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ABSTRACT The paper proposes a new HCI mechanism for device-free gesture recognition on the table
using acoustic signal, which can extend the gesture input and interactions beyond the tiny screen of mobile
device and allow users to provide input without blocking screen view. Previous researches have either relied
on additional devices (e.g., special wearable device and mouse) or required active acoustic signals which
demand additional cost and be less prone to popularize, while we explore the device-free gesture recognition
using passive acoustic signals. This technology is more challenging due to the lack of an effective approach
to eliminate the inherent ambient noise disturbances and extract stable gesture features. We fuse both short
time energy (STE) and zero-crossing rate (ZCR) to identify the effective signals from the original input,
and leverage the Mel frequency cepstral coefficients (MFCC), cochlear filter cepstral coefficients (CFCC)
to extract the stable features from different gestures. The unique features in support vector machine (SVM)
classifier achieve a high gesture recognition accuracy from the noisy scenarios and mismatched conditions.
Implementation on the Android system has realized real-time processing of the feature extraction and gesture
recognition. Extensive evaluations show our algorithm has a better noise tolerant performance and the system
could recognize seven common gestures (click, flip left/right, scroll up/down, zoom in/out) on smart devices
with an accuracy of 93.2%.

INDEX TERMS Human-computer interaction, acoustic sensing, gesture recognition, MFCC, CFCC,

Android system.

I. INTRODUCTION

Smart devices such as smartphones and smartwatches have
become pervasive and play a pivotal role in our daily life.
However, the small size of the touch screen limits the user’s
experience and leads to many errors when user interacts with
smart devices via on-screen soft keyboards. Besides, due
to the small operational space on the touch screen, many
Human-Computer Interaction (HCI) applications based on
smartphones and smartwatches are becoming cumbersome
and inconvenient. As a result, gesture recognition becomes a
promising method for human-computer interaction and draws
a lot of attention from research community.
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One popular gesture recognition solution is to use com-
puter vision (CV) techniques [1]-[3]. However, these CV
based gesture recognition systems are generally sensitive to
the ambient lighting conditions, and their implementations
are usually too complex to be adopted on commercial smart
devices. Another gesture recognition solution depends on
specialized sensor hardware. To apply these methods, users
have to either attach some delicate equipment on smart
devices [4]-[6], or equip some wearable hardwares [7]-[9],
which are burdensome, costly and inconvenient. For example,
Soli [4] is a promising technique, however, it is expensive.
To use Fingerpad [7], the user needs to wear fingertips which
are inconvenient and easy to lose. Kinect [1] and Wii [2]
can only identify coarse gestures and users are difficult to
take them along. Fortunately, nowadays, smartphones have
equipped many sensors and have more powerful computing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 31481


https://orcid.org/0000-0002-3180-121X
https://orcid.org/0000-0003-1057-2793
https://orcid.org/0000-0001-8546-4960
https://orcid.org/0000-0003-1343-8768
https://orcid.org/0000-0001-9017-8977

IEEE Access

G. Luo et al.: HCl on the Table: Robust Gesture Recognition Using Acoustic Sensing in Your Hand

capabilities than before, which make device-free ges-
ture recognition possible. As a regular embedded sensor,
the microphone is exploited to be used for fine-grained appli-
cations such as moving objects locating and tracking around
the smartphone [10]. The similar technology that extends
acoustic signal to gesture recognition has brought forth the
prosperity of HCI applications.

Depending on different acoustic sources, the acoustic sig-
nal based systems can be divided into two prevailing modes,
the active mode and passive mode. For active mode, a cus-
tomized ultrasound signal is sent for motion sensing and
object tracking such as SoundWave [11], FingerIO [12],
Strata [13], UltraGesture [14], Vskin [15] and AcouDig-
its [16]. These methods can provide accurate motion sensing
and tracking, however, they not only depend on extra sen-
sors (e.g., loudspeaker), but also consume more energy. For
passive mode, it only leverages the embedded microphone to
collect the sound caused by the moving objects, which makes
them more energy efficient and more suitable for long-term
sensing. For example, by fingers stroking on the keyboard,
the emitted sound could be identified and recognized as
different keystrokes [17] and [18]. SoundWrite [19] also uses
the collected acoustic signal to recognize the user’s input
gesture. UbiWriter [20] leverages small mobile devices for
recognizing freestyle handwriting via acoustic sensing.

