot part
represents the IPv4 connections in the network. Each pair
of arc elements in the sunburst part corresponds to a curve
element in the hive plot part.

1) THE SUNBURST PART
IPv4 addresses are defined as 32-bit numbers and com-
pose the basic structure of the entire network by identifying
uniquely a host interface on the Internet with four levels of
segments, these segments represents different functions. The
distribution of IPv4 addresses can be represented clearly by
visualizing the hierarchical structure of their segments. Dif-
ferent IPv4 addresses containing the same segment part may
have related functions. As shown in Fig. 1, in an IPv4 address,
segments in different parts work differently in the network.
And they together form a hierarchical structure with four
levels, where each level from top to bottom corresponds to
each byte of the IP address from left to right.

As explained above, we chose the sunburst graph to visu-
alize the hierarchical relationships as well as comparisons of
connection counts among IPv4 addresses. As Fig. 1 shows,
the sunburst model is composed of arc elements correspond-
ing to specific IPv4 segments with three attributes: hierar-
chical level, inner angle and filling color. The hierarchical
level of one arc element is determined by the level of its
corresponding IPv4 segment. The internal angle size of the
arc element is determined by the connection counts of the
IPv4 segment. Larger connection count corresponds to the
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FIGURE 1. The four-layer structure of IPv4 address is constructed to
generate the sunburst, where an IPv4 address is represented by a path
from the root node to a leaf node. Each arc element in the sunburst
contains three properties, namely its angle, its filling color, and its radial
position. The angle corresponds to the numerical value of the
IPv4 segment count. The filling color corresponds to the value range
where the IPv4 segment connection count was in. The radial position
corresponds to the level of the IPv4 segment. The red part of the
figure corresponds to the highlighted part of the sunburst graph in the
system after clicking the corresponding arc, which indicates the currently
selected IPv4 address segment.

greater internal angle of the IPv4 segment. In the hierarchical
structure, the connection count value of the parent IPv4 seg-
ment is the sum of its child IPv4 segments. Meanwhile,
in order to represent the distributions of IPv4 segments more
intuitively, their connection counts are divided into six range
areas corresponding to different filling colors.

In addition, we added appropriate interactions to the sun-
burst part. Firstly, When the mouse moves over any arc
element, a pop-up box would display its IPv4 address and
connection count. Secondly, Users can click any arc element
in the sunburst, then the auxiliary part on the top left will
update the corresponding IP address segment and all its parent
segments. At the same time, all related arcs will also be high-
lighted in the sunburst graph. As Fig. 1 shows, the red part
of the figure represents the highlighted part of the sunburst
graph after clicking the corresponding arc, which indicated
the currently selected IPv4 address segment. On this basis,
the sunburst part could be used as a basic interaction to
help users choose specific IP addresses of interest for further
analysis.

2) THE HIVEPLOT PART
According to the theory of hive plots explained in [28],
the model contains three groups of components including
axes, nodes, and edges. The nodes work as the skeleton of
the model and their allocations are determined by certain
rules. In detail, the attributes of axes such as position, scale,
and orientation confirm a stable coordinate system. Then
each node is placed onto a settled location of one certain
axis element, which means one node only corresponds to
one position in the final graph. For the edges representing
connections between entities in the network, they can be
simply visualized by curves connecting those nodes.

As shown in Fig. 2, the original hive plot model contains
three radial axes, with different classes of nodes distributed on
each. Therefore, it is necessary to determine the classification

FIGURE 2. In the evolution process of hiveplot model, firstly, different
groups of nodes in a network structure are divided into separated axes,
as shown in part A and part B. Then the distribution of these axes is
changed into radial, as shown in part C. The certain attributes of axes
(position, scale, and orientation) confirm a stable coordinate system.
Each node is positioned onto a settled location of one certain axis in
one-to-one correspondence. The stable coordinate system can efficiently
and comparatively show the connection relationships between nodes in a
limited circular drawing area.

