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ABSTRACT This paper is concerned with the robust parameter estimation for linear parameter varying
(LPV) finite impulse response (FIR) model. The practical process data are typically polluted by outliers
and conventional parameter estimation methods may fail to derive an unbiased estimate. In order to deal
with outliers, the Laplace noise model is adopted and the robust system model for the described parameter
estimation problem is established. The robust parameter estimation for LPV FIR model is formulated and
solved in the EM algorithm scheme and the equations to estimate all the unknown parameters are derived.
The efficacy of the proposed method is verified through a numerical simulation and a chemical unit.

INDEX TERMS Expectation-maximization algorithm, Laplace distribution, LPVFIRmodel, outliers, robust
parameter estimation.

I. INTRODUCTION
The modern industrial processes typically perform complex
production tasks and exhibit complicated process dynam-
ics, resulting in a nonlinear system [1]–[5]. The nonlinear
system identification has been a challenging theoretical and
engineering problem over decades and many approaches
have been developed. Among the developed nonlinear system
identification approaches, the linear parameter varying (LPV)
have become one of the most attractive approach due to its
close connection with control analysis and synthesis of LPV
system [6].

The LPV model has a parametrized linear structure with
time-varying model parameters expressed as linear combi-
nations of certain basis function with respect to schedul-
ing variables. The identification of LPV time-delay system
with parameter-varying time-delay and constant input time-
delay was respectively considered in [7] and the unknown
model parameters and time-delays were estimated. In [8],
the identification of LPV system based on incomplete data
set was handled and two algorithms to estimate the multiple-
model LPV finite impulse response (FIR) and the multiple-
model LPV output error (OE) model were developed. In [9],
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the LPV system identification with noisy scheduling variable
data was handled. The scheduling dynamic was described
by using a state space model and unknown parameters in
LPV model and scheduling dynamic model were estimated.
The above mentioned works are focused on the local LPV
identification approach and the LPV model is approximated
by combinations of multiple local models. Another attractive
way is to estimate the parameter polynomial coefficients of
LPVmodel directly. In [10], the LPV prediction error method
was developed and the unknown parameters in the LPV Box-
Jenkins model were estimated though the numerical opti-
mization of the one-step ahead prediction error function. The
refined instrumental variable method was proposed in [11] to
identify the LPV Box-Jenkins model.

The industrial process data are commonly polluted by out-
liers which should be carefully dealed with in order to obtain
consistent parameter estimates [12]. Conventional method
is to detect the outliers in data and omit them, so that the
problem is transformed into performing parameter estimation
with missing data [13]. However, the selection of the crite-
rion to detect the outliers is difficult especially for complex
dynamic processes. The robust statistical models, such as
the contaminated Gaussian model [14], Laplace model, and
t-distribution model, are typically employed to deal with
outliers in identification.
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In this paper, the robust identification of LPV system is
considered and the LPV FIR model is adopted. The out-
lier is commonly encountered in system identification and
it can be caused by malfunction of sensors, system fault,
data recording or reading error, external system disturbance
and so on. The outliers have posed significant difficulty on
LPV FIR model identification and traditional LPV identifi-
cation methods are not able to provide an unbiased parameter
estimates. To handle outliers in LPV FIR model parameter
estimation, the robust model is constructed with the Laplace
distribution. Thanks to the mathematical decompostion of
the Laplace distribution, the robust identification algorithm
is developed. Due to the difficulties of optimizing the log
likelihood function directly, the considered robust parameter
estimation is formulated in EM algorithm scheme. Hence the
main contributions of current work are:

1) The output abnormality is considered in the identifi-
cation of LPV FIR system and a robust identification
strategy is introduced.

2) The decomposition of the Laplace distribution is
applied in the identification process and the unbaised
parameter estimates are obtained.

3) The robust parameter estimation is realized with the
EM algorithm and the maximum likelihood estimates
(MLEs) are obtained.

The outline of the rest paper is: The problem description
is given in Section 2 and the robust system model is estab-
lished with Laplace distribution; The EM algorithm is firstly
introduced in Section 3 and the mathematical derivations of
the robust parameter estimation algorithm for LPVFIRmodel
are given; The simulation verification of the proposedmethod
is presented in Section 4 and the final section concludes the
work.

