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ABSTRACT In recent years, a lot of power allocation algorithms have been proposed to maximize
spectral efficiency (SE) and energy efficiency (EE) for the distributed antenna systems (DAS). However,
the traditional iterative power allocation algorithms are difficult to be implemented in reality because of their
high computational complexity. With the development of machine learning algorithms, it has been proved
that themachine learningmethod has excellent learning ability and low computational complexity, which can
approximate the traditional iterative power allocation well and be easily to be implemented in reality. In this
paper, we propose a new deep neural network (DNN) model for DAS. From the perspective of machine
learning, traditional iterative algorithms can be regarded as a nonlinear mapping between user channel
realizations and optimal power allocation schemes. Therefore, we train the DNN to learn the nonlinear
mapping between the user channel realizations and the corresponding power allocation schemes based on
the traditional iterative algorithm. Then, a power allocation schemes based on DNN method is developed to
maximize SE and EE for DAS. The simulation results show that the proposed scheme can not only obtain the
almost similar performance as the traditional iterative algorithm, but also reduce much online computational
time.

INDEX TERMS Distributed antenna systems, deep learning, power allocation algorithm, sub-gradient
algorithm, spectral efficiency, energy efficiency.

I. INTRODUCTION
In recent years, with the improvement of the communication
technology, there is a rapid growth in data transmission
of cellular networks. The explosive growth data trans-
mission demand has brought tremendous pressure to the
fifth-generation (5G) wireless system [1], [2]. In order to
provide high rate of data transmission, many researchers have
proposed a DAS, which can effectively reduce the access
distance between the remote access unit (RAU) and user
equipment (UE) [3], [4]. Existing researchs showed that there
are a lot of advantages of DAS, such as increasing SE [4]–[7]
and improving EE [8]–[12].

In order to provide high data rate transmission, it is also
significant for us to optimize SE and EE power allocation in
DAS. A lot of algorithms for SE and EE power allocation
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have been proposed in the past years. In [13], the authors
have exploited the water-filling algorithm to maximum EE
of MIMO systems. Moreover, a sub-gradient algorithm and
fractional programming have been proposed in [14] to opti-
mize three different objectives for DAS, including maximum
SE optimization, minimum transmit power optimization and
maximum EE optimization. However, most of works mainly
based on the traditional methods to get the optimal power
allocation algorithm, which usually sacrifice a large amount
of online computational time and complex calculation. It is
unrealistic to use the traditional iterative algorithms in actual
systems whose user channel state information is constantly
changing. Therefore, we should find better schemes to reduce
the system’s online computational complexity.

Deep learning has been successfully applied in many areas,
including computer vision, natural language process and so
on. Due to its natural advantages, many researchers try using
deep learning algorithms to solve the problem of wireless
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communication. A lot of studies found that deep learning
algorithms can not only get excellent performance in thewire-
less communication, but also reduce the computational com-
plexity. Deep learning algorithms make it possible to realize
the real-time power allocation in actual systems. In [15],
the authors used deep learning for channel estimation and
signal detection in orthogonal frequency division multiplex-
ing (OFDM) system, which showed that the performance of
deep learning algorithm is better than traditional algorithm
in reducing time and computational complexity. In [16],
the authors regarded the weighted mean square error algo-
rithm (WMMSE) as traditional iterative algorithm and trained
the deep neural network to learn the nonlinear mapping
between the channel realizations and the resource allocation
of the WMMSE algorithm. The experimental results showed
that the deep neural network can not only get the almost
similar performance as the WMMSE algorithm, but also
reduce much online computational time. The authors in [17]
exploited deep learning method to solve the EE optimization
of system through power control in wireless interference
networks. The results showed that the neural network solution
can satisfy the demands with less online complexity. The
authors in [18] proposed the ensemble deep neural networks
to solve the optimal power control problem and trained the
deep learning model by adding noise as one of the input
neuron, which can better cope with different noises in reality.
In [19], the authors used convolutional neural network (CNN)
to solve the wireless scheduling problem of device-to-device
(D2D) by using user geographic location instead of user
channel state information (CSI). The experimental results
showed that the performance of CNN method is very close
to the traditional iterative method which used CSI, and can
save the large cost of measuring the user CSI. However, to the
best of the authors’ knowledge, there is little work that has
studied the power allocation schemes based on DNN method
for DAS. We hope to use deep learning algorithms to realize
real-time power allocation in DAS so that the it can be applied
in actual wireless communication system.