FIGURE 3. The curves between nodes on the same axis may cover over
each other, so we split each axis into two axes in clockwise direction,
where the first axis contains source IPv4 nodes and the other one
contains target IPv4 nodes. The curves between the nodes on different
axes is unchanged. For example, in connection e1, the source
IPv4 address is node a and the destination IPv4 address is node b, which
are all on axis 0. In the newly generated graph, the source IPv4 address
node of e1 is on axis 0 and the destination IPv4 address of e1 is on the
axis 1.

scheme of node elements and map them to a fixed axis.
Different data sources and requirements have different clas-
sification schemes, but the uniqueness of node classification
shall be ensured, that is, a node can only belong to one group.
After determining the rules mapping each node to a certain
axis, we need to determine their positions on the axes. We set
connection count as sort rule, which means nodes with larger
connection count will be placed on the outside of the axis.
Because the value differences among node connection count
are usually exponentially. By default, we take the pairwise
value of connection count to determine the coordinates of
nodes on the axis. Then we connect these nodes with Bezier
curves to represent connections among entities these nodes
corresponding to. To help the user build an intuitive under-
standing of the link count of each curve element, the period
of the link count is divided into six intervals, corresponding
to six different filling colors respectively.

Although the current design represents the curves between
nodes on different axes well, the curves between nodes on the
same axis may cross cover each other, resulting in cluttered
views. To solve this problem, as shown in Fig. 3, each axis
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FIGURE 4. We assemble the SHG by combining the sunburst graph and
the hive plot graph together with appropriate interactions. The SHG can
handle analytical works all alone for its complete interaction loop, which
includes directions from sunburst part to hive plot part and the reverse.
Besides, the SHG contains two filter interactions, the first is in the
sunburst part for IPv4 address count and the second is in the hive plot
part for IPv4 connection count. These filter functions make SHG suitable
for various scales of Netflow data.

is copied into two in clockwise direction, where the fore axis
holds the source IPv4 address nodes and the back axis holds
the destination IPv4 address nodes. The newly generated fan
area between the two axes is used to place the curve elements.
Until now, the connection between all node elements in the
hive graph can be clearly and intuitively observed.

Then Appropriate interactions are added into hive plot.
When users moving the mouse above a curve, the width of the
curve will be thicker. Meanwhile, a pop-up box will appear
near the mouse to display the specific information of the
connection this curve element corresponding to, including
the source IPv4 address, destination IPv4 address, and the
connection count. The hive plot part not only represents
the connections between IPv4 addresses but also serves as
an interactive tool to help users select specific connections
between two IPv4 addresses.

3) COMBINATION AND INTERACTION
Next, we combine the hive plot graph and the sunburst graph
with appropriate interactions to generate a new graph named
SHG, as shown in Fig. 4. The sunburst graph is used as a
tool representing the basic situation of each IPv4 address.
After users click the arc element in the sunburst graph, the

corresponding IPv4 segment is selected. Meanwhile, in the
hive plot graph, the curve unrelated to this IPv4 segment will
be hidden, and the filling color of the remaining curves will be
reassigned. Correspondingly, when the user clicks one curve
element in the hive plot graph, the source IPv4 address and
destination IPv4 address of this connection will be selected,
and the corresponding arc elements in the sunburst graph
will be surrounded by red boxes and blue boxes respectively.
So far, a complete interactive loop has been constructed
between the sunburst graph and the hive plot graph.

Then we add date selecting interaction to SHG. In the
beginning, we set the time interval of selection precisely
to ensure flexibilities, where the time unit includes specific
dates, hours, and minutes. While the too flexible interaction
can not bring the desired efficiency, it does bring too much
burden to the users because of the overmuch choices. At the
same time, as a result of the superabundant time intervals,
there is no constraint between the rendered hive plot graphs
or sunburst graphs, which makes it difficult to compare each
pair of them. Therefore, in the end, we decide to reduce the
flexibility of time selection to date selection, so that users can
only choose to visualize the data of a certain date.