II. PROBLEM DESCRIPTION
Consider a nonlinear system described by the following dis-
crete linear parameter varying (LPV) finite impulse response
(FIR) model:

yt = G(zt , q−1)ut + εt , (1)

where zt , yt , and ut are measurable scheduling variable, out-
put variable, and input variable, respectively; εt is the zero-
mean measurement white noise; the G(zt , q−1) is the transfer
function between ut and yt with FIR model structure

G(zt , q−1) = c1(zt )q−1 + c2(zt )q−2 + · · · + cn(zt )q−n, (2)

and the model parameters {cj(zt )}j=1,··· ,n are functions of
time-varying scheduling variable zt

cj(zt ) = cj,0 +
M∑
m=1

cj,mχm(zt ), j = 1, · · · , n, (3)

in which {χj(zt )}j=1,··· ,M are the meromorphic functions of zt
and n and M are the orders of the function polynomial and
the order of the LPV FIR model, respectively.

Conventionally, the Gaussian noise assumption is made
and maximum likelihood (ML) method is employed to esti-
mate the model parameters. However, the Gaussian noise
model is sensitive to outliers which makes the derived
parameter estimates biased. In order to deal with outliers,
the Laplace noise model is developed

εt ∼ Laplace(εt |0, γ )

=
1
2

√
2
γ
exp

{
−

√
2
γ
|εt |

}
. (4)

Based on the model (1), the output yt follows

yt ∼ Laplace(yt |G(zt , q−1)ut , γ )

=
1
2

√
2
γ
exp

{
−

√
2
γ
|yt − G(zt , q−1)ut |

}
. (5)

According to the property of Laplace distribution, the above
distribution can be written as

yt ∼ Laplace(yt |G(zt , q−1)ut , γ )

=

∫
N (yt |G(zt , q−1)ut , ωt )p(ωt |γ )dωt (6)

where

N (yt |G(zt , q−1)ut , ωt )

=
1

√
2πωt

exp
(
−
(yt − G(zt , q−1)ut )2

2ωt

)
, (7)

and

p(ωt |γ ) =
1
γ
exp

(
−
ωt

γ

)
. (8)

Denote the scheduling variable data {zt }t=1,··· ,L , the input
data {ut }t=1,··· ,L , and the output data {yt }t=1,··· ,L in train-
ing data set as z1;L , u1:L , and y1:L , respectively. The robust
parameter estimation for LPV FIR model is to estimate the
unknown model parameters θ and scale parameter γ based
on the training data set with output measurements polluted
by the outliers.

III. MATHEMATICAL FORMULATION OF THE ROBUST
PARAMETER ESTIMATION PROBLEMS IN EM
ALGORITHM SCHEME
Intuitively, the ML method provides an alternative to solve
the described robust parameter estimation problems. The log
likelihood of training set data is

log(y1:L , z1:L , u1:L |θ, γ )

=

L∑
t=1

log

(
1
2

√
2
γ
exp

{
−

√
2
γ
|yt − G(zt , q−1)ut |

})

= L log

(
1
2

√
2
γ

)
−

√
2
γ

L∑
t=1

|yt − G(zt , q−1)ut |, (9)

which is nonlinear with respects to model parameters θ
and scale parameter γ . The direct optimization of this log
likelihood function can be very difficult through numerical
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optimization algorithms. The robust parameter estimation
problems can be simplified and solved in the EM algorithm
scheme.

A. THE BRIEF INTRODUCTION TO EM ALGORITHM
Through introducing latent variables and/or missing vari-
ables, the EM algorithm is able to simplify theML estimation
problem and performs the optimization of log likelihood
function by alternating expectation (E) step andmaximization
(M) step. Denote the observed data set and missing data set as
Y and Z , respectively. The complete data set is then {Z,Y}.
The moments of functions with respects to latent variables
and/or missing variables are calculated in E-step and the con-
ditional expectation of complete data log likelihood function
is maximized with respects to unknown parameters in M-step
to derive the parameter estimates. The overflow of the EM
algorithm is described as [15]

1) Parameter initialization and set iteration number s = 1.
2) E-step: Calculate the following Q-function based on

current parameter estimates �s

Q(�|�s) = EZ|Y,�s{log p(Z,Y|�)}. (10)

3) M-step: Maximize the Q-function to derive the new
parameter estimates

�s+1
= argmax

�
Q(�|�s). (11)

4) If convergence of the algorithm is met, stop; Else, set
s = s+ 1 and return to E-step.

B. MATHEMATICAL DERIVATIONS IN EM
ALGORITHM SCHEME
Introducing the latent variable ωt and denoting the data
{ωt }t=1,··· ,L as ω1:L . The missing data set is constructed as
Z = {ω1:L} and the observed data set is built as Y =
{y1:L , u1:L , z1:L}. The unknown model parameter vector is
� = {θ, γ }.