In this article, we focus on the passive device-free gesture
recognition for its energy efficiency and low complexity. In
our scenario, the user does not need to wear any equipment,
but only needs to draw different gestures on the plane near
the smart device. Besides, the device can judge user’s input
gesture by analyzing the collected acoustic signal. To real-
ize such system, three intrinsic challenges must be formally
addressed.

o The first challenge is how to distinguish the acoustic
signal corresponding to user’s input gesture from the
ambient noise. Obviously, the ambient noise will inter-
fere the effective acoustic signal identification and affect
the system performance consequently.

o The second challenge is how to choose the suitable
acoustic feature. The selected acoustic feature should be
conspicuously different among different gestures, and
for the same gesture, the selected feature should be
stable in various environments.

o The third challenge is how to select the appropriate clas-
sifier. As a human-computer interaction method, the sys-
tem needs to recognize user input gestures quickly
and accurately. Therefore, we need to make a trade-off
between accuracy and real-time.

To solve the above challenges, we first design a
dual-threshold scheme to identify the acoustic signal of the
user’s input gesture and separate it from the ambient noise.
Compared with previous methods which are based on energy
detection and preset threshold [19], [21], our dual-threshold
segmentation scheme can identify and extract the acoustic
signal corresponding to the user’s gesture more effectively,
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and reduce the interference of ambient noise. Then, we fuse
the Mel frequency cepstrum coefficient (MFCC) and cochlear
filter cepstrum coefficient (CFCC) to address the second
challenge better. Compared with amplitude spectrum density
(ASD), MFCC and CFCC can provide acoustic characteris-
tics in more detail. The MFCC works well in the scenario
with high SNR while CFCC works well in the scenario with
low SNR [22]. Combining them can provide more accurate
and robust gesture recognition. Finally, we compared KNN
and SVM classifier in terms of accuracy and time cost, and
choose the SVM as our classifier for gesture recognition.
The contributions of our work are as follows:

e We present a dual-threshold signal segmentation
scheme, which is more robust against to the ambient
noise and can extract the useful signals effectively.

o We fuse MFCC and CFCC as a new acoustic feature.
Comparing with ASD, our fused feature can provide
better performance on both accuracy and robustness.
In addition, we compare several popular classifiers and
choose SVM as our classifier for its low time cost and
acceptable accuracy.

« We implement the system and design the app on smart-
phone. Comprehensive experiments in real world show
that our system can achieve a recognition accuracy
of 93.2%, and has good robustness to ambient noise. Its
performance is stable in different environments as well.

The rest parts of this paper are as follows: In Section II,
a comprehensive introduction with technical details is pre-
sented for system design and show how to implement it on
Android system in Section III. Then, we validate our design
with experimental results and analysis in Section IV. After
that, we discuss some related issues and review the related
work in Section V and Section VI respectively. Finally,
we conclude the paper in Section VII.

Il. SYSTEM DESIGN

A. SYSTEM OVERVIEW

In this section we show an overview of the architecture and
basic workflow of our system. Figure 1 gives a detailed and
vivid demonstration of our gesture recognition system, which
consists of four modules.

1) SAMPLING

Specifically, when users slide their fingers on the desktop,
such as zoom in with thumb and forefinger, the friction
between fingers and desktop will generate slight vibration.
The microphone embedded in the smartphone will capture
the acoustic signal caused by the vibration and acquire the
original sampling of the acoustic signal.

2) EFFECTIVE SIGNAL SEGMENTATION

Then, our algorithm first utilizes the moving average window
to eliminate background noise spectrum and interference, and
the system will extract the effective parts of gestures from
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FIGURE 1. Algorithm diagram and system architecture.

such acoustic signal via a series of judgments and adaptive
segmentation algorithm.

3) FEATURE EXTRACTION

In the next step, the unique feature of acoustic signal will
be extracted and established for different gestures. Here we
adopt the most representative acoustic feature named MFCC,
and a new auditory-based feature named CFCC. Both acous-
tic features extraction algorithms imitate the human auditory
system, and they have been proved as effective methods and
have shown strong robustness in complex environment.

4) FEATURE MATCHING

Finally, we apply the machine learning algorithm (i.e. support
vector machine (SVM) [23]) to estimate the input gesture. We
first train each gesture and establish the feature set, and then
leverage the SVM algorithm to match the extracted features
of the input gesture with feature set and choose the optimal
matching as the recognition result.