In this paper, we therefore investigate the deep learning
algorithm for the downlink DAS. We define those iterative
algorithms as traditional optimization algorithms. One of the
most out-standing algorithms for the DAS is sub-gradient
algorithm which is mentioned in [15]. Therefore, we define
the sub-gradient algorithm as the traditional algorithm and
design a DNN to approximate it. We randomly generate a
large number of channel realizations and use the traditional
sub-gradient algorithm to get the corresponding optimal
power allocation schemes. Then we define those channels
realizations and the corresponding optimal power allocation
schemes as the inputs and labels of the DNN, respectively.
We use the channel realizations and labels to train the deep
neural network so that the DNN can learn the nonlinear map-
ping between the channel realizations and the results of the
traditional sub-gradient power allocation algorithm.We focus
on designing a suitable structure and appropriate parameters
of the DNN so that the performance of the DNN method is

close enough to the traditional sub-gradient algorithm and
reduce a large amount of online computation time.

The remainder of this paper can be listed as follow.
In Section II, the DAS model is presented including the
system configure and the channel model. In addition, we for-
mulate maximum SE optimization and maximum EE opti-
mization problem of DAS. In Section III, we present the
system architecture, the network structure, the process of data
generation and stage of training the DNN. In Section IV,
we present the parameters selection of the deep neural net-
work and the simulation results presented to demonstrate our
assumption. We conclude this paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this section, we consider a downlink scenario of DAS.
There are N RAUs with one antenna and K cellular UEs
with single-antenna in DAS.N RAUs are uniformly deployed
in the cell and connected to the central base station. K UEs
are randomly distributed in the cell, which showed in Fig.1.
We use hn,k to denote the channel frequency response
between the nth RAU and the kth UE, which consists of a
small and large scale fading [9] and can be expressed as

hn,k = gn,kwn,k , (1)

where gn,k represents the small-scale fading between the nth
RAU and the kth UE, wn,k represents the large-scale fading
which is independent of gn,k [20].

FIGURE 1. System model.

B. MAXIMUM SE OPTIMIZATION
In this part, the maximum SE optimization problem of DAS
is shown. We assume that the perfect channel state infor-
mation (CSI) is available at both transmitter and receiver
side. In order to reduce the computational time of traditional
algorithm so that we can generate enough train data set for
DNN, we assume that the channels are orthogonal so there is
no interference to each other. The problem of maximizing SE
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for the downlink DAS can be modeled as [14]

max
Pn,k

K∑
k=1

log2

(
1+

∑N
n=1 pn,k |hn,k |

2

σ 2

)
(2)

s.t.
K∑
k=1

pn,k ≤ Pnmax , (2a)

pn,k ∈
[
0,Pnmax

]
, (2b)

where Pnmax is the maximum transmit power of the nth RAU.
pn,k is the transmit power from the nth RAU to the kth cellular
UE. σ 2 represents the power of the complex additive white
Gaussian noise (AWGN) of the UE [14].

C. MAXIMUM EE OPTIMIZATION
From [11], the problem of maximizing EE can be modeled as

max
pn,k

∑K
k=1 log2

(
1+

∑N
n=1 pn,k |hn,k |

2

σ 2

)
1
τ

∑K
k=1

∑N
n=1 pn,k + NPd + Pc + Po

(3)

s.t.
K∑
k=1

pn,k ≤ Pnmax , (3a)

pn,k ∈
[
0,Pnmax

]
, (3b)

where Pd is the constant circuit power consumption per RAU
and Pc denotes the constant basic power consumption and Po
denotes the disseminated of the optical fiber transmission. τ
represents the power amplifier efficiency [14].

D. TRADITIONAL SUB-GRADIENT ALGORITHM
According to [11], themaximumSE optimization can find the
optimal power allocation schemes by using the sub-gradient
algorithm. When the objective problem is maximizing EE,
we should transform the non-convex objective function into
an equivalent objective function with subtractive form by
using fractional programming. However, the time complexity
of using sub-gradient algorithm is still high without consider-
ing the interference between users, and the time complexity
is extremely high after combining fractional programming
for maximizing the EE optimization. Therefore, we cannot
use algorithms directly in the actual systems due to the high
computational complexity.

