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ABSTRACT LoRa-based networks exhibit good flexibility in terms of configurable parameters and
adjustable modulation properties. Thanks to this, wireless nodes can be tuned to improve their communica-
tion behavior. In fact, optimal network-level transmission configurations (Copt) can be derived in such a way
that the global network performance is maximized. To derive thisCopt, one must know the radio-propagation
behavior of each node beforehand. Traditionally, this has been pursued by using general, low-precision,
propagation models due to the infeasibility (in terms of time and energy) of deriving each individual node
propagation behavior. In this work we propose a straightforward bounding technique that reduces up to
73% the energy and time required to obtain the radio-propagation behavior of each individual node in the
network, enabling the derivation of network-level optimal transmission configurations. Also, we provide
mechanisms to keep this knowledge updated, swiftly reacting to changes in the environment and leading
to network performance improvements of 15% when compared to traditional alternatives like LoRaWAN
ADR. Furthermore, by means of a testbed we demonstrate that this mechanism can also provide resistance to
Denial-of-service attacks. Finally, we incorporate the power consumption into the proposedCopt formulation
and provide a generalizable power-consumption determination methodology. This way we can limit the set
of eligible transmission configurations to help extending LoRa network lifetimes more than 40%.

INDEX TERMS LoRa, optimization, IoT, networking, LPWAN.

I. INTRODUCTION
LoRa networks are conceived to consist of hundreds, or even
thousands of devices. This large number of IoT nodes would
unavoidably increase the level of interference and congestion
present in the wireless band. In light of this, it is clear why
it is important to intelligently handle spectrum congestion to
avoid a degradation of the network performance [1], [2].

Thanks to the pseudo-orthogonal properties and versatility
of the LoRa modulation [3], collisions (which conform the
main form of destructive interference) can be greatly reduced
by carefully deriving an optimal network-level configura-
tion [4]. That is, each node would be assigned a transmis-
sion configuration in such a way that this pseudo-orthogonal
nature of the LoRa modulation is exploited to reduce packet
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collisions. Such a global configuration (denoted henceforth as
Copt) wouldmaximize the network-level performance by pro-
viding each device with its own transmission configuration.
In LoRa, transmission configurations are defined by three
parameters: Transmission power –TXP–, Spreading Factor –
SF– (the ratio between the symbol rate and chip rate), and
Coding Rate –CR– (the ratio between the length of the packet
and the length of the error-correction code) [5]. Note that we
intentionally leave out the bandwidth –BW–, which is also
configurable, because all LoRa nodes that belong to the same
LoRaWAN network must use the same bandwidth. Further-
more, we consider that LoRa nodes randomly choose one
of the available frequencies, which is a known and standard
technique to further reduce collisions [6].

However, the specific radio propagation environment as
well as the presence of other potentially interfering wire-
less devices –operating in the same frequency bands as
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LoRa– make the final optimal network-level configuration
Copt strongly dependent on the particular deployment loca-
tion. In this sense, it is crucial to have amethod to characterize
the environment and, ultimately, the quality of the wireless
link. The result of this characterizing method would be a
model (denoted asM ) of the environment that would help us
determine how transmitted signals behave under each trans-
mission configuration and how much interference is already
present so as to derive a more accurate Copt.
Furthermore, LoRa nodes are devices whose power con-

sumption should be kept to a minimum as they are typ-
ically off-grid; that is, they are either battery-powered or
relying upon harvesting energy from the medium. Depend-
ing on the specific application LoRa network operators
may choose to restrict the eligible transmission configu-
rations to increase power-efficiency of certain devices (by
only allowing less power-consuming transmission configu-
rations). From a methodological point of view, this can be
accomplished by reducing (or penalizing) the set of eligi-
ble configurations per device when deriving Copt. To pre-
cisely determine which transmission configurations require
the most energy, power consumption of LoRa nodes must
be considered. Specifically, the power consumption derived
from transmitting data packets under each transmission con-
figuration must be calculated. Therefore, a consumption
study is also needed to derive a power consumption model.

Finally, once we have a sound model of the power con-
sumption of the device (used to select a set of eligible trans-
mission configurations), and a model of how the environment
behaves (M ), Copt can be computed. However, environments
and even wireless deployments rarely remain stable over
time, and a way to maintain Copt and M updated is required
as well. For that purpose, we also propose a trigger-based
method whose main objective is to keep up with changes in
the environment and network. By keeping track of the radio
propagation conditions, our method is capable of detecting
when the environment has changed enough so it is worth,
in terms of energy and time, analyzing it again. By way of
a simple test case, this trigger-based algorithm is also shown
to provide resilience against Denial-of-Service (DoS) attacks.