B. SAMPLING PROCESS

We record the acoustic signals of the gesture sliding on the
table in a clean environment and extract amplitude spectrum
density (ASD) by fast Fourier transform (FFT), as illustrated
in Figure 2. From this figure we can see vividly that the
frequency of gesture sliding is mostly below 2KHz, and the
energy of the gesture signal is mainly concentrated in the
low frequency spectrum (e.g., less than 1KHz). According
to the Nyquist-Shannon sampling theorem, if we want to get
the complete gesture signal, the sampling frequency should
be larger than 4KHz. On the other hand, the default sam-
pling frequency of most mobile phones is 44.1KHz. The
high frequency sampling frequency will increase the pro-
cessing overhead, which may slacken the gesture recogni-
tion speed. Besides, high frequency signals will also involve
more noise which affects the gesture recognition. There-
fore, to avoid the negative impacts of high frequency sam-
pling without reducing the sampling quality, we make a
down-sampling (8KHz) before segmenting acoustic gesture
signal.

C. EFFECTIVE SIGNAL SEGMENTATION
Ambient noise can interfere with the acoustic gesture sound
and contaminate the signal spectrum. As a consequence,
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FIGURE 2. Amplitude spectrum density of acoustic signal.

extracting effective gesture segment from the raw recorded
signal is the fundamental task for gesture recognition. Our
acoustic signal segmentation module consists of three steps:
filtering, denoising and segmentation.

1) FILTERING

As depicted in Figure 2, the effective gesture signal is con-
centrated below 2KHz, so we design a low-pass Butterworth
filter with the cut-off frequency of 2KHz to remove the
high-frequency component and obtain a clean gesture acous-
tic signal.

2) DENOISING

The inherent ambient noise strongly influences the perfor-
mances of gesture identification systems. Therefore, to avoid
the appearance of some burrs triggered by ambient noise in
the acoustic signal, we use the moving average filtering to
eliminate the interference of ambient noise. For each piece of
acoustic signal x(n), A(t) denotes the moving average energy
level with a window size W,:

t+Wa

1
AW = - ) xn) M

n=t

We set an empirical value W, = Smis, i.e., 8KHz x Sms = 40
samples. After moving average filtering, the noise of the orig-
inal acoustic signals will be reduced and eliminated, while the
effective gesture signals will be enhanced and emerged.

31483



IEEE Access

G. Luo et al.: HCl on the Table: Robust Gesture Recognition Using Acoustic Sensing in Your Hand

3) SEGMENTATION
Prior works on gesture signal segmentation only relied on
the energy feature [19], [24]. However, when the ambient
noise is strong, applying the single energy feature is not
suitable for gesture distinguish since the gesture feature is
submerged by the noise. We present a dual-threshold scheme
to extract the gesture signal from the raw signal. In this
scheme, we combine zero-crossing rate (ZCR) [25] and short
time energy (STE) together for signal segmentation. The new
scheme is fast and has a relatively high accuracy for the
remarkable discriminating ability of STE and ZCR [26].

The short time energy of the signal x(n) is defined as

o
Ey= Y [x(m)-wn—m) 2
m——00

where w(n—m) is the window function used to extract a frame
from the acoustic waveform.

The zero-crossing rate indicates the number of times a
frame of an acoustic signal waveform crosses the horizontal
axis (zero level). The average zero-crossing rate of a signal is
defined as
o
Z lsgnx(m)] — sgnlx(m — D]| - wn —m) (3)

m=—0o0

1
n=—
2

where sgn is symbolic function which is denoted as

1, x(n) >0
sgnlx(n)] = {_1’ x(n) <0 “

We divide the acoustic signal into multiple frames. Each
frame contains 256 samples, the corresponding time is 32ms
(256/8000HZ x 1000ms = 32ms). The duration of acoustic
signal can be assumed as a stationary state [27], and the
overlap between two adjacent frames is 80, which is about
one-third of the frame length. Figure 3 shows the details of
short time energy and the zero-crossing rate of gesture zoom
in.

The judgment of the start and end points of the gesture sig-
nals is based on the following principles: the onset of gesture
acoustic is indicated by a sudden large increase in acoustic
energy as compared to the background energy level, while
the termination of gesture acoustic is indicated by a smaller
fall in energy level which may not be apparent in noise. We
first normalize the amplitude of acoustic signal and set two
thresholds for the short time energy. The initial low threshold
of the short time energy 77, is 2, the high threshold Ty is
10. Similarly, we set the initial zero-crossing rate ZCR to 5.
The choice of thresholds is based on the ambient noise level,
and the thresholds of short time energy will make adaptive
adjustment as algorithm 1 depicts. Then we set parameter
“maxsilence” as the maximum mute length allowed in the
gesture signal and “minlen” as the shortest length of the
effective gesture signal segment. The initial “maxsilence” is
set to 30 while the “minlen” is set to 20.

