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ABSTRACT Cancers, a group of multifactorial complex diseases, are generally caused by mutation of
multiple genes or dysregulation of gene interactions. Applying machine learning methods to microarray
gene expression profiles for disease classification is a popular method to predict disease state or outcome.
Traditional computational methods that detect genes differentially expressed between cancer and normal
samples are ineffective in independent cohorts of patients. However, current methods consider pathways
as simple gene sets and include pathway topological information but ignore significant individual genes
and interactions between genes, which are essential to infer a more robust pathway activity. In this study,
we proposed a novel approach to describe the activity of a pathway that incorporates both the differential
expression degree of genes between the case and control and the interaction strength between genes.
We applied the method to the classifications of seven cancers. Within-dataset experiments and cross-dataset
experiments demonstrated that our novel method achieved robust and superior performance when compared
to the five existing methods.

INDEX TERMS Classification, cancer, pathway activity.

I. INTRODUCTION
Analyses of genome-wide expression profiles can aid in
understanding the mechanisms of biological processes, iden-
tifying biomarkers for cancers and designing therapeutic
strategies [1]–[8]. One important challenge in clinical cancer
research is accurately predicting disease states and treatment
responses of a patient based on the expression of genes.
An increasing number of disease markers have been iden-
tified through the analysis of genome-wide expression pro-
files [9]–[12]. One direct approach is to score each individual
gene based on its power to discriminate samples between case
and control [13]–[16]. However, the gene markers identified
in one dataset usually share little overlap with those obtained
in other datasets due to noise in microarray data and cellular
heterogeneity within tissues. In addition, precise classifica-
tion is also impeded by the so-called ‘‘large p small n’’
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property, whereby the number of samples (or instances) is
typically several orders of magnitude smaller than the number
of genes (or features), making it difficult to extract reliable
information from transcriptome profiles [17], [18]. All of
these factors often lead to gene markers discovered in one
dataset failing to be predictive of the same disease phenotype
in other independent datasets.

As gene products are known to function coordinately in
functional modules or signaling cascades, perturbed high-
level functional modules may be more consistent with the
disease state of interest than individual genes [19]. Thus,
integrating gene expression data with available large protein-
protein interaction (PPI) networks or known pathways may
identify more reproducible biomarkers [20]–[26]. Network-
level analyses can be categorized as PPI-based or pathway-
based methods. Both approaches consist of three steps: first,
search potential subnetworks or pathways and sort them
according to their discriminative score; second, select fea-
ture subnetworks or pathways; finally, design a classifier
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according to the activity of the selected subnetworks or path-
ways. Chuang et al. proposed a method to search subnetwork
markers based on mutual information or t-scores measur-
ing the association between the marker’s activity and class
label [27]. Su et al. searched for the top discriminative linear
paths using dynamic programming in a PPI network. The
discriminative score of a path incorporated both the t-test
statistics of the member genes and the correlation between
their expression values [28]. The activity of a subnetwork was
inferred by combining the normalized log-likelihood ratios
(LLRs) of its member genes. In pathway-based analyses,
the discriminative score of a pathway is defined as the t-test
statistic score for the member genes. The main difference
between these approaches lies in how they define pathway
activity. For example, Guo et al. estimated the pathway activ-
ity using the mean or median of the gene expression values
of the member genes [29]. In a PCA approach, Bild et al.
used the first basis vector to weight the expression values
of the member genes in a pathway [30]. Lee et al. proposed
to infer the pathway activity by condition-responsive genes
method [31]. Liu et al. proposed a directed random walk
(DRW) to mine the topological importance of genes in a
pathway network. The activity of a pathway was defined by
the weighted expression values of the member genes [32].
They also extended this method to include both genomic and
metabolic data [33]–[36]. Recently, this topological approach
was applied to predict breast cancer survival outcomes [37].

Although previous methods have achieved great progress
in cancer classification based on the activity of path-
ways or subnetworks, the activity of the pathway or sub-
network was defined as a simple summary of expression
values of the member genes, which could not reflect the
interactions between genes at the network level. However,
it is the interaction between genes that shifts the direction of
biological signaling cascades. In order to model their effect,
Tarca et al. proposed a signaling pathway impact analysis
(SPIA) method to model the impact of perturbed upstream
genes on their downstream partners [38].

