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ABSTRACT We give a concise tutorial on knowledge discovery with linear mixed model in movie
recommendation. The versatility of mixed effects model is well explained. Commonly used methods for
parameter estimation, confidence interval estimate and evaluation criteria for model selection are briefly
reviewed. Mixed effects models produce sound inference based on a series of rigorous analysis. In particular,
we analyze millions of movie rating data with LME4 R package and find solid evidences for a general social
behavior: the young tend to be more censorious than senior people when evaluating the same object. Such a
social behavior phenomenon can be used in recommender systems and business data analysis.

INDEX TERMS Knowledge discovery in database (KDD), linear mixed-effects model (LMM), recom-
mender system (RS), R software.

I. INTRODUCTION
With the dramatic evolvement of digital concept and data
analysis, humans are constantly attaching new physical
meanings to the massive data. Main sources of such data can
be the figures in checkup reports, the specific grade in aca-
demic transcripts, or even inconspicuous behaviors derived
from individuals. As a result, people nowadays might be
shocked by their huge amount of personal data, such as their
historical visits to some places, or detailed evaluations about
some commodities on the internet. The volume of such data
is bound to jump up exponentially in the data centric-era [1].
The main focus of our study is how to unearth useful informa-
tion or knowledge from digital data that grows rapidly. Such
an exploring process is called knowledge discovery [2].

Recommender systems (RS), a popular and updated
method for knowledge discovery, is achieving a resounding
success in e-commerce nowadays [3]. Taobao, a Chinese
on-line shopping platform, has the ability to learn from cus-
tomers’ consumption behaviors and shopping records. With
those data its system can apply models and corresponding
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algorithms to predict. The prediction from models provides
recommendation of products for customers. From consumer’s
perspective, when confronting overwhelming items online,
users can readily find and purchase desirable items they like
with the help of recommender system in Taobao [4]. Obvi-
ously, one of the key challenges of a recommender system
should be how to offer accurate recommendations with high
confidence. In order to achieve this goal, the optimization
of algorithms and repeated experiments will be unavoidable
steps.

One application of recommender systems is in entertain-
ments. Watching movie has become a popular entertainment
and an increasingly number of audiences are getting used to
posting their remarks about movies online [5]. In this circum-
stance, the database of movie ratings is created and its volume
is expanding rapidly. Relying on the recommendation system,
business corporations will gain lots of commercial benefits
from their efforts on creating sophisticated algorithms and
models. Netflix emphasized on the importance of a better
recommender system by setting up the Netflix Price, which
is a contest providing 1 million dollars for the team that
can make the best improvement in recommender system [5].
To put it simply, the developers should consider what kind
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of information the databases can indicate and how to obtain
these information by using a simpler knowledge discovery
method. Moon, S. (2010) analyzed the movie database and
revealed the relationship between movie genres and movie
ratings. He concluded that sequel movies can achieve lower
rating than the original ones based on the decline of view-
ers’ interests in sequels [5], [6]. The database delivers the
information that original and innovative movies can be more
attractive so that they inspire movie firms to produce more
original works. However, such a conclusion is too general to
give detailed and accurate recommendations since it does not
consider the fact that individuals possess diverse traits and
tastes.

Traditional recommender systems for movies base on
users’ watching history. For example, if The Avengers is in
one’s watching history, then some similar movies might be
recommended to this user. The similarity can be explored
in various perspectives: when it comes to names, it is pos-
sible to recommend The Avengers 2 and relate to sequential
movies; from producers’ standpoint, they are more likely
to offer movies manufactured by Marvel. We can even find
something from genre angle: some science fiction movies,
such as Interstellar, are likely to be recommended. Such a
recommendation is based on profile inference. And currently
there are various methods for profile inference, ranging from
collaborative filtering [7], [8], knowledge graph embedding
to heterogenous information network [9].

However, it is difficult to recommend movies to new users
with no watching history. Such difficulty is referred to as
the cold start problem. The introduction of linear mixed
model (LMM) can help us with predicting the preference of
these new users if we have some information other than the
watching history [10]. Thinking about the favorite movies
of people of different ages, we may have the intuition that
people of different ages are likely to show distinct tastes or
preferences. For example, the adventure or science fiction
movies may be teenagers’ favorites whereas the senior pos-
sibly prefer comedy films. Such group profiles/preferences
once available can be used to solve the cold start problem.
Such group preferences are usually hypothesized and then
tested by rigorous statistical inference procedures. These
tested and verified hypotheses can be used for various busi-
ness development. After mining millions of movie rating
data, we can provide statistically significant evidence that the
youth on average are pickier and more censorious than the
senior when rating the same movie [11].

It should be noted that the linear mixed model has long
been used for knowledge/science discovery in breeding [12],
and now widely used in ecology [13], genetics [14], [15],
and genome-wide association study [16], [17]. However,
the application of LMM in recommendation systems was
examined just recently by sparse publications, for exam-
ple [10], [11], [18]. The underlying mathematics foundation
and theoretical details were inadequate or even omitted in
all such recommendation literatures. In addition, so far the
corresponding experiments are somewhat incomplete since

some essential constituents, such as computational costs and
interval estimation, are missing. In light of this, our main con-
tribution in this paper is to provide relevant theoretical details
based on our understanding of linear mixedmodels [20], [21],
[23], [25], as well as to show the comprehensive experimental
process. Some newly introduced techniques, such as Wald
confidence interval, will be applied to show the credibility of
our conclusion. In this way, we will show the power of LMM
and related packages in handling cold start problem.