Algorithm 1 describes the details of the segmentation pro-
cess. We divide the whole gesture signal into four states,
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FIGURE 3. The STE and ZCR of gesture zoom in signal.

the state O represents the mute state, the state 1 represents
a possible gesture state, the state 2 represents a gesture state,
and the state 3 represents end state.

o In state O or state 1, for each frame of the acoustic
signal x(n), when the short time energy E(n) > Ty or
the zero-crossing rate Z(n) > ZCR, the frame signal is
considered as the starting point of the signal and the
parameter count is increased by 1, otherwise, the frame
of acoustic segment will be regarded as noise and the
algorithm will cut it off, the frame of acoustic signal will
return to state 0. If E(n) > Ty, we confirm the frame is
effective gesture signal and the parameter count starts
to increase by 1, the acoustic signal will switch to the
state 2.

o Inthe state 2, when E(n) > Ty, or Z(n) > ZCR, the param-
eter count is increased by 1, if the condition is not
satisfied, then silence starts to increase by 1, if the length
of silence is greater than maxsilence and the size of
count is greater than minlen, we regard such frame as the
end edge of the whole gesture signal, the acoustic signal
will switch to state 3 and end the algorithm, otherwise
the frame of acoustic signal will be considered as noise
and re-judgment.

« In the state 3, the algorithm will break the loop and seg-
ment gesture signal, Figure 3 shows the final effective
signal.

D. FEATURE EXTRACTION

How to select the most efficient and accurate feature is essen-
tial for gesture classification. In this module, we will describe
the features we have adopted and compare the performance
among different features. Finally, we will give the selected
feature vector in our algorithm.
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Algorithm 1 Algorithm for Segmentation

Input: The acoustic signal x(n), and three temporal
threshold 7;, = 2, Ty = 10, ZCR = 5.
Output: The segment of each gesture y(n).
1 Initialization: Status = 0, framelen = 256, framelnc =
80, Count =0, Silence =0, x; =0, x, =0
Divide x(t) into frames x;(n);
for iy, frame x;(n) do

2
3
4 Calculate E(n) and Z(n);
5 Ty = min(Ty, max(E(n)/4));
6 Tr, = min(Ty, max(E(n)/8));
7 switch Status;
8 caseOor 1
9 if E(n) > Ty or Z(n) > ZCR then
10 Status = 1; Count = Count + 1;
11 if E(n) > Ty then
12 x1 = max(i - Count-1,1);
13 Status = 2; Silence = 0;
14 Count = Count + 1;
15 end
16 end
17 else
18 ‘ Status = 0; Count = 0
19 end
20 case 2
21 if E(n) > Ty, or Z(n) > ZCR then
2 | Count = Count + 1;
23 end
24 else
25 Silence = Silence + 1;
26 if Silence > Maxsilence then
27 if Count > Minlen then
28 Status = 3; xp = x; + Count-1;
29 break the loop;
30 end
31 else
32 Status = 0; Silence = 0;
33 Count = 0;
34 end
35 end
36 else
37 Count = Count + 1;
38 end
39 end
40 end

41 y(n) = x((x; — 1)x(framelen -framelnc) +
1:xp x (framelen -framelnc));

In our previous work, Soundwrite [19] has proposed a
typical acoustic feature named amplitude spectrum density
(ASD), which is the frequency domain profiles transformed
from time domain signals by fast Fourier transform (FFT).
Soundwrite extracts the unique ASD feature and calculates
the position of the peak for each acoustic signal of the input
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gesture, since the ASD of each gesture exhibits distinct wave
shape in the spectrum, and the peaks are different across
frequencies, different gesture can be recognized and distin-
guished.

However, this method is not robust. When we input the
same gesture on the table with different strength, the ASD
will be different. Figure 4 shows the ASD of gesture flip
left with different strength, we can see clearly that when we
input gesture on the table with different strength, the peaks
will have a conspicuous change. Besides, the ASD is the
frequency domain characteristic of the whole input gesture
signal, which is a global information, thus we cannot see the
changes of acoustic signal over time.