A. CONTRIBUTIONS
Themain contribution of this work is a hierarchical and struc-
tured methodology that is shown to increase performance of
LoRa-based networks by:

1) Modeling the behavior of the radio propagation envi-
ronment in which such a network is deployed.

2) Incorporating this knowledge in classical formulas for
maximizing network performance.

3) Keeping the derived models up-to-date in an inexpen-
sive and robust fashion.

Finally, by means of a testbed we showcase the applica-
tion of the above methodology and prove it to outperform
traditional approaches such as Adaptive Data Rate (the most
popular algorithm for adapting transmission configurations in
LoRa networks) [2].

The remainder of the paper is organized as follows.
Related work is introduced in Section II. Section III presents
a mathematical analysis of the network throughput. Next,
in Section IV a thorough procedure to model power consump-
tion is derived and discussed. The effects of packet losses in
Copt is covered in Section V. In the next section, Section VI,
we describe a methodology to keep Copt updated when
the propagation environment changes. Then, Section VII,
presents a set of experiments and, finally, conclusions are
drawn in Section VIII.

II. RELATED WORK
A. SF ALLOCATION / GLOBAL CONFIGURATION
The problem of SF allocation in LoRa networks has been
addressed from various perspectives. Some authors have
focused on assuming mathematically tractable node distri-
butions: homogeneous, Gaussian, or annular distribution [7],
[8], or distributions based on Poisson processes [9]. This
facilitates the mathematical analysis and lead to closed-form
expressions when some propagation model (i.e. Rayleigh,
Log-normal, etc.) are considered.

Targeting the problem mathematically has many benefits:
closed-form expressions are ideal for optimizing network
performance and with the availability of powerful network
simulators like ns-3 [10] or Omnet [11], complex scenarios
can be analyzed. However, in real life, nodes are not deployed
following mathematical distributions. In fact, the underlying
idea of the IoT is to provide computing and communication
capabilities to those things that are in need of them; not
to those placed on a convenient location. Also, one of the
main disadvantages of such an approach is that it heavily
relies on the Signal-to-Noise ratio (SNR) to derive the Packet
Reception Ratio (PRR). This relation strongly depends on
the particular LoRa radio transceiver in use [3], thus losing
the generalizing capabilities of the mathematical models.
Finally, mathematically modeling the distribution of nodes
assumes that the deployment is immutable, and therefore,
it intrinsically considers that it cannot change.

SF adaptation is addressed in [12], [13] in order to ensure
fairness in terms of data rate; that is to make all nodes
experience the same effective network data rate. Although in
some cases this might be of interest, we believe that, in a
general scenario, the heterogeneous nature of IoT must be
regarded and the specific importance of each node must be
individually considered. In this sense, we have included a
term of importance into our formulation. This incorporates
the idea that not all nodes should be treated equally. For
example, in a Smart City, a node controlling a lamp post may
not be as important as a node controlling a water pump, and
therefore, more network resources should be devoted to the
latter. Furthermore, works in [12] and [13] (and all the papers
commented above) assume that nodes can only have a single
transmission configuration (and thus, they optimize perfor-
mance for such a configuration). However, in practice, nodes
can alternate between many transmission configurations to,
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in a global sense, have a mix of any arbitrary number of con-
figurations. This enriches the performance characterization
and allows for further performance improvement (as will be
seen in the following sections).

B. MODELING NETWORK PACKET RECEPTION RATE
When it comes to estimate the PRR, most works [8],
[13]–[15] oversimplified LoRa networks by assuming that,
as long as the SNR is over a given threshold –which is made
to depend on the SF–, all packets will be received, and hence,
the PRR is 1. When the SNR drops below such a threshold,
no packets are received, and as such, the PRR is zero. This
binary PRR vs SNR relation is far from reality [4], [5] and
leads to incorrect SF allocation.

Other more intricate approaches resorted to empirical anal-
yses [4] to characterize the continuous and smooth relation
between the PRR and the SNR. This represents a natural
step forward in increasing the precision of LoRa simulations.
Yet, the imperfect orthogonality of SFs is not considered
in [4], hindering the applicability of it in high-precision mod-
eling. Also, as regards increasing simulation accuracy, one
should acknowledge that precise PRR vs SNR relations will,
again, ultimately depend on the specific LoRa transceivers
employed and the particular environment.

For the above reasons, in the next section we introduce the
proposed approach: instead of assuming simplistic conditions
(i.e. uniform node distribution or a predictable PRR vs SNR
relation), we opt for characterizing the precise environment.