In the remaining part of this paper, we shall first introduce
the basic idea of linear mixed models, and then discuss how
to estimate the parameters in the model, how to do interval
estimate, how to select a proper model, and finally we shall
apply this model to analyze movie rating data.

II. LINEAR MIXED-EFFECTS MODEL (LMM)
The traditional linear model is written as

Y = Xβ + ε, (1)

where Y is the n×1 vector of responses, β is the p×1 vector
of fixed effects, X is the n × p matrix of fixed effects, ε is
the n× 1 vector of random errors. There are three important
assumptions on traditional linear models:

1) Normality, which means responses in vector Y follow
normal distribution from population.

2) Independence, which means responses are independent
so that all their correlation coefficients are zero.

3) Homogeneity of variance, which means every response
has the same variance.

However, when we analyze the actual data, it is very common
to find limitations of traditional linear models because the
data sets mostly violate these assumptions.

The linear mixed-effects model can be used to overcome
these limitations by introducing additional random effects.
Besides, it suffices to take account of the correlation of obser-
vations contained in a data set. Therefore, it is reasonable to
model the relationship between users’ traits and ratings of
movies.

A. THE STRUCTURE OF LMM
Linear mixed-effects model (LMM) is a more useful and
realistic model to analyze real data sets. It is also called
Hierarchical Linear model and as its name implies, this model
divides data sets into several levels according to certain
grouping factors [26]. Formultilevel data, we are able to show
the expression of the classical linear mixed-effects at a given
factor as follow:

yi = Xiβ + Zibi + εi, (2)

where yi is a ni × 1 vector of responses, Xi is a ni × p design
matrix of fixed effects, β is a p × 1 vector of fixed effects,
bi is a q× 1 vector of random effects in factor i, Zi is another
ni×q design matrix of covariates which shows the correlation
between responses yi and random effects bi, εi is the vector
of residual errors for factor i. What should be emphasized is
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that Zi contains known values of q covariates corresponding
to q random effects chosen from its distribution [26]:

Zi = (z(1)i , z
(2)
i , · · ·, z

(q)
i ). (3)

Moreover, bi is unobservable. It implies that random effects
lack patterns, which causes difficulties for researchers to
figure out its real value.

In a LMM, observations are considered not necessar-
ily independent and have heteroscedasticity. The correla-
tion between each pair of observations in the same level
is reflected in the distribution of bi and εi. Since they are
in the same level, they are able to follow bivariate normal
distribution:

bi ∼ N (0,G), εi ∼ N (0,Ri), (4)

where bi is independent of εi. Moreover, G and Ri can be
specified as:

G = σ 2G, Ri = σ 2Ri, (5)

where G and Ri are variance functions which represent
weights of each observation’s variance decided by parameter
θG and θRi respectively. Therefore, when random effect bi is
known, then the conditional distribution of yi can be formu-
lated as:

E[yi|bi] = µi = Xiβ + Zibi, (6)

Var[yi|bi] = σ 2Ri. (7)

When bi is not given, the unconditional distribution of yi can
be defined as:

E[yi] = Xiβ,

Var[yi] = σ 2[ZiGZ ′i + Ri].

Combing data sets from all factors, we can get the classical
formula of LMM for all data:

Y = Xβ + Zb+ ε, (8)

where Y = (y′1, y
′

2, · · ·, y
′
N )
′ is the n× 1 vector of responses,

where n1 + n2 + · · · + nN = n, β is the p × 1 vector of
fixed effects, X is the n × p design matrix for fixed effects,
Z is the n × (q1 + q2 + ... + qN ) matrix of random effects,
b is the (q1 + q2 + ... + qN ) × 1 vector of random effects,
where b = (b′1, b

′

2, · · ·b
′
N ), ε is the n×1 vector of errors, ε =

(ε′1, ε
′

2, ···, ε
′
N )
′. Therefore, the unconditional distribution and

conditional distribution can be expressed respectively as

Y ∼ N (Xβ, σ 2(ZGZ ′ + R), (9)

and

Y |b ∼ N (Xβ + Zb, σ 2R). (10)

This model can take level influence as random effects so
that Y can be expressed in a multivariate normal distribution
form. On the other hand, according to Y ’s variance presented
in variance-covariance form, we can know that observations
in Y are not independent and error terms are also divided into
different levels, better considering real data’s features.

Linear mixed-effects models have been widely used in
software, such as SAS, SPSS,Matlab as well as R. This article
will focus on linear mixed-effects models using R and the
lme4 package [34] to discover knowledge.

III. PARAMETER ESTIMATION
In order to understand how linear mixed-effects model is
obtained, we need to figure out the parameters’ estima-
tion. Two common ways to estimate parameters in lin-
ear mixed-effects model are maximum likelihood (ML)
estimation and restricted maximum likelihood (REML)
estimation [26]. The conditional distribution of yi given bi is
not appropriate for constructing the likelihood function since
we don’t know the real value of random effects bi. Therefore,
marginal distribution of yi is applied to build up ML and
REML function.

1) MAXIMUM LIKELIHOOD ESTIMATION
Summarizing the parameters contained in linearmixed-effects
model above, we get three types of parameters: the fixed
effects β = (β1, β2, · · ·, βp)T ; the random effects
b = (b1, b2m · · · , bp)T ; and the variance parameters σ 2,
θ = (θG, θR). Their estimators can be obtained by simulta-
neously maximizing the log-likelihood function with respect
to these parameters. However, it is a numerically complex
work which needs to find an optimum in a multidimensional
parameters space. Fortunately it can be simplified by profile
likelihood technique.