1) MFCC FEATURE EXTRACTION

To avoid the deficiency of ASD, we adopt another feature
named Mel frequency cepstral coefficients (MFCC) which
is usually used in human speech recognition. MFCC takes
human perception sensitivity with respect to frequencies into
consideration. The mel-frequency cepstrum (MFC) is a repre-
sentation of the short-term power spectrum of a sound, based
on a linear cosine transform of a log power spectrum on a
nonlinear Mel scale of frequency [28]. The extraction process
of MFCC is shown in Figure 5.

The MFCC features are obtained by the below steps.

o Pre-emphasis: The process of pre-emphasis will make
acoustic signal pass through a high-pass filter which can
raise the high-frequency part and flat the spectrum of the
signal.
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« Windowing: We will multiply each frame by a hamming
window to increase the continuity of the left and right
ends of the frame. In our algorithm, the effective length
of a frame is 256 sampling points.

o Fast Fourier transform (FFT): FFT is applied to each
frame, to transform the distribution of energy into fre-
quencies and calculate the periodogram of the power
spectrum.

o Mel-filter bank: Apply the Mel filterbank to the power
spectra, sum the energy in each filter.

o Logarithm energy: Take the logarithm of all filterbank
energies. The transfer function that converts the linear
spectrum X (k) to the logarithmic spectrum S(m) is:

N—1
Semy=1n | Y IXWPHu() |0 <m =M (5)
k=0

e Discrete cosine transform (DCT): Take the DCT of the
log filterbank energies and keep DCT coefficients.

C(n) = \/7 Zs(m)cos w 6)

Finally, we extract the MFCC by following formula:

Ct+1 — Cy, t<kK
K
_ k —Cr
4 = Yok k(crpk — k)’ others o
\/2211;1]‘2
Ct — Ci—1, t>0-K
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where d; denotes the ™ first order difference, ¢; denotes
the ¢ cepstrum coefficient, Q denotes the order of the cep-
strum coefficient, and K denotes the time difference of the
first-order derivative, which is set at 1. The second-order
difference vector can be obtained by taking the derivative of
the first-order difference.

As mentioned above, we try to extract the information out
of each gesture acoustic signal which consists of 50 samples
and a total of 36 coefficients per signal. This feature extrac-
tion, though results in some loss of information, is sufficient
for implementing classification techniques for basic feature
detection.

We plot the MFCC of the gesture flip left in Figure 6.
As Figure 6 shows, the profile of MFCC feature in the 3D
view remains stable and the changes are not conspicuous.
We convert the 3D versions of MFCC into 2D version for
further processing. We mark the relatively obvious change
areas of the MFCC with three red boxes in each sub-figure.
From the trend of the MFCC changes in the figures and the
variation range of the corresponding frame, we can see that
the MFCC changes relatively smoothly, except the initial few
frames, the other frames are relatively slight. Which means,
compared with the ASD, the MFCC has certain robustness in
distinguishing acoustic gestures signal.

2) CFCC FEATURE EXTRACTION

Although MFCC has better robustness in a clean test-
ing condition [29], [30], when received strong ambient
noise, the accuracy of the MFCC feature will decrease
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intensely [30], [31]. Considering the human hearing system is
robust to the noisy conditions, we combine an auditory-based
feature extraction algorithm which is modeled on the basic
signal processing functions in the ear named cochlear filter
cepstral coefficients (CFCC) [22].

CFCC is based on auditory transform (AT) and utilizes a
set of modules to emulate the signal processing functions in
the cochlea. The CFCC features have strong robustness in
acoustic identification especially when the training and test-
ing environments are mismatched [32]. The auditory feature
extraction algorithm is shown in Figure 7.

The extraction process is mainly based on the human hear-
ing system: the cochlear filter bank is intended to emulate
the impulse response in the cochlea representing the basilar
membrane (BM), the transformation of the filter models the
whole process of the outer ear, middle ear and inner ear
and uses the forward auditory transform to replace the fast
Fourier transform used in many other features. The hair cell
is a variable length window function, the nonlinear loudness
transformation transforms energy information of the hair cells
into perceived loudness. The discrete cosine transform (DCT)
removes the correlation between the signals, the auditory
features of acoustic signals through the above process are
called cochlear feature cepstral coefficients.