In this study, we proposed a method to quantify path-
way activity using both genes and their interactions (PAGI).
We first constructed a pathway expression profile matrix that
includes both genes and their interactions. Then the first
principle component of the expression profile matrix was cal-
culated. Finally, the activity of the pathwaywas derived based
on the product of the first component and their correspond-
ing expression values. Both within-dataset experiments and
cross-dataset experiments demonstrated that the proposed
PAGI method was more accurate and more robust than the
DRW, PAC, mean, median, and gene methods on datasets for
seven different cancers.

II. DATASETS
Table 1 lists the 22 microarray datasets for seven can-
cers downloaded from the NCBI Gene Expression Omnibus
(GEO) database [39]. In these datasets, 9 datasets were
studied in the within-dataset experiment and were used as

TABLE 1. Cancer gene expression datasets.

training dataset in cross-dataset experiment: GSE10072 for
lung cancer [40], GSE13911 for stomach cancer [41],
GSE17856 for liver cancer [42], GSE5364 for thyroid can-
cer [42], GSE15641 and GSE17895 for kidney cancer [43],
[44], GSE3494 and GSE1456 for breast cancer [34], [45],
and GSE8511 for prostate cancer[46]. The other 13 datasets
were used for validation in cross-dataset experiments. In the
breast cancer datasets, patients died within 5 years were
defined as negative samples, while the remaining patients
were considered positive samples (patients with a survival
time of 55 years without any reported events were excluded).
The prostate cancer datasets contained three types of samples:
Benign, PCA, and Mets, and we built two classifications to
classify Benign and PCA samples as well as PCA and Mets
samples. All pathway information was downloaded from the
KEGG database [47].

III. METHODS
The pathway is a gene network that includes both genes and
their interactions to fulfill some specific biological functions.
Our motivation is that the activity of a pathway should reflect
the following three factors: (1) the degree of the differential
expression of genes between case and control group; (2) the
correlation between a gene’s expression and the class label
(control, case, metastatic or non-metastatic); (3) their interac-
tion strength between genes connected in a pathway. Based on
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FIGURE 1. The workflow for inferring the pathway activity using genes
and their interactions.

these considerations, we proposed a new way to infer the
activity of a pathway. Fig. 1 displays the main workflow of
the proposed method PAGI in this paper.

Given a pathway P = {G,E} that includes genes G =
{g1, g2, . . . , gn} and interactions E = {e1, e2, . . . , el},
we first constructed a new expression profilematrix including
both genes and their corresponding interactions in a pathway
network. The expression of a gene gi in sample k is trans-
formed as

zik = t2i |ρi| gik (1)

where ti is the t-score of gi calculated from a two-tailed t-test
between two phenotypes, and ρi is the Pearson correlation
coefficient between gene gi and class label c. After this
transformation, Zij actually represents a weighted expression
of gene gi in sample k which reflects both the differential
expression degree of gene gi and its correlation with the phe-
notype. The more differentially expressed, the larger Zij. And
the larger its correlation with the phenotype, the larger Zij.
Similarly, the expression profile of their interaction of gene
pair gi and gj in sample k is defined as

eijk = ρij
∣∣βij∣∣ ( zik + zjk2

) (2)

where ρijis the Pearson correlation coefficient between genes
gi and gj, βij indicates the interaction type between gene gi
and gj (1 for activation or −1 for inhibition). Obviously,
the larger the interaction strength, the larger eijk . The expres-
sion profile of a pathway P can then be denoted by a · (n +
1) × m matrix Mp, where rows represent the genes or their
interactions and columns represent samples.

Secondly, we then applied the principal component analy-
sis (PCA) on the matrix Mp to infer the activity score apk of

FIGURE 2. Classification performance and stability on within-datasets.

pathway P in sample k as:

apk =
n∑
i=1

wizik +
l∑
j=1

wn+jejk (3)

where wi and wj are the corresponding component in the first
eigenvector for gene i and interaction j respectively.