With parameters β, σ 2, θ , we have likelihood expression
given that:

LML(β, σ 2, θ)

=

n∏
i=1

1
√
2πσ
√
det(Vi)

exp
{
−
1
2
(yi − Xiβ)2

σ 2det(Vi)

}

= (2π )−n/2(σ 2)−n/2
n∏
i=1

exp
{
−
1
2
(yi − Xiβ)2

σ 2det(Vi)

}
(11)

where Vi = ZiG(θG)Z ′i + R(θR). Ignoring the constant part
and taking log operation, we get the log-likelihood function
of the form:

lML(β, σ 2, θ) = −
n
2
log σ 2

−
1
2

n∑
i=1

log[det(Vi)]

−
1

2σ 2

n∑
i=1

(yi − Xiβ)′V
−1
i (yi − Xiβ). (12)

Assume that the variance parameters are known, the fixed
effects and random effects can be determined by solving the
following mixed model equations [22]:(

XTR−1X XTR−1Z
ZTR−1Z ZTR−1Z + G−1

)(
β

b

)
=

(
XTR−1y
ZTR−1y

)
.

In particular,

β̂(θ, σ 2) = (
n∑
i=1

X ′iV
−1
i Xi)−1

n∑
i=1

X ′iV
−1
i yi. (13)
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By plugging (13) into (12), we gain the log-profile likelihood
function:

l∗ML(σ
2, θ) = lML(β̂(θ ), σ 2, θ) = −

n
2
log(σ 2)

−
1
2

n∑
i=1

log[det(Vi)]

−
1

2σ 2

n∑
i=1

r ′iV
−1
i ri. (14)

where ri = ri(θ ) = yi − Xi ˆβ(θ ).
In this way, the function does not depend on β, which

means the parameter space has lower dimension than previ-
ous one. Then use the same method, maximizing l∗ML(σ

2, θ)
with respect to σ 2 for every known value of θ leads to the
estimation of σ 2:

σ̂ 2
ML(θ ) =

n∑
i=1

r ′iV
−1
i ri/n. (15)

By plugging (13) into (14), we get a log-profile likelihood
function for θ :

l∗ML(θ ) = l∗ML(σ̂ 2
ML , θ) = −

n
2
log(σ̂ 2

ML)

−
1
2

n∑
i=1

log[det(Vi)]−
n
2
. (16)

Therefore, there are fewer parameters in the parameter
space again. Then maximization of l∗ML(θ ) can yield an esti-
mator θ̂ML of θ . Plugging θ̂ML into (12) and (14) produces
estimator β̂ML of β and σ̂ 2

ML of σ 2 that:

β̂ML = β̂(θ̂ML) = (
n∑
i=1

X ′i V̂i
−1
Xi)−1

n∑
i=1

X ′i V̂i
−1
yi, (17)

σ̂ 2
ML = σ̂ 2

ML(θ̂ML) =
n∑
i=1

r ′i V̂i
−1
ri/n. (18)

However, there is a significant limitation on maximum
likelihood estimation. ML estimators σ̂ 2

ML and θ̂ML are both
biased because they don’t adjust for the uncertainty in esti-
mation of β. In other words, the values of σ̂ 2

ML and θ̂ML may
vary with the change of β so that we cannot make accurate
estimations of these two parameters. However, σ 2 and β
can be better estimated by restricted maximum likelihood
estimation, which will be discussed in next section.

2) RESTRICTED MAXIMUM ESTIMATION
In order to obtain unbiased estimates of σ 2 and θ , we should
use an estimation that is orthogonal to the estimation of β,
which means using a way to make estimates of σ 2 and θ
that are independent of estimation of β [6]. To achieve this
goal, we can consider the likelihood function of a set of n−p
independent contrasts of y, where p is the dimension of β.
After obtaining β̂(θ ), the restricted log likelihood function is

given by:

l∗REML(σ
2, θ) = −

n− p
2

log(σ 2)−
1
2

n∑
i=1

log[det(Vi)]

−
1

2σ 2

n∑
i=1

r ′iV
−1
i ri −

1
2

× log[det(
n∑
i=1

X ′iV
−1
i Xi)]. (19)

From this function, maximizing of l∗REML(σ
2, θ) with respect

to σ 2 leads to an estimator of σ 2 that:

σ̂ 2
REML =

n∑
i=1

r ′iV
−1
i ri/(n− p). (20)

Plugging (18) into (19), we get a function with respect to θ
only:

l∗REML(θ ) = −
n− p
2

[log(
n∑
i=1

r ′iV
−1
i ri/(n− p))+ 1]

−
1
2

n∑
i=1

log[det(Vi)]−
1
2

× log[det(
n∑
i=1

X ′iV
−1
i Xi)]. (21)

Estimator of θ can be obtained by maximization from (21),
which can be applied to get estimators of β and σ 2,
respectively.