However, the overlarge volume of the source data still
causes plenty of overlaps in the hive plot regardless of
the time interval size. Hence, filtering interactions for the
IPv4 address counts or for the IPv4 link counts are necessary
for users to get their desired rendering results. We deter-
mine the priority between the two filtering operations by
their sequence, which means that the latter operation has a
higher priority than the former. For example, suppose the first
filtering rule is that the IPv4 address count shall be within
[0, 1000], the second filtering rule is that the IPv4 link count
value shall be within [0, 100]. For example, we assume there
exits one IPv4 connection that had link count value 80 and
a source IPv4 address with count value 2000. Although the
source IPv4 address failed to meet the condition of being
within [1, 1000], according to our priority strategy, it was still
rendered on the sunburst graph.

B. LINK GRAPHS
So far, the SHG has macroscopically represented the infor-
mation and connections of IPv4 addresses. The next step is
to visualize the behavior details of each specific port dur-
ing IPv4 connections. A novel graph named Link Wheel is
designed to show the statistics of the ports with prominent
behaviors and the differences between these port usages in
different periods. Besides, we choose force-directed graph to
indicate the connection relationships between these ports.

1) LINK WHEEL GRAPH
The Link Wheel (LW) graph records the hourly connection
counts of main ports in a specific IPv4 connection during one
day. As shown in Fig. 5, in LW, time flows in clockwise direc-
tion, as the arrows in the outmost circle show. The current
month and date are placed in the graphic center, while the two
IPv4 addresses corresponding to the connection are placed in
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FIGURE 5. The Link Wheel (LW) graph records the hourly port connection
counts of a specific IPv4 connection in inverted order, which corresponds
to direction inside to outside in the final graph. The passage of time is
clockwise. The top part and the bottom part represented different
connecting directions between the two IPv4 addresses. The red part
represents the source ports, the blue part represents the target ports. The
yellow arcs represent the interactions used to compare statistics in both
directions within the same hour.

the horizontal middle. The other graphic elements are divided
into two groups, indicating different connection directions.
Each part contains one arc inside in red and one arc outside in
blue. The arcs filled up in red show the statistical results of the
source ports, while the blue ones show the statistical results
of the destination ports. Each arc is divided into 24 sub-arcs,
corresponding to 24 hours in one day, as the numbers outside
the arc represent. Each sub-arc contains 5 in-arc elements,
indicating the top five ports with the largest count value,
which are sorted ascending in radial. The color transparency
of an in-arc element was proportional to the count value of its
corresponding port. The default maximum value in the legend
was 1000, which will dynamically change according to the
maximum number of all port count values in the data.

To display port usage information more clearly and effi-
ciently, appropriate interactions are added to LW. Firstly,
the inputs of the LW include the date, the source IPv4 address,
and the destination IPv4 address, all of which are from the
SHG submission results (details about the submission inter-
action are in the global interactions part). Second, to help
users compare the differences between the two directions in

FIGURE 6. In force-directed graph, all the nodes are divided into two
groups based on their related IPv4 addresses. The ports in the source
group are filled in red, while the ones in the target group are filled in
blue. The radius size of a port node corresponds to its connection count
value. Meanwhile, the port number and the counts of ports connected to
this port is represented beside the circle.

the same hour, we add a comparison interaction: when the
user moves the mouse to an in-arc element, the background
color of the entire hour arc in both directions would be filled
in yellow, as shown in the figure. Finally, we add a pop-up
box to display the relevant information including the port
number and the count of the port corresponding to each in-arc
element.

Based on the characteristics of LW, the IPv4 connections
with different functions will generate different rendering
results, while connections with the same function would lead
to similar rendering shapes. Users can summarize specific
behavior pattern characteristics from multiple layouts to ana-
lyze various modes of IPv4 connections and find anomalies.

2) FORCE-DIRECTED GRAPH
Because LW only focuses on visualizing the usage details of
each port in the IPv4 connections, as a supplement, a force-
directed graph is added to show the connection relationships
among the related port. In the graph, nodes represent ports
and edges represent connections, as shown in Fig. 6. All the
port nodes are divided into two groups based on their related
IPv4 addresses. The source port nodes are filled in red, while
the target ones are filled in blue. The radius size of a port node
corresponds to its connection count value. The port number
and port counts connected to this port are located beside the
circle.