III. NETWORK THROUGHPUT
Modeling network performance is a popular task in research
works on LoRa, mainly due to its potential to lay the founda-
tions for a later performance optimization. Traditionally, this
implies determining the Signal-to-Noise Ratio (SNR) and/or
the Packet Reception Ratio (PRR) of each LoRa link. To this
end, and as mentioned in previous paragraphs, most works
resorted to: (i) assuming rather simple node distributions
when modeling a LoRa-based network (e.g. uniform density,
Gaussian distribution, etc.), (ii) implementing generic radio
propagation models that do not consider the particularities
of each environment like the log-normal shadowing path-loss
models [16], or (iii) employing environment-agnostic PRR vs
SNR models to determine the likelihood of receiving a par-
ticular packet (that is, determining the PRR by means of the
perceived SNR, which effectively ignores packet collisions
and other complex phenomena).

In contrast to these alternatives, we propose to incorporate
in the performance-maximization process a previous step
in which the specific propagation environment is charac-
terized. The result of this characterization is the aforemen-
tioned model (M ) which reflects the PRR for each and every
transmission configuration –required to model the network
performance as shown in the following paragraphs–. The
reason why the PRR cannot be simply derived from the SNR
(that is, the third alternative described above) is because each
of the pseudo-orthogonal channels may behave differently

depending on whether the same pseudo-orthogonal chan-
nel is under used by other nodes of the same or differ-
ent LoRa-based network. Furthermore, PRR vs SNR models
depend on radio transceivers and may not be readily available
for some particular LoRa nodes (or specific combinations of
transmitter-receiver nodes).

That is, instead of employing a generic propagation model
to derive the PRR value for each node (that is, compute the
SNR based on the link distance and some pre-defined noise
model), we first characterize the medium –obtain a model
M– to determine the actual perceived PRR for each LoRa
node. This way, the computed optimal global configuration
is completely particularized to the specific medium in which
nodes are deployed. Furthermore, we also allow to limit
the eligible transmission configurations as per the power
consumption restrictions of each individual node. Finally,
we demonstrate that the process of acquiring M is worth
doing it in terms of time and battery consumption.

As indicated in Section I, the final objective of this task
is to maximize the network throughput by determining the
optimal transmission configuration of each device. The con-
figuration for a device i is a vector ci whose k-th entry
indicates the percentage of packets that must be generated
under the transmission configuration k . The global network
configuration is a set whose i-th entry corresponds to ci, that
is, C = {c1, c2, . . . , cN} for a network of N devices. Note
that, as previously indicated, a transmission configuration is
a combination of a specific Spreading Factor, Coding Ratio,
and Transmission Power value expressed in dBm. Although
discussing how network throughput is precisely modeled is
out of the scope of this work (interested readers are referred
to [3]), suffices to say that the full context of each node i
is considered: the length of generated packets Li, the rate
at which such packets are transmitted λi, the importance of
the node in the network Gi (that is, ‘‘the assigned level of
priority by the application’’), the PRR attained for each k
configuration PRRki , and the probability of a packet collision
under such a k configuration φki . Note that this packet colli-
sion probability φki can be derived from the study of the LoRa
MAC protocol (see [17] for a more in-depth analysis).

Eq. 1 (again, taken from [3]) computes the total throughput
of the network (0) for a given global configuration matrix
C by aggregating the throughput of all N nodes and all
K configurations. Note that, by maximizing 0 –employing
any off-the-shelf maximization algorithm– we can obtain the
optimal global network configuration Copt.

0 (C) =
N∑
i=1

K∑
k=1

ξ ki · λi · c
k
i · Li · Gi · PRR

k
i · (1− φ

k
i ), (1)

where ξ ki ∈ {0, 1} indicates whether the transmission con-
figuration k is allowed for device i (according to the power
consumption restrictions imposed to node i) and cki ∈ [0, 1]
indicates the percentage of packets that node i transmits
under configuration k . Note that this approach is in stark
contrast with traditional works where nodes could only have a
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single transmission configuration. In Eq. 1, the fact that nodes
can use multiple transmission configurations is considered.
Furthermore, PRRki , the packet reception ratio for a packet
transmitted by node i under configuration k , depends on
the specific radio propagation environment, and thus, this
is the value to be found when modeling the environment
(i.e. obtaining M ).
Since to attain Copt we need to know λi (the packet gen-

eration rate of each node), we can distinguish two different
scenarios:
1) We have full control over all network devices and can

know or directly set λi for all i. This is the simplest
scenario. λi is known beforehand and it is simply fed
into Eq. 1

2) Some λi are unknown. Not only does this imply that
such a parameter must be estimated but also that it is
subject to change at any point. Two sub-scenarios can
be considered:
• Some (or all) LoRa devices can set their own
packet sending rate (e.g. nodes can increase their
information report rate when some event must be
reported). We have to estimate λi for such devices.