IV. CONFIDENCE INTERVAL FOR LMM
Confidence Interval (CI) gives a range for a random variable
based on a certain confidence level, that is, the credibility
of the estimator. Therefore, people can consider the values
in this confidence interval to have the same or similar influ-
ence. Constructing confidence interval has significant mean-
ings either in theory or empirical problem. When estimating
parameters or predicting responses, we can get certain values
of parameters or responses. Admittedly, it can not be denied
that when considering the preciseness of science and mathe-
matics, these values undoubtedly lack certainty or accuracy.
However, if we can locate estimation and prediction in some
certain ranges with confidence level attached, the conclusion
tend to be more convincing.

There are three methods to compute the confidence inter-
vals: the profile likelihood confidence interval, Wald con-
fidence interval and bootstrap confidence interval. Each
method possesses disparate ideas and assumptions. Next we
will discuss the underlying concepts of these CIs and their
applications in LMMs.

3) PROFILE LIKELIHOOD CONFIDENCE INTERVAL
One of the main conditions of profile likelihood confidence
interval (PLCI) is that the estimator does not necessarily have
to follow normal distribution [27]. The concept of PLCI is
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FIGURE 1. Profile likelihood function for β0.

very similar to the profile likelihood technique previously
mentioned. In a model, we assume β is our interest parameter
and b is the vector of all nuisance parameters. Thus, L(β, b)
is the maximum likelihood function based on two random
variables β and b, also the profile likelihood function of β
is defined as

L1(β) = max
b
L(β, b), (22)

which means the maximum likelihood function of β with
MLE value of b.

With this concept, we can consider the confidence interval
next. In the hypothesis test, the null hypothesis is constructed
like this: H0 : β = β0. In this circumstance, building a
confidence interval is equivalent to finding all β0, which can
make theH0 not be rejected under the 100(1−α)% confidence
level. Then we use the likelihood ratio test [27]:

2[logL(β̂, b̂)− logL1(β0)] < χ2
1−α(1), (23)

where L(β̂) is the maximum likelihood with MLE of all
parameters and L1(β0) handles one fewer parameters, that’s
why the left hand side of this formula follows Chi-square
distribution. Therefore, all β0 satisfying above formula can
form a confidence interval for β. Since logL(β̂) and χ2

1−α(1)
are constant, we can rearrange the expression:

logL1(β0) > logL(β̂, b̂)− χ2
1−α(1)/2. (24)

It is likely to get a graph like this below. Therefore, the part
of the curve above the red line forms the confidence interval
we want.

4) WALD CONFIDENCE INTERVAL
Wald confidence Interval takes Wald Test into account:

β̂ − β0

se(β̂)
∼ N (0, 1), (25)

with the assumption that the difference between the two will
be approximately normally distributed. According to this test,
when considering the confidence Interval in LMM, we only
need to know the estimates and variance of the parameters
included. For the fixed effects β, we get the estimate above
and its variance-covariance that:

β̂ML = (
n∑
i=1

X ′V̂−1X )−1
n∑
i=1

X ′V̂−1y, (26)

varcov(β̂) = σ̂ 2(
n∑
i=1

X ′V̂−1X )−1. (27)

Thus, we extract the diagonal of variance-covariance matrix
as variance of β̂, the wald confidence interval for β̂ can be
expressed as follow:

(
n∑
i=1

X ′V̂−1X )−1
n∑
i=1

X ′V̂−1y

±zα/2

√√√√diag(σ̂ 2(
n∑
i=1

X ′V̂−1X )−1). (28)

5) BOOTSTRAP CONFIDENCE INTERVAL
Bootstrap confidence interval comes from the idea that
‘‘pulling itself up by its own bootstrap’’ [28]. In other words,
it means doing large number of bootstraps from the original
data. Assume we have original data {y1, y2, y3, . . . , yn}, and
we build LMM for this data which contains parameter 2 =
(β, θ, σ 2). After maximum likelihood estimation or restricted
maximum likelihood estimation, we are able to obtain esti-
mates 2̂ = (β̂, θ̂ , σ̂ 2). In order to find the confidence interval,
we should calculate the variation of 2̂ around 2, that is, δ =
2̂−2. Hence, confidence interval based on α% confidence
level can be shown as:

2 ∈ [2̂− δα/2, 2̂+ δ1−α/2]. (29)

To find δ, we process bootstrap operation. Firstly, we take
resamples from the original data {y1, y2, y3, . . . , yn} and
receive n new observations notated as

{
y(1)1 , y

(1)
2 , . . . , y

(1)
n

}
which has the same distribution as the original data. After the
LMM estimation for the new data, we obtain new parameter
estimates 2̂(1) and the first variation is calculated as δ(1) =
2̂(1)
− 2̂. Then this kind of resampling operation should run

repeatedly for m times, normally more than 1000 times and a
matrix of resample can be formed:

y(1)1 y(2)1 ... ... y(m)1
y(1)2 y(2)2 ... ... y(m)2
... ... ... ... ...

... ... ... ... ...

y(1)n y(2)n ... ... y(m)n

 . (30)
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Each column represents one resampling and produces
one δ, thereby a sequence of δ is generated finally{
δ(1), δ(2), δ(3), . . . , δ(m)

}
and we sort them from the smallest

to the biggest. Thus, δα/2 is at the α/2 percentile and δ1−α/2 is
at the 1− α/2 percentile. In this way, the confidence interval
of parameters can be calculated. Bootstrap introduces us a
simple and straightforward angle to observe the variation of
estimates. With the law of large number, the resample distri-
bution can be a good approximation to the true distribution.

6) COMPARISON
Since these three methods have different concepts, we should
consider carefully about which method should be applied in
different circumstances.