IV. RESULTS
In this section, we used the logistic regression model to evalu-
ate the performance of genemethod in [28], mean andmedian
method in [29], PAC method in [30], DRW method in [31]
and the proposed PAGI method. The average area under
ROC curve (AUC) [48], [49] and the corresponding standard
deviation (SD) by five-fold cross-validation [50], [51] over
1000 times were calculated for the six methods [52]–[58].
The experiment setting was the same as in [32], [35] for the
DRW, PAC, mean, median, and gene methods. For the gene
method, the top 50 discriminative gene markers were chosen
as the candidate features in order to maintain an identical
maximum number of features as in [28]. In cross-dataset
experiments, the first dataset was used as the training set, and
other independent datasets were used as the test set.

A. CLASSIFICATION PERFORMANCE ON
WITHIN-DATASET EXPERIMENTS
Fig. 2. shows the average AUC and SD of the six methods on
the 10 within-datasets. The average AUC of all the six meth-
ods were about more than 0.8 except on the two breast cancer
datasets. First, PAGI achieved the largest AUC in all cancer
datasets except the lung cancer dataset GSE10072 where it
was slightly less than that of DRW. Especially, compared
with other methods, PAGI sharply improved the AUC in
four datasets GSE17895, GSE3494, GSE1456 and GSE8511.
Secondly, the average SD of PAGI was the least except in
three datasets GSE10072, GSE13911 and GSE3494 where it
is the second least in the six methods. These two observations
demonstrated that PAGI had the best overall classification
performance and stability on within-datasets experiments.
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FIGURE 3. Classification performance and stability on cross-datasets.

B. CLASSIFICATION PERFORMANCE ON
CROSS-DATASET EXPERIMENTS
To evaluate the generalization ability of the six methods,
we carried out cross-dataset experiments using 18 additional
independent datasets. Fig. 3 shows their average AUC and SD
on these independent datasets. First, as expected, the average
AUC for each method varied sharply in different independent
datasets except the lung cancer and liver cancer datasets.
Apart from the heterogeneity and noises inherent in these
datasets, how to extract the internal characteristic is the key to
deal with this reproducibility issue. Secondly, PAGI achieved
the largest averageAUC in all datasets except the independent
lung cancer dataset GSE19188 where it was slightly less than
that of DRW. Especially, PAGI sharply improved the AUC
in at least one independent datasets in the six cancers except
for lung cancer. Thirdly, the average SD of PAGI was the
least except in one lung cancer dataset GSE19188 where it
is the second least in the six methods. These observations
demonstrated that PAGI also had the best overall classifica-
tion performance and stability on cross-datasets experiments
which were consistent with the with-datasets experiments.
They indicated that the PAGI-based pathway activities were
less sensitive to different cohorts of patients and microarray
platforms and were more reliable in predicting clinical out-
comes in practice. A potential reason may be that the PAGI
incorporates both the importance of genes based on their dif-
ferential expressions and topological interaction information
to build the classifier [59].

C. ROBUSTNESS OF RISK-ACTIVE PATHWAYS
In cancer studies, many pathways, such as the MAPK sig-
naling pathway, p53 signaling pathway, and pathway in can-
cer, have been found highly related to the development of
various cancers [32], [60]. Table 2. lists 18 known cancer-
related pathways which involve in various biological pro-
cesses, including cell cycle, apoptosis, and senescence. The
degree indicates the number of pathways connected with
it in the whole pathway network. From the perspective of

TABLE 2. Cancer-related pathways studied by PAGI.

classification, the perturbation of gene expressions in these
pathways should provide enough information.