New interactions are added to the force-directed layout,
which allows users to reverse the source and target roles of the
IP addresses in order to compare the connection relationships
between them. Users can also hide or show the port numbers
around the nodes in the graph to analyze port usage more
accurately.

As for limitations on graphic rendering of the force-directed
graph, the number of nodes can not exceed 4000, which
is enough for our system. Our force-directed graph uses
d3.js built-in algorithm, whose performance is limited by
the front-end browser calculating performance and canvas
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FIGURE 7. The SHG forms a complete interactive loop, which means users can use SHG to obtain basic analytical results
independently. A commit operation exists between SHG and other graphs. After the user determines current selections in SHG,
including the date, the current IPv4 address, and the current IPv4 connection, and submit them to global, the other graphs will
update accordingly.

FIGURE 8. Certain IPv4 address graphs.

rendering performance. During our tests, the force-directed
graph refreshes normally when the number of nodes is less
than 1000. Although different degrees of stutter may occur
when more than 1000 nodes are rendered on the drawing
space, the final rendering result will not be effected much.

C. IP GRAPHS
As shown in Fig. 8, we divide the IPv4 address information
graphs into two groups: global group (GP) and specific date
group (SP).

The GP contains a stream graph and boxplot graph, repre-
senting the overall statistical results of an IPv4 address in the
whole time period of the data. The stream graph represents
basic statistics of this IPv4 address, including the sum of daily
connections, maximum transfer file size, minimum transfer

file size, the sum of source ports counts, and the sum of des-
tination ports counts. The user can choose different statistical
results of this IPv4 address based on its roles in connections.
The roles include the source IPv4 address, the destination
IPv4 address, or both. The boxplot graph uses hourly data
statistics as the basic element to show the distribution of the
quantities in the daily statistical results. Because boxplots can
only display individual dimensions of the statistical result,
we add interactions to help users choose which dimension the
boxplots should display.

The SP contained two scatter graphs with the same struc-
ture, which are used to visualize the usage of the main source
ports and destination ports of this IPv4 address during the
selected date.

D. GLOBAL INTERACTIONS
As the first step for users to grasp the overall situation of the
internal network, SHG helps users determine their interested
IPv4 address and IPv4 connection, which would work as
inputs to the other graphs. To the beginning, we simply place
interactions of the other graphs after SHG. During our test
processes, we find that the interaction frequency on SHG
is much higher than the other graphs, which lead to the
frequently refreshing of all graphs in the system if simply
combining SHGwith other graphs directly, resulting in reduc-
ing of the operating efficiency and the slowing down of the
user analysis speed.

In consideration of SHG itself has formed a closed interac-
tion loop, which means users can use SHG for analysis with-
out other graphs, we isolate SHG from other graphs by adding
a new submit process in the middle. As shown in Fig. 7,
we add a table into SHG to represent currently selected date,
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TABLE 2. The original data examples.

IPv4 address, and IPv4 connection. This process lets users
select the IPv4 address or connection of interest in SHG
first, which will dynamically update a table below the SHG.
Then after determining their choice, users can submit these
selections to global to update the other graphs.

IV. CASE STUDY
A. DATA DESCRIPTION
The data is from Chinavis 2016 Challenge I [37], con-
taining 2 million records involving more than 20 thousand
IPv4 addresses and 60 thousand ports. The recording starts
from July 1st, 2015, and covers time periods of 2 months,
where the minimum time interval is second.We consider only
six dimensions of attributes in the data including the start time
point, the source IPv4 address, the destination IPv4 address,
the source port, the destination port, and the transferred file
length to build the Owleyes system, as shown in Table. 2.