Profile confidence interval has very wide applications
because of its moderate restriction, so it is still available
for the estimators not normally distributed [29]. Due to this
reason, the default demand confint() in R software adopts
this profile likelihood method and it is useful when analyzing
LMMs. Although Wald confidence interval is very common,
it is difficult to apply such a method in LMM because it is
not feasible to account for the parameters contained in ran-
dom effects, that is, σ 2 and θ . The Wald confidence interval
cannot be calculated for these parameters in LMM. As for
bootstrap confidence interval, the CI from this method is
relatively valid. This kind of sampling cannot improve point
estimates. It is obvious that every bootstrap is chosen from
the same data pool and follows the same steps, there is no
new information reflected even after all bootstraps [28]. This
is also the reason why confidence interval calculated from
bootstrap is more wider than profile likelihood method and
Wald test, so bootstrap confidence interval is hardly used due
to its less preciseness.

V. CRITERIA FOR MODEL SELECTION
As for a data set, there might be several models applied to
analyze it. Then how to measure which model is better has
become a main problem. There are some important and use-
ful criteria to evaluate those models, such as log-likelihood,
Akaike information criterion (AIC), Bayesian information
criterion (BIC) and p-value. Obviously, different models pos-
sess different focus and purposes which result in different
values.

7) LOG-LIKELIHOOD
It is the simplest criterion which has the expression shown
below.

l(2) = logL(2) = log (f (Y |2)), (31)

where Y = (y1, y2, ···, yn)′ is the vector of observations;2 =
(β, σ 2, θ) represents the vector of all parameters contained
in linear mixed-effects model where β = (β1, β2, · · ·, βk )
is the vector of fixed effects and θ = (θG, θR) is the vec-
tor of random effects; f (Y |2) is the likelihood function of
observations.

FIGURE 2. Relationship between log-likelihood value and parameter.

According to this expression, we can see clearly the design
of this criterion:2 is the key component of our model so that
it can represent our model to some extent, Y is the data set
observed. Therefore, f can quantify how much the data fits
our candidate models and adding log is to avoid zero value
in the likelihood [30]. The higher value of the log-likelihood
achieves, the better the data fits our models.

However, log-likelihood criterion has a huge problem that
it doesn’t consider the number of parameters. Ideally we
prefer a model with high log-likelihood and small number of
parameters. Such models can not only guarantee high level
of fitting but also require less calculations and operations.
Normally, larger number of parameters would increase the
value of log-likelihood and the effects are significant when
the number of parameters is few. However, when the number
of parameters is large enough, each parameter added in model
would has little influence to log-likelihood value, which is
shown FIGURE 2.

That is, it makes little sense to have too many parameters.
On the contrary, we prefer a model with fewer parameters
when its log-likelihood value is just a little bit less than the
value of the model with more parameters. In this circum-
stance, Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) both consider the number of
parameters and overcome log-likelihood’s limitation.

8) AKAIKE INFORMATION CRITERION (AIC)
Akaike information criterion is a standard to measure the
goodness of statistical model fitting. It was found and devel-
oped by Japanese statistician Akaike. This criterion suffices
to quantify the complexity of the estimated model and the
goodness of the fitting data of the model. When we use
maximum likelihood estimation (MLE) in linear-mixed effect
model, log-likelihood l(2̂) can be achieved where 2̂ =

(β̂, σ̂ 2, θ̂ ) contributes to maximum log-likelihood.
AIC can be expressed as l(2̂) − p. However, normally,

in R software package, the AIC formula is defined as

AIC = 2p− 2l(2̂), (32)
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where p is the number of parameters, l(2̂) is the maximum
log-likelihood. Both expressions have the same structure with
slight difference including sign and multiplies. To be clear,
in this essay, we use formula (32). The lower AIC value a
model has, the better the model is.

9) BAYESIAN INFORMATION CRITERION (BIC)
In statistics, there are two ways to optimize models. On the
one hand, adding more parameters to models can increase
their complexity. On the other hand, collecting more obser-
vations or data suffices to improve models’ ability to
describe data sets. AIC considers the parameter problems
whereas the number of observations is not included. However,
BIC considers both of them and takes them as measurement
for models.

BIC provides an algorithm to approximate the logmarginal
likelihood of candidate models and chooses the one having
smaller value as the better model. The formula of BIC is:

BIC = p · log n− 2l(2̂), (33)

where p is the number of parameters, n is the number of
observations.

10) F-TEST
Sometimes AIC and BIC will give different choices between
two models. So under this circumstance, we need to refer to
other criteria. F-test is able to calculate p-value which can
be used to judge whether these two models are significantly
different andmake decisions aboutmodel selection. The logic
behind F-test is the comparison of models’ deviance which is
defined that:

D = 2[l(2̂max; y)− l(2̂; y)], (34)

where 2̂max is the MLE for the parameter vector in the
saturated model which has N parameters, 2̂ is the MLE for
the parameter vector in the candidate model. Assume there
are two models m0 and m1 with degree of freedoms, p and q
respectively where p < q and the set of parameters of m1
contains m0’s parameters. We can calculate their deviance
denoted as D0 and D1 which are applied for F test:

F =
(D0 − D1)/(p− q)

D1/(N − q)
. (35)

After we obtain the F value, p-value also can be achieved
by referring to F table. Next the process of making decisions
depends on our own confidence degree to this test. Normally
95 percent confidence level and 99 percent confidence level
are preferred choices, so based on 95 percent confidence
level, if the p-value is less than 5 percent, there is signifi-
cant difference between m0 and m1. Because of the ‘useful’
parameters in m1, we tend to choose m1 with more parame-
ters. On the contrary, when the p-value is more than 5 percent,
there is no significant difference between these twomodels so
that the model with fewer parameters m0 is our choice.