The CFCC is extracted by following formula:

, 2'E  anm—1/2)
cfec(n, j) = \/% 2 ym peos(———=)  (§)
m=1
where 0 <n < N,0 < m < M, M is the number of cochlear
filters, and N is the dimension of each frame feature after
feature transformation. In this paper, N = M = 18.

MFCC feature is based on the Fourier transform (FT)
which has a fixed time-frequency resolution and a
well-defined inverse transform, while CFCC feature is
auditory-based, time-frequency transform which is more
similar to the mechanism in the human hearing system.
Compared to the FFT, the AT has flexible time-frequency
resolution and its frequency distribution can take on any
linear or nonlinear form.

We compare different individuals and concatenative fea-
ture extraction techniques for system evaluation.
Figure 8 is the recognition result of seven different gestures,
we choose CFCC, MFCC and ASD as the feature for gesture
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recognition respectively, the figure further demonstrates that
the combination of CFCC and MFCC has a significant
improvement compared to ASD among all the seven gestures,
and the gesture recognition rate has increased by about 30%.
For most gestures (except gestures flip left/right) the CFCC
features perform better than MFCC, while the fusion features
of MFCC and CFCC perform the best.

Feature Vector: We first obtain the MFCC feature. Each
sound segment is divided into frames with length Nc, and the
overlap between two adjacent frames is Ny. For each frame,
the number of cepstrum coefficients we adopt is N,,. So for
each frame i = 1,2,3...N, we calculate a static vector of
MEFECCs: [Ciut, Ci2, Ci3 - . . Cpye], and

N
I, .
C”“':NZI:CJI" i=1,...Ny 9)
J=

In our algorithm, the acoustic sampling rate is reset from
44.1KHz to 8KHz by down-sampling. We set N,, = 36,
namely we choose 36 coefficients. The parameter N is posi-
tively correlated with the length of acoustic gesture segment
effectively extracted by the algorithm, and C} denotes the i
MFCC values of j” frame. The selection of parameter N,
and Ny depends on the specific experimental data. Generally
speaking, the larger the parameter N, the more samples for
each frame, and the worse the short-term stability of the
acoustic signal. Conversely, the smaller the N, is, the fewer
samples for each frame is, and the better the short-term
stability of the acoustic signal is. However, too few samples
will increase the number of entire frames, which will increase
the computational cost and degrade the real-time performance
of the system. We set the samples N, with different values for
testing the recognition accuracy, and the overlap between two
adjacent frames Ny is set to 1/3 of N.. Figure 9 shows when
N is set to 256 and the corresponding Ny is 80, the system
recognition accuracy is the highest. Therefore, the algorithm
set No = 256, Ny = 80. The CFCC feature extraction
algorithm is similar to MFCC, for each frame, we calculate
a static vector of CFCC: [C,1, Cc2, C¢3 ... Cy], and get the
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FIGURE 9. Average accuracy with different frame length.

mean value of each frame in the same dimension for entire
acoustic signal.

For each frame, we extract the following features.

« MFCC: Which contains 12 MFCC values, 12 first-order
difference parameters (AMFCC), and 12 second-order
difference parameters ( AAMFCC).

o CFCC: which contains 18 coefficients.

o STE: Which shows the short time energy, the average of
the STE denoted as

1

S=—)E, 10
N (10)

M=

where E, is the signal short time energy of each frame
and N is the number of frames.

o ZCR: The zero-crossing rate, the average of the ZCR
denoted as

1 N
Z:NXI:Z,, (11)

where Z, is the signal zero-crossing rate of each frame
and N is the number of frames.
We denote the feature vector F for each acoustic signal
fragment by:

F = [a(Cp1, - - -Cmt), 1—a)(C1, - - -Ccn), S, Z]

We combine MFCC features with CFCC features in a linear
weighting method. The fusion coefficient « depends on the
environments and will make adjustment according to the
surrounding noise. In general, the stronger the ambient noise
level, the lower the coefficient of « is.