III. DEEP NEURAL NETWORK BASED METHOD
In this part, we therefore consider the deep learning algo-
rithm. We regard the DNN as a ‘‘black box’’ and use DNN
to approximate the sub-gradient algorithm in an end-to-
end fashion. In the proposed model, the sub-gradient algo-
rithm can be treated as unknown nonlinear mapping between
the channel realizations and corresponding power allocation
schemes. The deep neural network can deal with this non-
linear mapping problem. Therefore, we can design a DNN
model to learn the nonlinear mapping between the chan-
nel realizations and corresponding power allocation schemes

from a large number of data, which aims to design an appro-
priate DNN to realize a real-time power allocation in the
DAS.

A. SYSTEM ARCHITECTURE
In this paper, in order to prove that the power allocation based
on the DNN can be applied to different maximum trans-
mission power of RAU, we will compare the performance
of the power allocation based on the DNN with the tradi-
tional sub-gradient algorithm under differentmaximum trans-
mission power. The different maximum transmission power
can be respectively represent as Pmax1,Pmax2, . . . ,Pmaxi.
Because there are different optimal power allocation under
different maximum transmission power of RAUs, the same
channel realizations are put into the traditional sub-gradient
algorithm andwewill get different power allocation schemes.
Therefore, for the DNN method, we fed the same channel
realizations into the DNN and we will get different results
of power allocation schemes. We train different DNNs by
feeding the same channel realizations as inputs and the dif-
ferent results of power allocation by traditional algorithm as
labels. The power allocation of traditional sub-gradient algo-
rithm under different maximum transmission power which
are the labels for different DNNs and can represented as
P(Pmax1),P(Pmax2), . . . ,P(Pmaxi). Therefore, the system archi-
tecture of the DNN method for DAS can be illustrated
in Fig.2.

FIGURE 2. The structure of the deep neural network.

B. DATA GENERATION
Because the deep neural network algorithm is data-dependent
method and it is very important for us to train the DNNs that
prepare a large number of the training data and corresponding
labels. Firstly, the channel model mentioned above is used
to generate a lot of channel matrices H (t), where t is the
index of training samples. Then it can be exploited in the
traditional sub-gradient algorithm to get the optimal power
allocation matrix P(t)Pmax1 , P

(t)
Pmax2

, . . . ,P(t)Pmaxi , which are labels
for correspondentH (t), respectively. For convenience, we use
P(t) to represent labels under different maximum transmis-
sion power. Therefore, [H (t),P(t)] denotes as the tth sample.
By repeating the above process, we generate a large number
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of samples as training samples. In addition, we use the cross
validation method during training process and we randomly
split 99% of the training samples into training dataset and 1%
of the training samples into validation dataset. The validation
dataset plays an important part in avoiding the over-fitting
during the training process. Finally, in order to test the per-
formance of the DNN method, we need to generate a large
amount of samples as testing dataset.

C. NETWORK ARCHITECTURE
After training and testing dataset prepared, we need to design
a deep neural network to approximate the sub-gradient algo-
rithm to maximize SE and EE power allocation in DAS.
A fully connected neural network is proposed, which includes
one input layer, three hidden layers, and one output layers as
shown in Fig.3.

FIGURE 3. The structure of the deep neural network.

FIGURE 4. Data generation and training process.

The inputs of the DNN are the channel realizations hn,k
and the outputs of the DNN are power allocation schemes
p̂n,k . In the DAS model, we train the DNN to learn the
nonlinear mapping between the channel realizations hn,k and
the power allocation of traditional sub-gradient algorithm
pn,k . The outputs of the DNN should be a continuous value.
Therefore, this problem is a nonlinear regression problem.
In order to enhance the nonlinear fitting ability of the deep
neural network, ReLU function is exploited as the activation
function for the three hidden layers. ReLu function can be
represent as

ReLU (x) = max(0, x) (4)

Since we first normalized the training data and labels, the out-
put of the neural network should be between 0 and 1. We use

the sigmoid function as the activation function of the output
layer.

sigmoid(x) =
1

1+ e−x
(5)

D. TRAINING STAGE
Training stage of the DNN mainly includes two pro-
cesses, feed-forward operation and back propagation. The
feed-forward operation is to calculate the loss value of
the DNN. Otherwise, the back propagation is to update the
weights and bias of the DNN byminimizing loss value, which
depends on the important part of deep neural network, e.t. loss
function. The loss function can be expressed as

loss = E[lossmse + lossconst ]

= E[λ1
N∑
n=1

K∑
k=1

(p̂n,k − pn,k )2

+ λ2

N∑
n=1

ReLU (
K∑
k=1

p̂n,k − Pnmax)], (6)

where pn,k represents the optimal power allocation of the
traditional sub-gradient algorithm and p̂n,k represents the
output of the DNNs.