1) E-STEP
The log likelihood of data {Z,Y} is

log p(Z,Y|�) = log p(y1:L , u1:L , z1:L , ω1:L |�)

= log p(y1:L |u1:L , z1:L , ω1:L , �)

+ log p(ω1:L |u1:L , z1:L , �)

+ log p(u1:L , z1:L |�). (12)

The term log p(y1:L |u1:L , z1:L , ω1:L , �) is further expanded
into

log p(y1:L |u1:L , z1:L , ω1:L , �)

=

L∑
t=1

log p(yt |y1:t−1, u1:L , z1:L , ω1:L , �)

=

L∑
t=1

log p(yt |zt , ωt , u1:t−1, �). (13)

The derivation of above formula is based on the fact that the
output yt is only related with zt , ωt , input data u1:t−1, and
parameter �.

The term log p(ω1:L |u1:L , z1:L , �) is further written as

log p(ω1:L |u1:L , z1:L , �)

=

L∑
t=1

log p(ωt |ω1:t−1, u1:L , z1:L , �)

=

L∑
t=1

log p(ωt |γ ), (14)

according to the fact that the latent variable ωt depends only
on the parameter γ .

Since the u1:L and z1:L are recorded data, the term
log p(u1:L , z1:L |�) is a constant, denoted as C1. Then the
system log-likelihood function can be rewritten as

log p(Z,Y|�) =
L∑
t=1

log p(yt |zt , ωt , u1:t−1, �)

+

L∑
t=1

log p(ωt |γ )+ C1. (15)

As exhibited in Eq. (10), the Q-function is derived as

Q(�|�s) = EZ|Y,�s{log p(Z,Y|�)}

= Eω1:L |Y,�s
{ L∑
t=1

log p(yt |zt , ωt , u1:t−1, �)

+

L∑
t=1

log p(ωt |γ )+ C1

}
(16)

Based on formulas (7) and (8), the above formula is rewrit-
ten as

Q(�|�s) = Eω1:L |Y,�s
{
−

1
2
log 2π −

1
2

L∑
t=1

logωt

−

L∑
t=1

(yt − G(zt , q−1)ut )2

2ωt
− L log γ

−
1
γ

L∑
t=1

ωt + C1

}

= −
1
2
log 2π −

1
2

L∑
t=1

∫
p(ωt |Y, �s) logωtdωt

−

L∑
t=1

(yt − G(zt , q−1)ut )2

2

∫
p(ωt |Y, �s)

×
1
ωt
dωt − L log γ −

1
γ

L∑
t=1

∫
p(ωt |Y, �s)

×ωtdωt + C1. (17)
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The posterior distribution p(ωt |Y, �s) is

p(ωt |Y, �s) = p(ωt |y1:L , u1:L , z1:L , �s)

=
p(yt |u1:t−1, zt , ωt , �s)p(ωt |�s)∫
p(yt |u1:t−1, zt , ωt , �s)p(ωt |�s)dωt

=
N (yt |Gs(zt , q−1)ut , ωt )p(ωt |γ s)
Laplace(yt |Gs(zt , q−1)ut , γ s)

= GIG

(
ωt |

1
2
,Gs(zt , q−1)ut ,

√
1
γ s

)
. (18)

Moreover, the integrals in Eq. (17) are calculated as∫
p(ωt |Y, �s)

1
ωt
dωt

=

√
2

γ s(yt − Gs(zt , q−1)ut )2
,

〈
1
ωt

〉
. (19)

and ∫
p(ωt |Y, �s)ωtdωt

=

√
γ s(yt − Gs(zt , q−1)ut )2

2

×

B3/2

(√
2(yt−Gs(zt ,q−1)ut )2

γ s

)
B1/2

(√
2(yt−Gs(zt ,q−1)ut )2

γ s

) , 〈ωt 〉, (20)

whereBα(δ) is the second-kindmodifiedBessel functionwith
order α evaluated at δ.

The Q-function can be finally written as

Q(�s
|�) = J (θ )+ J (γ )+ C2 (21)

where

J (θ ) = −
L∑
t=1

(yt − Gs(zt , q−1)ut )2

2

〈
1
ωt

〉
,

J (γ ) = −L log γ −
1
γ

L∑
t=1

〈ωt 〉, (22)

and the terms that not related with unknown parameters

C2 = −
L
2
log 2π −

1
2

L∑
t=1

〈logωt 〉 + C1. (23)

2) M-STEP
So as to calculate the parameter γ , the derivative is taken over
J (γ ) with respect to γ and equating it to zero

−L
1
γ
+

1
γ 2

L∑
t=1

〈ωt 〉 = 0.