E. FEATURE MATCHING

We used the support vector machine (SVM) supervised learn-
ing algorithm to tackle the classification and recognition of
gestures. SVM constructs a hyperplane or a set of hyperplanes
in a high dimensional space, which can be used for classifica-
tion or regression. For input samples in n-dimensional space,
it looks for an optimal classification hyperplane, so that
two types of samples can get the best classification in this
hyperplane. SVM is essentially a two-class classifier, how-
ever, it can be extended to a multi-class classifier. The com-
mon methods are one-versus-many discriminant strategy and
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FIGURE 10. SVC parameter selection result (3D view).

one-versus-one discriminant strategy. For the former, in the
training, it classifies one category or object as one class in
the k-class samples, and the rest is classified into another
class. So, the k-class samples need k two-classifier. When
classifying unknown samples, the k two-classifiers are used
for classification respectively, the category that appears most
frequently in the classification result is the final classification.
For the latter, any two types of samples will train a two-
classifier, and a k-classifier is consist of k x (k — 1)/2 two
classifiers. When classifying unknown samples, all k*(k-
1)/2 classifiers are used for classification, and the category
which occurs the highest frequency is used as the final classi-
fication result of the sample. In our algorithm, we choose the
one-versus-one discriminant strategy, and the kernel function
we have chosen is radial basis function (RBF) kernel which
is defined as:

(I x| )
202 s

k(xi,x) =e g>0 (12)

The above equation can also be written as:

k(x,y) = e VIR0 S g (13)

the reason we chose RBF is that it can achieve nonlinear
mapping and has relative small number of parameters. When
introducing the relaxation factor &(i), the objective function
and constraint condition for SVM are:

: 1 2 = .
min Z{wll” + C;E(:)
sty 00 XD 4 b) = 1 - £,
E@ >0, i=1,2...n (14)

where w and x are n-dimensional column vectors, b denotes
the distance from the hyperplane to the origin and ¢ denotes
the penalty coefficient. In SVM, there are two important
parameters ¢ and g, ¢ controls the overfitting of the model,
and g (y ) controls the degree of nonlinearity of the model.
The two parameters can get the optimal value by k-fold cross
validation and grid-search as Figure 10 shows.
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TABLE 1. Performance between SVM and KNN.

Method Instances Accuracy Time(s)
5 73.00% 0.34
(SCZI(\)/.[S’ 10 84.00% 0.50
4=0.08) 15 91.30% 0.66
20 93.2% 0.78
5 57.00% 0.09
KNN 10 80.00% 0.16
k=7) 15 90.00% 0.29
20 91.1% 0.35

As a comparison, we also used the k-nearest neigh-
bors (KNN) algorithm for feature classification as it has a
relatively simpler implementation on smartphone. For the
sake of convincible demonstration on our algorithm, we train
seven gestures and each gesture is repeated 20 times. With
the increased parameter k, we conduct the gesture recognition
experiments respectively and establish the training set. In our
experiments, the optimal set of parameter k we have chosen
is 7 from the statistical accuracy rate, and the correspond-
ing recognition accuracy could be 91.4%. Table 1 presents
the recognition accuracy and computation time for differ-
ent training instances between SVM and KNN. We can see
SVM has a better performance especially when the training
instances is relatively small. Both SVM and KNN achieve
high accuracy as the training instance increases, however,
the growth rate of time cost in KNN is significantly higher
than that of SVM.

Ill. SYSTEM IMPLEMENTATION
In this section, we introduce the technical details of our
system implementation on Android mobile phones.

A. SAMPLING PROCESS

As for Android system design, we collect the acoustic sig-
nal by invoking the “AudioRecorder” function, which is
embedded in android studio. The framework of sampling
module is shown in Figure 11. The Android app contains
three layers: user layer, audio driver layer and hardware
layer. The user layer provides a lot of APIs for user to
develop gesture recognition applications, we can implement
the entire function of android audio at user layer, while
audio driver layer and hardware layer cannot be modi-
fied by the user and their control permissions lie in the
system. The user layer can be further decomposed into
four layers in detail: app layer, framework layer, audio lib
layer and HAL (hardware abstraction layer). At the APP
layer, we state “android.permission.RECORD_AUDIO”
and “android.permission. WRITE_EXTERNAL_STORAGE”
to get the record and store permissions of the microphone. We
collect audio gesture signal by invoking “AudioTrack” func-
tion of android studio and record the audio data by invoking
another API named “AudioRecorder”. The audio Lib layer
is an interface, it contains a series of library functions for
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FIGURE 11. Framework of sampling module.

audio processing. The hardware abstraction layer is mainly
responsible for managing audio equipment.

B. EFFECTIVE SIGNAL SEGMENTATION

As for android design, we first use the “Average()” function
to calculate the moving average energy and eliminate the
ambient noise. Then we invoke signal processing toolbox of
Matlab in Android Studio. We utilize “Enframe()” function
to frame the signal, next step, we use the “energy()” function
and “zerocross()” function to calculate the short-term energy
and zero-crossing rate, respectively. At last, we invoke “Sys-
tem.arraycopy()” function to find the split point of the gesture
signal. Finally, we extract gesture segments through a series
of key points.