The loss function contains two parts, including the mean
square error between outputs of the DNN and labels lossmse
and the constraint function error lossconst . The scaling factors
λ1 and λ2 are used to balance the lossmse and lossconst in
order to ensure the DNN can be trained well enough. The
first part of the loss function lossmse is used to reduce the
error between p̂n,k and pn,k so that the DNNs can reach
the performance as the traditional sub-gradient algorithm.
The second part of the loss function lossconst ensure the output
of the deep neural network strictly satisfying the constraint
(2a)(3a). If

∑K
k=1 p̂n,k ≥ Pnmax , the constraint (2a)(3a) are

not satisfied and ReLU(
∑K

k=1 p̂n,k − Pnmax) > 0. Then
the second part loss function lossconst will force the network
parameters to be updated to satisfy the constraint (2a)(3a).
On the contrary, if

∑K
k=1 p̂n,k ≤ P

n
max , the constraint (2a)(3a)

are satisfied and ReLU(
∑K

k=1 p̂n,k − P
n
max) = 0, the second

part loss function lossconst will not influence the network
training.

We adopt the RMSprop algorithm as the optimization algo-
rithm, which is an efficient implementation of mini-batch
gradient descent and we choose 0.9 as the decay rate [21].
In order to improve the performance of the DNN, we choose
the Xavier initialization [22] to initialize the weights. When
using a large learning rate, the training speedwill be improved
and will get high convergence error. Otherwise, when using a
small learning rate, the train speed will be slow down and get
the low convergence error. In addition, when using a big batch
size, the convergence error will increase. otherwise, when
using small batch size, the convergence error will decrease
but unstable. Therefore, we will try different learning rate
and batch size, then choose appropriate learning rate and
batch size based on the validation error of previous 300 times
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FIGURE 5. Batch size selection.

FIGURE 6. Learning rate selection.

of the DNN training, which are shown in Fig.5 and Fig.6,
respectively.

IV. SIMULATION RESULTS
In this section, we generate 50000 samples as training dataset,
of which 500 are randomly spilt into validation dataset
and 49500 are randomly spilt into training dataset. Then,
in order to reduce the influence of randomness on experimen-
tal results, we will generate 5000 samples as testing dataset
and repeat the experiment 5000 times in two methods, finally
get their average respectively.

A. SCENARIO I AND PARAMETERS SELECT
In this part, we consider the scenario I, which contains
5 RAUs and 3 UEs. A fully-connected deep neural network
which contains five layers, one input layer with 15 nodes,
three hidden layers with 50, 100, 50 nodes and one output
layer with 15 nodes is proposed for DAS. We use ReLU as
the activate function for both hidden layers and output layer.
We set the batch size and the learning rate to be 512 and
0.001 respectively. In addition, we set the scale factors λ1 and
λ2 to be 1 and 0.1, respectively.

B. SCENARIO II AND PARAMETERS SELECT
In this part, in order to verify the scalability of the power
allocation based on DNN method, we test the model in
scenario II, which contains 5 RAUs and 10 UEs. The input
layer is 50 nodes, the number of neurons in the hidden layer
are 100, 150 and 100. The number of neurons in output layer
is 50. We use the same batch size, learning rate and scale
factors as the scenario I.

C. RESULTS
The simulation parameters are listed in Table.1. In the case
of scenario I, when the objective problem is maximizing SE,
the SE and EE performance of the sub-gradient algorithm
and the power allocation based on DNN method is shown
in Fig.7 and Fig.8.When the objective problem ismaximizing
EE, the SE and EE performance of the two methods is shown
in Fig.11 and Fig.12.

FIGURE 7. SE versus maximum transmit power in scenario I when the
objective problem is maximizing SE.

FIGURE 8. EE versus maximum transmit power in scenario I when the
objective problem is maximizing SE.

In the case of scenario II, when the objective problem
is maximizing SE, the SE and EE performance of the two
methods is shown in Fig.9 and Fig.10. When the objective
problem is maximizing EE, the SE and EE performance of
the two methods is shown in Fig.13 and Fig.14.
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FIGURE 9. SE versus maximum transmit power in scenario II when the
objective problem is maximizing SE.