FIGURE 3. Data structure of user and movie.

FIGURE 4. Data structure of user and movie.

FIGURE 5. Data structure.

VI. APPLICATION:KNOWLEDGE DISCOVERY FROM
HIGH-THROUGHPUT MOVIE RATING DATA
Understanding the knowledge of model selection criteria
and parameter estimation, firstly we need a database about
detailed information of users, including age, gender, occupa-
tion, nation, hobby, etc. Moreover, some movie information,
such as movie names, movie genres and movie ratings, is also
the necessity. For this purpose, The ml-1m data set is used in
this experiment. It provides us with 6040 users, 3952 movies
and movie rating made on a 5-star scale. Among these rat-
ings, each user has at least 20 ratings. Furthermore, users’
features including age, gender, occupation and zip-code are
all in category types. Movie information including Movie ID,
title and genres is listed and movie genre can be found in
Appendix. Therefore, this is a real big data and the pattern
excavated from it will be highly convincing. Although some
false information exists in the data set, the huge volume
allows us to ignore its influence on our data analysis. The
data structure is shown in FIGURE 3 and FIGURE 4.

Our task is to discover the age influence on movie rating,
thereby we need to rearrange the data provided above. Since
UserID from User data set is linked with the ratings in movie
data set, we can ignore zip-code which makes little sense in
this experiment and construct a data chain aiming for one
movie or types of movies (see FIGURE 5).

According to this data structure, we can construct linear
mixed-effects models. Since age is our interest variable, it is
treated as fixed effect. In addition, gender and occupation
are our candidate random effects. Three different models
in Table 1 can be designed.
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TABLE 1. Three models.

FIGURE 6. Results for model selection criterions.

As for how to choose the optimal candidate from these
models, we should focus on the real data analysis as well as
our model selection criteria.

Given the data as well as candidatemodels above, our study
on age discovery starts from one single movie to different
types of movies. During this process, we are willing to dis-
cover the implicit general pattern.

A. ONE SINGLE MOVIE: LIFE IS BEAUTIFUL
Firstly, we are willing to see the relationship between users’
ages and ratings for one specific movie. Here we choose the
film Life Is Beautiful labeled as comedy and romantic movie
which won the best foreign language film at the 71st Oscar
Awards. Since it is a known work, it received lots of rating
records from users so that there are 1152 ratings available.

In our model, user’s age is regarded as our interest, i.e. the
fixed effect and we need to consider how to choose random
effects based on the models provided above. When we try
to build candidate models for comparison, the computational
time for constructing Model 1, Model 2 and Model 3 are
0.036s, 0.025s and 0.026s respectively, which are fairly short.
After using Anova() test, the values of model selection crite-
ria are calculated in FIGURE 6.

According to these results, Model 3 has the lowest AIC and
BIC value soModel 3 is the best model based onAIC and BIC
criteria, but Model 1 obtains the largest log-likelihood value.
Literally, Model 1 is the best one referring to log-likelihood
and it has more parameters. However, after the comparison on
p-value, we can make our decision. Under 95% confidence
interval, the p-value of Model 1 and Model 2 is larger than
0.05 which means there is little difference between Model
1 and Model 2. Since Model 2 has the fewer parameters, it is
better thanModel 1. Due to the same reason,Model 3 is better
thanModel 1. In the meantime, observing fromAIC, BIC and
log-likelihood criteria, we can see the superiority of Model
3 compared with Model 2. To conclude, Model 3 is the best
model for the data Life is beautiful.
lmer command is capable of estimating the parameters

contained in models and we can have the result in FIGURE 7.
Results in FIGURE 7 show the standard deviation of ran-

dom effect, gender and residual as well as what we desire:
fixed effects of all age levels. To be clear, the radar chart

FIGURE 7. Results for parameter estimation.

FIGURE 8. Age effect distribution for Life Is Beautiful.

FIGURE 9. Age effects expression.

FIGURE 10. Anova analysis of β2 and β3.

in FIGURE 8 is able to show the fixed effects and their
differences intuitively.

In this graph, visually we can see the rating from users
in ‘18-24’ group is much higher than those from other age
groups. However, this deduction is unreasonable since we
are not sure about whether the rating of users from 18-24 is
significantly higher than others. To judge the significance of
differences, we need to operate hypothesis test. The effects of
every age group, that is, the parameters of age levels can be
represented in FIGURE 9.

Therefore, our task is to prove whether β2 is significantly
the largest effect. From the result in FIGURE 6, β3 is the
closest one to β2 which leads to our hypothesis test that:
• H0 : β2 = β3
• H1 : β2 6= β3

H1 represents the original model and we can replace all data
belonging to 25-34 age level to 18-24 age level (i.e. combin-
ing β2 and β3 together), which brings new model. We com-
pare these two models and obtain result in FIGURE 10.
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FIGURE 11. Three types of CI for LIB.

The low p-value indicates that it is significant to reject H0
under 95% confidence interval and there is a big difference
between β2 and β3, thereby the conclusion that 18-24 users
give higher ratings for Life is Beautiful than any other age
groups can be drawn.