• The network is composed of Nown owned devices
and Next external devices with N = Nown + Next .
Obviously, devices out of our control may have an
unknown λ.

We propose to estimate unknown λ values by employing
the Maximum-Likelihood Estimator (MLE) following the
procedure described in [5]. This can be achieved by averaging
the observed inter-arrival time of packets E[Ti] and invert it,
that is: λi = 1

E[Ti]
. Note that this assumes that an underly-

ing Poisson distribution governs the packet generation pro-
cess –which is a fairly common assumption in Low-Power
Wide Area Networks (LPWAN) networks [4], [12], [13],
[15], [18], [19]–. We extend the procedure of [5] by, instead
of averaging all the observed inter-arrival times for a node
i, considering a moving average that assigns exponentially
larger weights to recent samples. This has the additional
benefit of increasing the importance of more recent samples;
thus responding faster to changes in λi (e.g. when an external
node dramatically changes its packet-generation rate).

IV. MODELING POWER CONSUMPTION
As indicated in Eq. 1, one can restrict the set of eligible
transmission configurations by setting any arbitrary ξ ki to
zero. The main idea behind this is to prevent nodes from
using a very power-demanding configuration that may lead
to an early exhaustion of their batteries. However, to make
a sensible selection of allowed transmission configurations,
the power consumption of the deployed nodes must be known
beforehand.

Following the methodology detailed in [20], we have
employed the Monsoon Power Monitor [21] to precisely
determine the current consumption of the PyCom LoPy
4.0 nodes [22], a very popular LoRa IoT node platform.
Note that for our measurements, we exclusively tested the

TABLE 1. Current consumption for each state of a LoPy 4.0 node.

consumption of such a device, without any external sensors or
additional boards attached to it. Table 1 specifies the obtained
results. Note that, as each Transmission Power value (TXP)
leads to a different power consumption, the 13 configurable
values (from 2dBm to 14dBm in 1dBm steps) have been
tested and the current consumption determined. Table 2
shows these values.

Using Eq. 2 below and Tables 1 and 2, one can com-
pute the current consumption (per packet transmission), Ipkt ,
by simply aggregating the currents consumed in each of the
eleven states detailed in Table 1 –denoted as Ii– multiplied
by their respective duration (Ti). Finally, power consumption
(in Joules) can be determined by multiplying the current
consumed by the voltage with which the node is powered,
that is, 3.3V.

Ipkt =
i=11∑
i=1

Ti · Ii (2)

TABLE 2. Current consumption vs transmission power. Note that
transmission power is capped at 13dBm to avoid exceeding maximum
legal radiated power in some parts of the world like Europe.

To illustrate the importance of power consumption let us
consider a simple scenario: for an 18-byte packet transmis-
sion with the largest Spreading Factor (SF12), the by-default
Coding Rate (CR4/5), and TXP being set to 8dBm, the total
power consumption is approximately 0.94J per packet
(including the waking up and going back to sleep LoPy pro-
cesses). Considering that nodes send (on average) one packet
every hour and regular 3000mAh 3.7V Li-Ion batteries are
used, the lifetime of the network would be around 3.45 years.
When deriving Copt, this value could be easily extended to
4.84 years (40% improvement) by, for example, limiting the

VOLUME 8, 2020 38589



R. M. Sandoval et al.: Deriving and Updating Optimal Transmission Configurations for Lora Networks

allowed SFs to just SF7, that is, ξ ki = 1 only for those k for
which SF = SF7.

V. MODELING THE PRR
At this point, the only missing piece for the computation of
Copt is PRRki , that is, a model M that indicates the expected
PRR of a packet generated by node i under transmission
configuration k .

Note that given the quasi-orthogonal characteristics of
the SFs, the SNR may drastically vary for each SF. There-
fore, the PRR under each SF must be individually obtained.
Another interesting fact is that, due to the so-called capture
effect [23], the PRR may rapidly decrease once the SNR
drops below a certain level. Since this reduction cannot be
easily anticipated (especially when third-party LoRa net-
works are deployed), different TXP values must be swept.