FIGURE 10. EE versus maximum transmit power in scenario I when the
objective problem is maximizing SE.

FIGURE 11. SE versus maximum transmit power in scenario I when the
objective problem is maximizing EE.

In order to prove that the performance of power allocation
based on DNN method is very close to the sub-gradient algo-
rithm, the accuracy of the DNN method under two scenarios
are shown in Table 1 and Table 2, respectively. In addition,
to better compare the computational complexity between the
two methods, the computational time of the two methods

FIGURE 12. EE versus maximum transmit power in scenario I when the
objective problem is maximizing EE.

FIGURE 13. SE versus maximum transmit power in scenario II when the
objective problem is maximizing EE.

FIGURE 14. EE versus maximum transmit power in scenario II when the
objective problem is maximizing EE.

under the two scenarios is shown in Table 3 and Table 4,
respectively.

D. RESULTS ANALYZE
As shown in the simulation results above, we can see from
Fig.6 to Fig.13, the performance of the DNN method is very
close to the traditional sub-gradient algorithm. We can see
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TABLE 1. Simulation parameters.

TABLE 2. PErformance comparison for the two methods in scenario I.

TABLE 3. Performance comparison for the two methods in scenario II.

TABLE 4. Computational times for the two methods in scenario I.

form the Table 1 and Table 2. In the two scenarios described
above, whether the objective problem is maximizing SE or
maximizing EE, the accuracy of the DNN method can reach
more than 92% of the traditional sub-gradient algorithm.

We can see from the table 3 and table 4. To begin with,
for the DNNmethod, the online computational time is almost
same at different maximum transmission power, because the
structure of the DNN is same under the same scenario. For the
traditional sub-gradient algorithm, the online computational
time will be different under different maximum transmission
power, because the number of iterations required to find the

TABLE 5. Computational times for the two methods in scenario II.

optimal power allocation schemes may be different. In addi-
tion, for the sub-gradient algorithm, the computational time
required to maximize EE is much higher than the maximum
SE. What’s more, the online computational time of the the
DNN method is many times less then that of the traditional
sub-gradient algorithm.

In order to further understand the advantages of the DNN
method, we compare the time complexity of the DNNmethod
and traditional sub-gradient algorithm. According to the [23],
the online time complexity of the already trained well fully
connected neural network is O(n). When the objective prob-
lem is maximizing SE, the online time complexity of the
traditional sub-gradient methods isO(n3).When the objective
problem is maximizing EE, because the algorithm needs
to combine fractional programming with sub-gradient algo-
rithms, the online time complexity is higher than when max-
imizing SE.

In conclusion, the performance of the DNN method
can achieve 92% of the traditional sub-gradient algorithm
and provide with at least three orders of magnitude times
speed up.

V. CONCLUSION
In this paper, we exploited the DNN algorithm to solve power
allocation problem in DAS. Firstly, we introduced a system
model and assumed that perfect channel state information is
known at both transmitter and receiver side and the channels
are orthogonal so there are no interference to each other.
Secondly, we randomly generated a large number of the
channel realizations and used the traditional sub-gradient
algorithm to maximize SE and EE optimization and save
the optimal power allocation schemes. Thirdly, we fed the
channel realizations and the corresponding power allocation
schemes into the DNN and used the loss function to train
the DNN. Fourthly, we generated other channel realizations
for testing dataset and fed into the DNN which had been
trained well and got the outputs of DNN. Otherwise, the same
testing dataset were fed into the traditional sub-gradient algo-
rithm and calculate the optimal power allocation schemes.
Finally, we showed the performance and computational time
difference between the DNN method and the sub-gradient
algorithm, respectively.

In the future, we will explore more excellent machine
learning algorithms to solve the power allocation problem
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in DAS. For example, we will try to use the CNN to realize
power allocation by using user geographic location instead
of user channel information. In addition, we will try to use
migration learning to deal with the problem of insufficient
training dataset in wireless communication systems. What’s
more, we will try to use the ensemble learning to make the
generalization ability of the trained model stronger so that it
can cope with various complicated situations in actual wire-
less communication systems. Finally, we hope to find more
machine learning methods with excellent performance and
low computational complexity to truly implement power allo-
cation algorithms in actual wireless communication systems.
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