Besides observing the estimates of age effects, we are
able to use package lm4 to calculate the confidence interval
of age effects. Based on three types of confidence interval
(profile CI, Wald CI, bootstrap CI), their ranges can be
expressed respectively in one graph as shown in FIGURE 11
and FIGURE 12.

As shown in FIGURE 12, the differences among these
three confidence intervals are negligible so that the ranges
shown in the picture almost overlap with each other. As a
result, it is reasonable for us to treat all confidence intervals
as the same. Therefore, taking the Wald confidence interval,
we are capable of building a radar chart for CI of age effects
where the area between red line and green line is the CI place
showed above.

Back to FIGURE 12, it is not difficult to find that the
CI ranges of 18-24, 25-34, 35-44 are narrower than those for
45-49, 50-55, 56+ and under 18. According to formula of the
Wald confidence interval, it can be deduced that the standard
deviations of age effects of 18-24, 25-34, 35-44 are smaller
than those of 45-49, 50-55, 56+, under 18. The narrower a
confidence interval is, the more new information is reflected.
Therefore, the age effects of 18-44 for Life Is Beautiful are
more meaningful and it can better display the range where
the true age effects lie.

FIGURE 12. Confidence Intervals of Life Is Beautiful : profile CI (black),
Wald CI (red) and the bootstrap CI (blue).

FIGURE 13. Model selection.

Nonetheless, the analysis above only comes from one
movie, which may not have a high reliability to generate a
tenable conclusion for future application and reference. What
we want to explore is the general pattern of different audi-
ences’ rating behaviors. Therefore, although we now have
some interesting discoveries of Life Is Beautiful, they still
have poor influence on our main target. On the other hand,
if the general pattern of one specific movie genre can be
excavated, then this knowledge would bemore plausibly used
for recommending movies for people.

B. ONE GENRE: COMEDY
Comedy is a very big genre in ml-1m because it has the
largest number of rating data (107009 ratings) among all
movie genres. Therefore, the analysis of this big data set will
be more meaningful than one certain movie. The target is still
to find the relationship between age and rating whereas the
research range expands to comedy, one certain genre.

The first thing we need to do is constructing candidate
models. Since this time the volume of data set is much
larger than the previous case, the computational time become
longer: 25s, 9.6s and 8.2s for building Model 1, Model2 and
Model 3 respectively. Thenwe still need to choose the optimal
model according to the results shown in FIGURE 13:

The comparison is very clear that Model 1 has the smallest
AIC and BIC values and the largest log-likelihood value.
Moreover, the p-values ofModel 1 withModel 2 andModel 1
with Model 3 are very small which gives the information that
although Model 1 contains one more parameter than Model 2
and Model 3, the deviance of it is significantly lower than
the other two. Therefore, we should choose Model 1 as our
optimal model.
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FIGURE 14. Age effects for comedy.

According to the result from lmer, we can obtain the radar
chart of age effects for comedy movies showed FIGURE 14.

Since age effect mentioned here is just the mean value
of corresponding parameter, we cannot be fully confident
to make an assertion that the age effect to one’s rating for
comedy is the number displayed in the graph above. One con-
vincing way is to provide a confidence interval for each age
effect, here we choose 99% confidence interval. Note that the
comedy data is much larger than the data of Life Is Beautiful,
that is why in this experiment we want a higher confidence
level. Surprisingly, these confidence intervals here perform
great differences in FIGURE 15 and we should make a choice
among them. Firstly, there is a clear observation that profile
confidence interval has much wider ranges for every age
effects compared with the other two so that it contains less
new information for the location of age effects’ estimates,
so we will not use this type of confidence interval here. More-
over, although theWald confidence interval and bootstrap one
look very similar, one problem on bootstrap CI is remarkable
on the age level 18-24. At this age level, bootstrap CI is fairly
narrow whereas it does not contain the estimate which is a
serious issue indeed. Considering the previous definition of
bootstrap CI, every bootstrap is random and its merit is just
based on the large number of repetitions to simulate whereas
no improvement is produced. Hence, it is reasonable for the
existence of the estimate exclusion. Then let’s have a look
at the wald CI, for every age level, the range performs high
proximity and it demonstrates the significance of every age
effect CI is similar. Thereby, we can trust the CIs of different
age levels evenly. In this circumstance, the Wald confidence
interval should be taken to account for the range of age effects
and its radar chart is illustrated in FIGURE 16.

From age effect of comedy graph, on the first cursory
glimpse, age above 45 seems to have higher effects and
people in 18-24 age group are likely to have relatively lower
effect, whereas the whole effects look like a round pie.

FIGURE 15. Confidence intervals of comedy: profile CI (black), Wald
CI (red) and the bootstrap CI (blue).

FIGURE 16. Confidence intervals of comedy.

To investigate the difference between levels of effects, we are
trying to process hypothesis test for all differences. Since it
would be a tedious task, we use a simple method to operate it.

In the first step, we choose two effects having the largest
difference i.e. in our two candidate models, they will share the
same parameters but onemodel contains one fewer parameter.
Then, we use Anova() to compare previous model and the
changedmodel with 99% confidence level. If the result shows
they are not significant, then all differences between age
effects are of no significance. On the contrary, when the
result reflects significance, we need to contrast the value of
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FIGURE 17. Comedy: Model 1 vs Model 2.

FIGURE 18. Comedy: Model 1 vs Model 3.