As mentioned above, the node elements in the hive plot
graph are supposed to be divided into three groups, where
grouping rule is determined by specific data condition. How-
ever, the data of Chinavis 2016 challenge I does not involve
grouping rules and will not have great impact on the next
analysis process. Hence, we decide to divide the IPv4 seg-
ment into different groups by the second segment of the
IPv4 address. In detail, in consideration of the connection
count distribution, we decide to group the IPv4 addresses
with 67/18 as second segment value into the first group,
the IPv4 addresses with 65/53/54 as second segment value
into the second group, and the rest of addresses are divided
into the third group.

B. CASE STUDY 1: ROLES AND FUNCTIONS OF
IPV4 ADDRESSEE
We take the IPv4 address 10.18.112.246 as an exam-
ple to introduce the complete visual analytical process.
Because from the sunburst part of SHG, it is obvious that
10.18.112.246 has the largest connection count onmost of the
dates compared to all the other IPv4 addresses. We presume
that 10.18.112.246 is representative and it may function as
the IPv4 address of a major server in the network.

Firstly, we observe the overall performance of IPv4 address
10.18.112.246 from SHG, stream graph, and boxplot graph.

As shown in Fig. 9, the SHG shows that before
August 10th, 10.18.112.246 only works as a destina-
tion IPv4 address. During these days, there are several

fixed IPv4 addresses connected to it with large con-
nection counts, including10.67.220.221, 10.67.220.229,
10.65.216.229, 10.65.216.146, and 10.65.216.221 (We pre-
liminarily conclude that these IPv4 addresses also work for
main servers in the network, which can be used as the main
object of the next analysis). Correspondingly, the stream
graph also shows that beforeAugust 10th, 10.18.112.246 only
works as the destination IPv4. During this period, The number
of active ports is less than 20, which was small compared to
normal situations. From the corresponding scatter graph we
can see that although there are few active destination ports,
the connection counts of these ports are large. Therefore,
we conclude that at this time, 10.18.112.246 is mainly work-
ing as IPv4 address of a server in the network.

After August 10th (on August 14, for example), as shown
in the figure, the SHG structure of 10.18.112.246 changes
significantly, where new group of curves appear and inter-
sect the original curves, representing that the IPv4 address
starts to work as source IPv4 address, which also has fixed
IPv4 addresses including 10.67.220.221 and 10.67. 220.229.
These IPv4 addresses alsomaintain a large number of connec-
tions. It is observed from the stream graph that ports working
as source ports start to appear from this date, which consistent
with the results in the SHG, indicating that the function of this
IP address changes significantly after this date.

Further observation finds that in the stream graph,
onAugust 11th, 12th, 13th, 26th, and September 1st, the num-
ber of destination ports sharply decreases, and there is no
crossover of connection sets in the hive plot graph, too (for
lack of space, in Fig. 9, we only show situations on Septem-
ber 1st). During these days, the functions related to the desti-
nation ports are closed. The specific reason is analyzed by the
scatter graph later. When 10.18.112.246 works as destination
IPv4 address, the hive plot graph rendering result is divided
into two regions with the date August 3rd as the division
point, indicating that its function may have changed at this
time point.

Secondly, with the scatter graphs and LW graph, we sum-
marize specific functions of 10.18.112.246 by analyzing the
usages of special ports on 10.18.112.246.

As shown in the scatter graph, before August 3rd, the active
destination ports of 10.18.112.246 include 445, 139, 1025,
389, 135, 53, 88, etc. According to Table.1, these ports cover
protocols with specific functions such as CIFS, LDAP, RPC,
DNS, Kerberos. We believe that during these dates, the server
of 10.18.112.246 is responsible for many different types of
functions. However, the opening of port 1025 leaves the
server a safety hazard, which can be one of the reasons for
the reallocation of the functions.