It is easy to derive that

γ =
1
L

L∑
t=1

〈ωt 〉. (24)

Algorithm 1 Robust Parameter Estimation Algorithm for
LPV FIR Model
Input: The training data set Cobs = {y1:L , u1:L , z1:L}
Output: The optimal estimates �∗ = {θ∗, γ ∗}
1: Perform parameter initialization �1 and let s = 1;
2: repeat
3: Calculate the expectations 〈1/ωt 〉 and 〈ωt 〉 according

to formulas (19) and (20), respectively;
4: Update the parameter estimates θ and γ according to

formulas (28) and (24), respectively;
5: Set s = s+ 1;

6: until convergence (
∥∥∥θ s+1 − θ s

θ s

∥∥∥ < 10−3);
7: Once the optimal estimates are obtained, the real output

data estimates can be calcualted by simulating the esti-
mated model ŷt = φTt θ

∗.

Based on formulas (1) to (3), the LPV FIR model can be
rewritten into the linear regression form

yt = φTt θ + εt , (25)

where

φt = [ut−1 χ1(zt )ut−1 · · · χM (zt )ut−1 ut−2

χ1(zt )ut−2 · · ·χM (zt )ut−2 · · · ut−n · · ·χM (zt )ut−n]T ,

and

θ= [c1,0 c1,1 · · · c1,M c2,0 c2,1 · · · c2,M · · · cn,0 · · · cn,M]T .

(26)

The cost function J (θ ) is then transformed into

J (θ ) = −
L∑
t=1

(yt − φTt θ )
2

2

〈
1
ωt

〉
. (27)

To calculate the parameter θ , the derivative is taken over J (θ )
with respect to θ and setting it to zero

−
1
2

L∑
t=1

〈
1
ωt

〉
(2φtφTt θ − 2φtyt ) = 0.

The formula to estimate the θ is then derived as

θ =

(
L∑
t=1

〈
1
ωt

〉
φtφ

T
t

)−1 L∑
t=1

〈
1
ωt

〉
φtyt . (28)

The proposed robust parameter estimation algorithm for
LPV FIR model is summarized in Algorithm 1.

IV. VERIFICATION
A. NUMERICAL VERIFICATION
Consider a nonlinear system described by the following LPV
FIR model

yt = c1(zt )ut−1 + c2(zt )ut−2 + c3(zt )ut−3 + εt , (29)
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FIGURE 1. The generated input and output data.

where

c1(zt ) = 1.5328− 1.3438zt + 0.1562z2t
c2(zt ) = 1.3813− 1.8750zt + 0.6250z2t
c3(zt ) = 1.1969− 2.0625zt + 0.9375z2t . (30)

The input signal is chosen as the zero-mean Gaussian noise
ut = 1 + 2N (0, 1) and the scheduling variable zt varies as
a periodic signal zt = 0.5 + 0.5sin(0.15π t). The uniformly
distributed interferences are set as the outliers. 10% outliers
are added to the output data and the outliers are generated
following the uniform distribution in [−6, 6]. By using the
software Matlab, the input and output data for parameter
estimation are shown in Fig. 1.

The proposed Algorithm 1 is applied to estimate unknown
parameters of the LPV FIR model based on the noisy data
with outliers. The parameter estimation accuracy (PEA) (1−
||θ−θ∗||2/||θ ||2)∗100% is used to evaluate the performance
of the proposed algorithm and the value is 97.615%. It can be
seen from this result that the estimated parameters converge
to the true parameters.

In order to illustrate the advantages of the proposed algo-
rithmwith respect to the existing LPV identificationmethods,
the prediction error method (PEM) for LPV model in [10]
and recursive least squares (RLS) method for LPV model
in [16], one comparison is performed. The latter two methods
are also applied to the data set in Fig. 1 and the estimated
parameters of these three methods are given in Table 1. The
parameter estimation accuracy of these three methods are
97.6150%, 61.2853%, and 50.2946%, respectively. As shown
in the results, the performance of conventional PEM-LPV
method and RLS-LPVmethod degrade greatly; The proposed
method suppresses the negative effects of outliers and pro-
vides satisfactory parameter estimates.

The Monte Carlo (MC) simulation is then utilized to
throughoutly verify the performance of the proposed algo-
rithm. The MC simulations, each with 100 different noise
sequences, are conducted under the signal-to-noise ratio
(SNR), 5dB, 10dB, 15dB, and 20dB, and outlier ratios, 5%,

TABLE 1. The estimated parameters of the proposed method, the PEM
method, and the RLS method.