For a given set of configurable SFs, CRs and TXPs,
the total number of configurations is the Cartesian prod-
uct of such parameters. Throughout the rest of the paper
we consider SFs = {7, 8, 9, 10, 11, 12}, CRs = { 45 ,

4
7 }, and

TXPs= {2dBm, 6dBm, 10dBm, 14dBm} –we have restricted
the CR values to those commonly considered in the IoT
arena [4], [5] and TXP values to those enforced in LoRa
nodes by the standard [24]–. Therefore, the total number
of testable parameters K is 48 (6 × 2 × 4). The simplest
and most direct way to evaluate PRRki is making node i
transmit a number of probe packets using configuration k .
Then, the gateway will count the proportion of such packets
that made it through the wireless channel to compute the
PRR. Once this is accomplished, a new configuration k is
chosen and this process is repeated until all K configurations
have been swept. However, it is not intuitive to determine the
number of packets that a LoRa node must send to attain a
certain level of confidence over themeasured PRR. To resolve
this issue, we have used the formulas derived byN.Megill and
M. Pavicic in [25]. Noting that every packet transmission is
a realization of a Bernoulli process with success probability
p (precisely, the PRR), the upper and lower bound of our p
estimation are expressed as follows:

plower = IB−11
2 ·(1−c)

(m+ 1, n− m+ 1)

pupper = IB−11
2 ·(1+c)

(m+ 1, n− m+ 1) (3)

where IB−1x is the inverse regularized incomplete beta func-
tion (see [25] for more details), c · 100% is the desired con-
fidence interval in percentage (c = 0.9 has been chosen for
this study),m represents the positive cases (correctly received
packets), and n the total tested events (total number of sent
packets). From these formulas two facts can be stated: (i) the
number of packets to be sent to reach a certain confidence
level is determined by on the underlying unknown PRR of
the channel. (ii) As expected, if a high confidence interval
(c) or tighter bounds are required (i.e. the difference between
pupper and plower ), a larger amount of probe packets is to
be sent. In this work, we have opted for arbitrarily fixing
the allowed uncertainty in terms of upper and lower bounds,

FIGURE 1. For a given confidence interval and p1, the number of packets
to be sent varies with the true underlying PRR.

that is p1 = pupper − plower ≤ 0.15, in order to determine
the number of packets to be sent. This value is a reasonable
figure that ensures that, with 90% probability, the actual PRR
will be within that 0.15 interval. Note that this implies that
the actual number of packets to be sent to attain a certain
confidence level ultimately depends on the underlying PRR
of the channel. Fig. 1 shows the average required number
of packets when the underlying PRR of the wireless channel
varies between 0 and 1. There, one can see that when the PRR
is around 0.5, six times more packets must be sent than when
the PRR is 1 or 0.

The side benefit of determining the upper and lower bounds
of the estimated PRR is that we can sweep all K configura-
tions in such a way that the knowledge acquired from one
configuration can be transferred to other configuration and,
this way, further reduce the number of total transmissions.
For instance, consider that for k =

(
SF7,CR = 4

5 , 10dBm
)
,

it has been found that pklower = 0.4 and pkupper = 0.55 (that
is, with a confidence interval of 90%, the PRR lies within
such an interval). When the transmission power is increased
to TXP = 14dBm, the lower bound of the PRR for such a
configuration must be larger than or equal to 0.4. This is so
because of the monotonic increase of the PRR w.r.t. the SNR.
Similarly, if the transmission power is decreased to TXP =
6dBm, the upper bound of the PRR must be smaller than or
equal to 0.55. Furthermore, if a minimum acceptable PRR
of 0.56 (PRRmin = 0.56) is desired for the communication,
TXP values smaller than 10dBm will not be swept as PRR
cannot do anything but to decrease or remain as is as the
TXP decreases. With this bounding technique, the number of
packets required to construct the PRR model is dramatically
reduced –more information about this method can be found
in the pseudo-code included in Section VIII–. Ultimately, this
helps reducing the time and energy needed in such a process
when compared to the classic approach of iteratively testing
all K configurations (denoted as brute-force approach).

To evaluate the efficiency of our proposed algorithm,
we have simulated 100 nodes running such a bounding
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FIGURE 2. Energy consumed to construct M vs distance between nodes
and gateway when the proposed (solid line) and brute-force (dashed line)
techniques are employed –averaged for 100 nodes–. When using our
approach, up to 73% less energy is consumed.

algorithm and the simple brute-force alternative (that is, test-
ing all K configurations to obtain M ). The distance between
nodes and gateway has been varied between 0.1 to 15km
to evaluate different realistic scenarios. The log-distance
path-loss model proposed in [6] has been used to compute
the perceived SNR of LoRa nodes. Finally, the power con-
sumption required to construct the full PRR model has been
computed according to Tables 1 and 2.

Fig. 2 shows the required energy to build the model M
depending on the algorithm employed (i.e. the bounding or
the brute-force algorithms). The main appreciated benefit of
our proposal is the significant reduction in power consump-
tion (of up to 73%) attained for larger distances. Furthermore,
it is worth highlighting how constructing a full PRR model
with the bounding technique consumes, in the worst case,
353 joules. This represents a 0.88% of the total capacity
stored in a regular IoT battery (3000mAh @ 3.7V); thus
making it a cost-effective way of increasing the precision of
the derivedCopt (when it is compared to the alternative option
of relying in environment-agnostic PRR models).