In addition, on August 3rd, the usage of each port increases
sharply, especially port 445, which is an order of magnitude
more than before. Then fromAugust 4th to August 6th, all the
ports are used sporadically. From August 7th to August 10th,
only 445 and 139 remain working as the destination ports that
are heavily used (for lack of space, in Fig. 9, we only show sit-
uations on August 9th). We conclude that 10.18.112.246 will
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FIGURE 9. Case study 1: IP roles and functions.
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FIGURE 10. Case study 2: Abnormal events and behaviors.

no longer bear the functions related to other ports except
445 and 139. However, from August 11th to August 13th, all
destination ports on 10.18.112.246 are closed. At the same
time, 445 and 139 begin to work as source ports, which is
in line with the conclusion on the hive plot graph mentioned
above. Immediately from August 14th, these two ports begin
to work both as source and destination ports, so it is inferred
that from 11th to 13th, preparations are made for a new
function of this IPv4 address, which is officially opened from
August 14th. As shown in Fig. 9, the conclusions are also
proved in the LW, where different situations lead to different
rendering shapes.

Similarly, from September 1st to September 3rd, ports
of 10.18.112.246 also only work as destination ports. But
unlike the previous, no data is recorded in September 2nd.
The amount of data on September 3rd is very small com-
pared to the other dates, which is a incremental pro-
cess. Hence, we conclude that the corresponding server
of 10.18.112.246 is shut down for maintenance and backed
to work on September 4th.

C. CASE STUDY 2: ABNORMAL EVENT (DDOS ATTACK)
As shown in Fig. 10, in SHG, we select the current date
to July 31th and find that almost all the curves in the hive
plot graph are in gray, which is abnormal from the col-
orful rendering results under normal conditions. A closer
inspection reveals that only one curve was in red, indicating
that the count of this connection is far larger than all the
others. The filtering interactions showed that the maximum
IPv4 connection count value was 29,851 that day, which was
more than 20 times greater than normal cases. The connection
details show that the connection is from 10.65.216.146 to
10.18.112.26. After ensuring the specific date and connection
are selected, we submit them to the other graphs.

As Fig. 10.B2 shows, the force-directed graph indicates
that 3262 ports of the source IPv4 address 10.65.216.146 are
all connected to port 21 of the destination IPv4 address
10.18.112.26. In Fig. 10.B1 and Fig. 10.C2, the LW and
scatter plots represent that almost all 10.65.216.146 ports
were connected 18 times, which are happened from 1 p.m.
to 3 p.m. In Fig. 10.C1, the stream graph, and boxplot
graph show that this large count and concentrated con-
nection only appears once in the entire time interval of
the data set, which is obviously abnormal. Port 21 gener-
ally works as the entry point of a file server. Therefore,
we determine that the IPv4 address 10.18.112.26 is the cor-
responding IPv4 address of the file server in the network.
Above all, the connection indicates that the server of 10.65
.216.146 does a DDoS attack to the server of 10.18.112.26 on
July 31, 2015.

V. CONCLUSION
In this work, we propose a visual analytics system named
Owleyes and illustrate its usefulness through case studies
using Netflow log data provided by ChinaVis 2016 Challenge
I. In Owleyes, the SHG combines sunburst and hive plot
graph to provide stable and comparable visual analytical
methods for global analysis of IPv4 behavior modes and
IPv4 connection patterns, which help users determine the
entities they should focus on in the next step. For the details
of IPv4 address behaviors, the stream graph, the boxplot
graph, and the scatter graphs represent details of port usage,
connection count and file size. For IPv4 connections, the Link
Wheel (LW) graph recorded the hourly connection counts of
main ports in a specific IPv4 connection during one day. And
the force-directed graph represented connection relationships
among different ports of two certain IPv4 addresses. By com-
bining those graphs with interactions in the user-centric
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principle, Owleyes can help analysts investigate network
events and find out abnormal events effectively.

VI. FUTURE WORK
In Owleyes, the detection of abnormal events mainly depends
on the experience of users. The ability to help users analyze
more types of abnormal events in complex networks needs to
be improved. In future work, we plan to add more advanced
visualization methods to ultimately help users obtain more
insights and implicit knowledge from Netflow log data.
Meanwhile, although aming at working on analysis tasks with
multi source netflow log data, Owleyes is only suitable for
data sources which have the basic six dimensions. For the data
sources mismatch the condition, our system can not support a
efficient analysis process, which is also need to be improved
in our future work.
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