In this paper, the proposed PAGI only used one of them as a
feature to build classifier. The performance of PAGIwas actu-
ally the best AUC obtained by one of the 18 pathways. The
best feature pathway for different cancer datasets might be
different. For example on within-datasets, insulin signaling
pathway was the best pathway for lung cancer, RNA transport
for stomach cancer, adipocytokine signaling pathway for liver
cancer, p53 signaling pathway for thyroid, MAPK signaling
pathway and regulation of actin cytoskeleton for the two
kidney cancer datasets respectively, MAPK signaling path-
way and regulation of actin cytoskeleton for the two breast
cancer datasets respectively, and MAPK signaling pathway
for prostate cancer. On cross-datasets, the best pathway for
different cancer datasets was also different.

For a given dataset, we found that the results of PAGI by
most of the 18 pathways were very close to the best per-
formance on both within-datasets and cross-datasets. Fig. 4.
shows the average AUC of PAGI by the five pathways with
the largest degree in Table 2. The close performance by
these pathways demonstrated that the proposed activity score
could provide highly discriminative information for cancer
classification only by one pathway. This indicates that the
newly proposed pathway activity might capture more of the
essential features of various cancers than that used by mean,
median, PAC and DRW methods whose best performance
was derived from a selected pathway set.

MAPK signaling pathway is an important known can-
cer pathway connected with 69 other pathways. Our results
showed that the average AUC by this pathway was the largest
both in the within-datasets and cross-datasets of the seven
cancers. That is, we could reach a relative satisfactory classi-
fication result by the MAPK pathway without feature selec-
tion. Apart from it connects with many important pathways,
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FIGURE 4. The average AUC of PAGI by the five pathways on
within-datasets (a) and cross-datasets (b).

another reason may be MAPK signaling pathway shared
many important genes with other pathways.

D. SIGNIFICANT DIFFERENCE OF GENES AND THEIR
INTERACTIONS BETWEEN TWO PHENOTYPES
To mine the important information for medical diagno-
sis, we further analyzed the significant difference of genes
and their interactions in pathway between two phenotypes.
We acquired 10(42) genes and 56(361) interactions with
significant difference between the two phenotypes in the
‘‘Benign-PCA’’ case (the ‘‘PCA–Mets’’ case).

FIGURE 5. Heat maps of top difference genes and interactions in two
prostate cancer cases.

Fig.5 show the heat maps (A and B) of the significant
difference of genes and interactions in the ‘‘Benign-PCA’’
case and the ‘‘PCA–Mets’’ case. On one side these individual
genes such as NGFR and FLT1 have small difference between
two phenotypes, but their interactions with other genes had
significant difference between two phenotypes. On other side,
some individual genes such as NGF and FGFR2 had small
difference between two phenotypes, but their interactions had
outstanding difference when they interacted with each other.

V. CONCLUSION
How to accurately discriminate various cancers is a cru-
cial issue for clinical treatment. As genes are corporately

interacted with each other to fulfill specific biological func-
tions, the activities of pathways become a potential feature
for cancer classification. In this paper, we proposed a novel
method to describe pathway activity which incorporates both
the genes’ activity and their interactions. Specifically, in order
to extract the essential features for a disease state, we first
transformed the expression of a gene to a weighted activity
based on their differential expression degree between case
and control and their correlation with the phenotype. Then
we defined the activity of a gene pair in a pathway by their
interaction strength. Finally, the activity score of a pathway
for a sample was calculated as an arithmetic weighted activity
of genes and gene pairs by the first eigenvector of PCA on the
expression profile matrix of the pathway.

We studied the performance of the new proposed method
PAGI on datasets of seven cancers, which included 10 within-
dataset experiments and 20 cross-dataset experiments.
Results on these datasets demonstrated that the proposed
PAGI performed better and was more robust than the other
five methods. Furthermore, the proposed PAGI could achieve
the best performance by using only one pathway while the
other methods might need to select the best pathway set.
Results on the 18 known cancer-related pathways showed
that the performance of most pathways was very close to the
best performance. This indicated that the proposed PAGI was
even robust on many cancer-related pathways. Additionally,
we found that the proposed PAGI could achieve a satisfac-
tory performance for all datasets by the MAPK signaling
pathway. Although PAGI had above advantages, we believe
there is still room to study pathway activity more effectively,
by employing new generation machine learning [61]–[67]
and computational intelligence algorithms [68]–[73].
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