VI. KEEPING Copt UPDATED
Copt must react to changes in the channel and environment.
This is accomplished by two different processes: (i) main-
taining our knowledge of the channel/environment updated.
That is, ensuring that PRRki and λi reflect the reality of the
propagation medium. (ii) RecomputingCopt and updating the
configuration of nodes when a sufficiently large change is
detected.

Fortunately, our knowledge of PRRki can be kept up-
to-date inexpensively by exploiting the operational natural of
LPWANs. By using the counter field present in the header
of any sent packet, the gateway can easily determine the
number of packets lost for any node i. If the observed PRR
does not fall within the pre-determined PRR bounds (plower ,
pupper ) –for the configurations in use–, we can state that

the environment has changed –with a confidence interval
c · 100%–. Under such circumstances, the following process
is executed for such a node i:
1) Following Section V, update our knowledge of the

transmission configurations in use. That is, update
PRRki ∀ k | c

k
i 6= 0 –this is described in detail in the

pseudo-coded included in Section VIII–.
2) Recompute Copt.
3) If the new vector ci contains transmission configura-

tions for which the PRR information is not updated,
update them and go to step 2.

4) Once this process is finished, inform node i of its new
transmission configuration ci.

Similarly, for any change in the estimation of λi, we can
compute the new Copt−new and, if the throughput under
this new configuration, 0

(
Copt_new

)
, is sufficiently larger

than the throughput under the old configuration,0
(
Copt_old

)
,

we proceed to update the configuration of nodes. This dif-
ference in throughputs (denoted as 01 hereinafter) can be
arbitrarily set such as a balance between spending to much
time updating and keeping nodes updated is found. For our
experiments (presented in Section VII), we empirically found
that a relative increase of 5% in 01 attains that trade-off.

VII. EXPERIMENTS
To evaluate the proposed solution we have implemented:
• The algorithms for constructing the PRR models for
LoPy 4.0 LoRa devices as well as the necessary
server-side code to command & control such devices
(through gateways). All LoPy 4.0 LoRa nodes trans-
mit to a single gateway device from The Things Net-
work [26]. All transmissions are transferred to the
Things Network backend and stored in a database for
further processing RSSI and SNR values.

• The algorithms for estimating λi and computing Copt.
• The algorithms for determining when to updateCopt and
spreading the updated configuration to LoRa nodes.

All the pertaining code has been made available to the
public domain in [27].

We have deployed 5 devices in an indoor environment
(within the Engineering Department of Cambridge Univer-
sity) to test the performance of the proposed solution. Four
of these five devices are assumed to be under our control and
a fifth device is taking the role of an interfering third-party
network.

Given the reduced number of LoRa devices available,
we have forced nodes to always transmit in a single frequency
channel (instead of randomly using one of the 8 available
channels) and to adopt transmitting rates larger than those
normally found in LPWAN: this effectively puts the network
in a condition much more similar to that found in more
crowded LoRa deployments.

A. OBTAINING THE PRR MODEL
The four devices under our control were set out to derive their
respective PRR models employing the approach presented
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FIGURE 3. Evolution of the average uncertainty for the worst case
scenario.

in Section V. In the worst case scenario, that is, for the
node placed the farthest from the gateway, Fig. 3 illustrates
how the average uncertainty in the PRR for all K configura-
tions decreases as the exploration of the different parameters
takes place. This average uncertainty is computed as follows:
100
K

∑K
k=1 p

k
upper − p

k
lower .

When the uncertainty for all configurations is below 15%
(the value chosen for p1), and thus, the average uncertainty
for the PRR reaches such a value, the process ends. Since
the number of packets to be sent depends on the underlying
PRR for each configuration, the process for obtaining the
full PRR model (M ) takes a variable amount of time for
each node –depending on its radio propagation conditions–.
Nevertheless, using the approach explained in Section V,
the number of transmitted packets is not large and therefore,
the process only takes around 20 to 30 minutes to complete –
for our experiments the worst case scenario took 35 minutes–
. To put this into perspective, one may consider that, by
coupling the low-power design of LoRa networks with the
use of truly optimal transmission configurations Copt, LoRa
nodes can last more than 4 years. Therefore, the acquisition of
an accurate PRR model represents less than 0.0015% of total
node’s lifetime. This demonstrates again that the derivation of
the PRR model (M ) is a worthy investment in terms of time
and energy.

B. KEEPING Copt UPDATED
Once the PRR model is acquired, Copt can be computed and
disseminated. However, and as indicated in previous sections,
it is important to keep our knowledge about the environment
updated. In this experiment we have tested an abrupt increase
of the interference generated by an external third-party LoRa
network.