TABLE 2. The bias and variance norms of estimated parameters in MC
simulations.

10%, and 20%. Themean and standard deviation of estimated
parameter in each MC simulation are calculated and part
of the results are shown in Fig. 2. In this figure, the red ∗
and red bar denote the mean value and standard derivation
of parameter estimates, respectively. Suppose {θ̂i}i=1,2,...,100
represent 100 parameter estimates obtained in each Monte
Caro simulation, then the resulted mean and standard devi-
ation are computed as

θmean =

∑100
i=1 θ̂i

100
,

θstd =

√∑100
i=1(θ̂i − θmean)

2

100
. (31)

The bias norm (BN) ||θ − E(θ∗)||2 and variance norm (VN)
||E(θ∗ − E(θ∗))||2 are two performance indexes used to
evaluate the accuracy of estimated parameters in MC simu-
lations, where the notation ‖ · ‖2 represent the second norm
of a certain vector. The calculated performance indexes are
given in Table 2. It can be seen from this Table, the bias
and variance norms are close to zero, which indicates that
the proposed parameter estimation algorithm can not only
handle the noise but also deal with the outliers and estimated
parameters converge to the true parameter.

B. THE CHEMICAL PROCESS
EXPERIMENTAL VERIFICATION
In chemical and biological engineering, a fundamental reac-
tor is the continuous flow stirred tank reactor (CSTR). The
feed materials are continuously pumped into the reactor and
perfectly mixed in this column. The chemical reaction takes
place and the products are transfered to the subsequent pro-
duction unit. The temperature of the reactor is controlled by
manipulating the flow rate of the coolant. The first-principal
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FIGURE 2. The mean and standard deviation of parameter estimates from MC simulations under different SNRs and outlier ratios.

model of the CSTR is given as [10]

dCA(t)
dt

=
q(t)
V

(CA0(t)− CA(t))− k0CA(t) exp(
−E
RT (t)

)

dT (t)
dt
= −

(1H )k0CA(t)
ρCp

exp
(
−E
RT (t)

)
+
q(t)
V

(T0(t)

−T (t))+
ρcCpc
ρCpV

qc(t)
{
1− exp

(
−hA

qc(t)ρCp

)}
× (Tc0 (t)− T (t)), (32)

where the definitions and steady values of process variables
are presented in [10].

The concentration of reactant A, CA(t), and the flow rate
of feed material, q(t), and the flow rate of coolant, are cho-
sen as output variable, input variable, and scheduling vari-
able, respectively. The scheduling variable signal is set to
2sin(0.02π t) + 100 and the input signal is set to a random
binary sequence. The practical process data of CSTR are
recorded and shown in Fig. 3. The output noise and 10%
outliers are added to the output data. The proposed method
is used to identify the LPV FIR model with orders n = 10

FIGURE 3. The input and output data of the CSTR system used for
identification.

and M = 2 for the CSTR. The simulated output ŷ of the
identified model is compared with the recorded real output
data y and the result is shown in Fig. 4. The performance
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FIGURE 4. The comparison of the real output and model simulated
output for identification data set.

FIGURE 5. The input and output data of the CSTR system used for model
validation.

FIGURE 6. The comparison of the real output and model simulated
output for validation data set.

index to evaluate the fitting accuracy, defined as (1− var(y−
ŷ)/var(y)), is calculated and the result is 85.69%. The gen-
eralization ability of the identified model is verified through
a validation data set shown in Fig. 5. The validation result
is presented in Fig. 6 and the fitting accuracy between the

simulated model output and real CSTR output is 86.94%. The
results show that the proposed method can diminish the influ-
ence of noise and outliers imposed on model identification
and provides a satisfactory process model for the CSTR.

V. CONCLUSION
This paper considers the parameter estimation for LPV FIR
model with output data polluted by outliers. The Laplace
noise model is adopted to deal with the outliers and the prob-
ability model to describe the LPV FIR process is established.
In order to avoid solving the complex log likelihood func-
tion optimization problem directly, the considered parameter
estimation problem is formulated in the EM algorithm frame-
work. The iterative equations to estimate the unknown model
parameters and scale parameter are derived and the outliers
in data are dealed with adaptively. But as the identification
data quality tends to be worse, the performance of the pro-
posed algorithm degrades. Hence more robust identification
strategy should be explored in the further studies.
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