FIGURE 19. Comedy: Model 1 vs Model 4.

the second high difference and do hypothesis test again until
the result shows the difference of models are not significant.
In this way, we are able to sort the age effects according to
significance.

In this experiment, we know the effects β1−7 are 3.607,
3.490, 3.573, 3.679, 3.715, 3.757, 3.756 respectively. There-
fore, we choose β6, β2 and do the first hypothesis test:
• H0 : β6 = β2
• H1 : β6 6= β2

where H0 shows comedyModel2, H1 is the comedy-
Model1 defined previously. we can get the Anova() result
in FIGURE 17

The p-value is quite small and less than 0.01, so we should
do the second hypothesis test with β7 and β2:
• H0 : β7 = β2
• H1 : β7 6= β2

where H1 indicates comedyModel3 and we obtain the
Anova() result in FIGURE 18. The p-value still shows the
non-significance. Then, according to this rule and after sev-
eral runs of tests, we come to the difference between β4
and β5:
• H0 : β4 = β5
• H1 : β4 6= β5

where H0 indicates comedyModel4 so the result is
in FIGURE 19.

The p-value is larger than 0.01, so the difference is sig-
nificant and loop hypothesis tests are finished. According to
the tests, there are some surprising discoveries which can be
mentioned:
• The differences of effects of rating from people with
age more than 35 are insignificant so that they can be
regard as a unit with high rating on comedy which we
can notate as ‘‘The high rating group’’. In the meantime,
the differences of effects of rating from people with age
less than 35 are also insignificant which we notate as
‘‘The low rating group’’.

• The difference between every member from ‘‘The high
rating group’’ and every member from ‘‘The low rating
group’’ is significant.

FIGURE 20. Age effects for sci-fi movie.

In this circumstance, we can define young people as the ones
with age 1-34 and senior people as the ones with age more
than 35. Therefore, the hidden pattern from comedy analysis
is that the young people are more picky and particular
than the senior for comedy. Thus, it provides a strategy
for some video websites so that they can recommend more
comedy movies to the senior and show this type of programs
less frequently to young people. In this way video websites
may receive more positive feedback. However, how about
movies of other genres? We have not done researched on the
movies of other types and the whole movies recorded. If they
give the similar patterns in the radar chart, then it can deliver
the information that people from the same age group have
the same attitudes to all movies of different genre. Thus, now
we continue to analyze other types of movies and observe the
related outcomes.

C. OTHERS MOVIE GENRES
Furthermore, we use linear mixed-effects models to analyze
data of other genres where age is regarded as fixed effect,
occupation and gender are considered as random effects.
Here we choose science fiction movie, children movie and
adventure movie to show in radar chart. The age effects for
these models are shown from FIGURE 20 to FIGURE 23.

After hypothesis tests respectively, these three graphs all
give patterns that young people who are defined as ones in
age groups ‘‘Under 18’’, ‘‘18-24’’, ‘‘25-34’’ mark the movies
lower than the old people which are defined as those in age
groups ‘‘45-49’’, ‘‘50-55’’, ‘‘56+’’. It contributes to our idea
that as for ranking movie, young people are pickier than old
ones. This conclusion is also supported by comedy analysis
which is displayed above. Moreover, in order to provide
more evidences, rather than analyzing other types of movies,
we directly investigate age effects distribution in all movies
recorded, i.e 3,000,000 pieces of users’ rating for movies,
from which we get the chart below.
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FIGURE 21. Age effects for sci-fi Children movie.

FIGURE 22. Age effects for adventure movie.

Clearly, by visual observation and hypothesis test, age
effect differences between young people (Under 34) and old
people (Beyond 45) are considerable. Therefore, to summa-
rize, by analyzing the data from ml-1m, we are able to come
to a conclusion that young people are pickier than old people
to mark movies.

VII. DISCUSSION
In this paper, we introduced how to use linear mixed model
for movie recommendation, in order to address cold start
problem where there are few users’ historical ratings avail-
able for data analysis. Compared with traditional algorithms,
this model can explore the general pattern of users’ rating
behaviors, based on their features in different group levels.
After some careful analysis we can dig out some implicit
information or interesting social behaviors from millions of
rating data. Linear mixed models are conceptually simple,

FIGURE 23. Age effects for all movie.

but the underlying computation is mathematically involved.
In this essay, we showed the mathematical background
knowledge of LMM. For readers who are interested in the
details of related techniques, they can refer to [22] and [24].
Thanks to the lme4 R package, we can apply these mixed
models to analyze huge recommendation data. In our future
research, other properties of rating behaviors might be dis-
covered, if we are given more types of users’ traits and fea-
tures.We shall also combine such a model with the traditional
SVD approach [40], and consider how to do recommendation
with multi-source data set [39].

APPENDIX
MOVIE GENRE AND OCCUPATION

Number Movie Genre Occupation
0 other or not specified
1 Action academic/educator
2 Adventure artist
3 Animation clerical/admin
4 Children college/grad student
5 Comedy customer service
6 Crime doctor/health care
7 Documentary executive/managerial
8 Drama farmer
9 Fantasy homemaker
10 Film-Noir K-12 student
11 Horror lawyer
12 Musical programmer
13 Mystery retired
14 Romance sales/marketing
15 Sci-fi scientist
16 Thriller self-employed
17 War technician/engineer
18 Western tradesman/craftsman
19 unemployed
20 writer
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