We have done so by letting the fifth interfering node dras-
tically increase the rate at which it generates packets (λ5) –
from a packet every two minutes, λ = 1

120 , to a packet every
3 seconds, λ = 1

3 . As this node is supposed to belong to an
external network, we have no control over it and thus we have
to continuously estimate λ5 (denoted as λ5).

When interference created by this node becomes too high,
a new Copt is computed and disseminated. In a potentially
realistic scenario an increase in interference levels may come
from a neighboring network or from a potentially malicious
attacker. In the latter, this could represent a DoS (Denial-of-
Service) attack, which would aim at producing unsustainable
packet collisions at a specific SF. By quickly detecting a
decrease in the PRR and recomputing Copt, nodes can mini-
mize the impact of this kind of attacks.

This DoS resistance is achieved by making the new trans-
mission configurations of LoRa devices avoid the more inter-
fered SFs. This is true even when such SFs are the most
convenient ones (either because they provide a larger PRR or
the least time-on-air for packets). This is not necessarily the
case for the classic Adaptive Data Rate (ADR) algorithm of
LoRa networks [2], and we have demonstrated the superiority
of our approach by running the same experiment when the
ADR is activated and configured with its default values.

FIGURE 4. Average PRR of the network over time when the proposed
adaptation mechanism is employed (red) and the ADR mechanism is used
(blue). The green dashed line indicates the beginning of the interference.

Fig. 4 represents the attained PRR vs time (in seconds) for
the two different approaches. The blue line depicts the evo-
lution of the PRR when the aforementioned ADR algorithm
whereas the red one uses our approach. It is worth noting that,
for these experiments, no power restrictions were applied.
That is ξ ki = 1 for all k and i.
The first noticeable fact to underline is that, prior to the

increase of interference (marked with a green dashed ver-
tical line), the PRR of both approaches is high. However,
even in a relatively collision-free environment, ADR tends
to underestimate the collision likelihood. In fact, during the
whole experiment, ADR algorithm kept nodes transmitting at
k =

(
SF7,CR = 4

5 , 14dBm
)
. This leads to a non-negligible

packet collision probability which ultimately undermines the
PRR (as shown in Fig. 4). For the first and second halves
of the experiment (that is, before and after the increase
in the interference, when λ5 takes the values 1

120 and 1
3

38592 VOLUME 8, 2020



R. M. Sandoval et al.: Deriving and Updating Optimal Transmission Configurations for Lora Networks

TABLE 3. Distribution of transmission of configurations Copt for the first
half of the experiment.

TABLE 4. Distribution of transmission of configurations Copt for
the second half of the experiment.

respectively), the distributions of transmission configurations
(i.e. the computed Copt) are indicated in Tables 3 and 4. Note
that each configuration of Copt indicates the percentage of
packets generated under such combination of SF, CR, and
TXP. For instance, node 1, in the first half of the experiment,
will generate 18.3% of its packets using the following con-
figuration: SF7, CR = 4

5 , and TXP=14dBm.
At some random time –marked with a green dashed verti-

cal line– the fifth node increases its packet-generation rate;
thus, increasing the interference to our deployed network.

This produces a reduction in the PRR of the network
under study for both the ADR and our proposed mecha-
nism. However, with our solution the new configuration is
spread throughout the network when λ5 changes enough to
make 0(Copt_old) differ more than 5% from 0(Copt_new)
(the predefined margin). This happens at around the sec-
ond 4000th and helps restore the PRR to its original 100%
value (see red line in Fig. 4). However, when using the
ADR algorithm, there is no way to alleviate congestion in
SF7 and thus, the PRR drops considerably (see blue line
in Fig. 4).

With our proposed approach, these differences in PRR (of
up to 15%) lead to an effective increase of 0 –the actual
measure of network performance– of 15% (as the rest of
parameters of Eq. 1 remain the same).

VIII. CONCLUSION
LPWAN-based IoT networks like LoRaWAN are becoming
more and more crowded, making the optimal radio-resource
allocation a pressing need. Thanks to the ability of LoRa
nodes to individually adapt their transmission parameters
(like Spreading Factor, Coding Rate, or Transmission Power),
network operators can derive globally optimal network con-
figurations by carefully crafting individual node transmission
settings.

In order to derive this optimal network-wise configura-
tion (Copt), the performance of each individual transmission
configuration must be determined. To achieve high accuracy
levels, instead of assuming simplistic propagation models or
unrealistic node distributions, we propose a mechanism by
which LoRa nodes can characterize the propagation envi-
ronment in which they are deployed. After deriving how
the environment impacts on each transmission configuration,
devices can obtain a truly optimal Copt –which fully regards
the specifics of each radio propagation environment.

To reduce the energy and time employed in deriving this
environment characterization model M , we further propose
a bounding technique that allows us to reduce in more than
73% the energy required –when compared to more straight-
forward approaches–. Also, we complement the model acqui-
sition mechanism with a way of keeping this environment
knowledge updated. We proposed a trigger-based method by
which, when the environment behavior deviates from what
it is expected, complementary information is gathered in an
as-needed basis.

All the techniques proposed here are implemented and
tested in a real LoRa deployment and the code and tools made
publicly available. Results in real scenarios demonstrate that,
not only are these environment models inexpensive to be
constructed (requiring just 0.88% of the total node energy and
0.0015% of its expected lifetime), but thanks to our proposal,
we can also significantly increase the network Packet Recep-
tion Rate by 15%, correspondingly improving the throughput
metric by 15% –when compared to traditional methods like
LoRaWAN ADR–.
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APPENDIX
In this Section the pseudo-code of the different algorithms
is listed. Note that the code is also fully released and made
publicly available at [27].

Algorithm 1 Computation of PRR Model for Each Node i
1: Input: Set of SF values to test SFs,
2: set of CR values to test CRs,
3: set of TXP values to test TXPs,
4: confidence interval c,
5: maximum bounds margin: p1,
6: min acceptable PRR: PRRmin
7: Output: PRRkmodel for k in SFs×CRs× TXPs
8: PRRkmodel = NaN for all k in SFs×CRs×TXPs
9: pklower = 0 for all k in SFs×CRs× TXPs
10: pkupper = 1 for all k in SFs×CRs× TXPs
11: knext ← GetNextConfig ( plower , pupper ,PRRmodel
12: PRRmin, p1, SFs,CRs,TXPs )
13: if knext 6= ∅ then
14: Order node sweep parameters knext
15: for each received packet do
16: determine m, n with the counter field of the

packet
17: compute pklower , p

k
upper with Eq. 3

18: if pkupper − p
k
lower ≤ p1 then

19: PRRkmodel ←
m
n

20: BoundLowerBounds(SF, CR, TXP, plower ,
pupper , SFs, CRs, and TXPs)

21: BoundUpperBounds(SF, CR, TXP, plower ,
pupper , SFs, CRs, and TXPs)

22: go to 12

Algorithm 2 Determine the Next Configuration to Test for
the Bounding Technique
1: procedure GetNextConfig
2: Input: plower , pupper , PRRmodel
3: SFs, CRs, and TXPs
4: maximum bounds margin p1,
5: min acceptable PRR: PRRmin
6: Output: a combination of SF, CR, and TXP to test

next
7: maxmargin = p1
8: knext = ∅
9: for SF=7 to SF=12 do
10: for all CR in OrderOuterInner(CRs) do
11: for all TXP in OrderOuterInner(TXPs) do
12: k ← (SF,CR,TXP)
13: if pkupper − pklower ≥ maxmargin and

pkupper ≥ PRRmin then
14: maxmargin← pkupper − p

k
lower

15: knext ← k
16: return knext

Algorithm 3 Bound Upper Bounds
1: procedure BoundUpperBounds
2: Input: SF, CR, TXP, plower , pupper , SFs, CRs, and

TXPs
3: k ← (SF,CR,TXP)
4: for all CR’ in CRs do
5: for all TXP’ in TXPs do
6: if TXP’ ≤ TXP then
7: if CR’ ≤ CR then
8: k ′←

(
SF,CR′,TXP′

)
9: pk

′

lower ← min(pk
′

lower , p
k
lower )

10: pk
′

upper ← pkupper

Algorithm 4 Bound Lower Bounds
1: procedure BoundLowerBounds
2: Input: SF, CR, TXP, plower , pupper , SFs, CRs, and

TXPs
3: k ← (SF,CR,TXP)
4: for all CR’ in CRs do
5: for all TXP’ in TXPs do
6: if TXP’ ≥ TXP then
7: if CR’ ≥ CR then
8: k ′←

(
SF,CR′,TXP′

)
9: pk

′

lower ← pklower
10: pk

′

upper ← max(pk
′

upper , p
k
upper )

Algorithm 5 Reorder a Set in an Out-In Fashion (e.g. Trans-
forms [1, 2, 3, 4, 5] to [1, 5, 2, 4, 3])
1: procedure OrderOuterInner
2: Input: Set S
3: L ← len(S)
4: M ← dL2 e
5: new_order ← ∅
6: for i = 1 to M do
7: new_order ← new_order + S[i]
8: new_order ← new_order + S[(L − i+ 1)]
9: return L first elements of new_order
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