C. FEATURE EXTRACTION

Now we describe the extraction and implementation of fea-
ture vectors of Android system. Taking MFCCs for example,
in the pre-processing stage, the signal is subdivided into
frames according to the effective acoustic gesture segmenta-
tion. Then we invoke the “FFTjava” class for fast Fourier
transform, and convert the acoustic gesture signal of each
frame from time domain into the energy information of the
frequency domain. Next, “calculateMelBasedFilterBank()”
function which is embedded in the “MFCC.java” class [33]
will be invoked to obtain the Mel filter banks. In order to
eliminate the effect of harmonics and highlight the resonant
peak of the original acoustic signal, we smooth the signal
through 20 sets of Mel-scale filter banks. The Mel filter
protects the MFCC from the affection of the signal strength
variation and reduces the computational complexity as well.
After that, we use the “Math.log” function to calculate
the logarithmic energy output for each filter bank. Finally,
the above-mentioned logarithmic energy is multiplied by the
DCT matrix calculated by the “initializeDCTMatrix()” func-
tion of the “MFCC.java” class, and the discrete cosine trans-
form is performed to obtain the 12 MFCCs values. We get
the static values from the “getParameters()” function of the
“MFCC. java” class. Here, along with MFCC coefficients we
have also used delta MFCC coefficients which represent the
change in frequency power.
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D. FEATURE MATCHING

Here we introduce the android implementation of feature
matching module. In Android Studio we invoke the LIBSVM
library [34], which is a simple and efficient software for
SVM classification and regression. In order to find the best
parameters ¢ and g, we invoke “SVMcgForClass()” function.
The “svm_train()” function is used to train the classification
model while the “svm_predict()” function is used to predict
the recognition result.

Finally, we briefly introduce our app, whose interface
design mainly includes two modules: acoustic gestures train-
ing module and acoustic gestures testing module, as demon-
strated in Figure 12. In the training stage, for each gesture the
system will remind the user to input the gesture within 3 sec-
onds, while in the testing stage the system will automatically
detect the input gesture signal and display the recognized ges-
ture. Meanwhile, the error recognition can also be corrected
according to the user’s judgment, and the rectificatory results
will be updated to the training data set automatically.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithm in terms of recognition accuracy and robustness by
conducting a series of experiments in the real environment.
We have conducted extensive evaluations on macro bench-
mark for system-level performance and the micro benchmark
for component-based evaluation with various influencing fac-
tors.

A. EXPERIMENT SETUP

The experiments are conducted in laboratory, dormitory and
classroom with different ambient noise levels. For each envi-
ronment, 10 volunteers (7 males, 3 females) are invited to
input gestures on different materials. The volunteers will
input seven different gestures in the training stage. For each
gesture, the duration of the training and test acoustic signals
is set to 3 seconds. We will count the recognition accu-
racy of each gesture separately in the testing stage. We
installed the app on three different Android smartphones
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(Samsung S5, HUAWEI Mate9, Xiaomi MI16). As the default
setting, a Xiaomi MI6 smartphone is placed on a coated-wood
table in the laboratory, and the audio sampling frequency is
set to 44.1kHz in order to obtain high quality acoustic signal
for gesture recognition. Figure 14 is a demonstration of our
experiment scenario. The volunteer inputs the gesture on the
table while the smartphone near the user collects the acoustic
signal and recognizes the gesture.

B. MACRO-BENCHMARK

1) AVERAGE ACCURACY OF EACH GESTURE RECOGNITION:
We first evaluate the average recognition accuracy for each
gesture. In this experiment, we have specified a list of ges-
tures for each volunteer and required them to input gestures
in the order on the list in a clean environment. In order
to mimic the daily use, in each list, all gestures have the
same input serial number, but the order is set randomly. Each
gesture is scattered among the list, and both the training
instances and testing instances of each gesture are 20. The
volunteers firstly input each gesture 20 times to establish
the training set. Then, in the testing stage, they randomly
input each gesture and judge the recognition results. Finally,
the volunteers mark the recognition results on the list. After
the experiment, we collect all the lists and count the average
accuracy of each gesture recognition. Figure 13(a) shows
the average recognition results of 10 volunteers, where the
average accuracy of the correct gesture recognition rate is
about 92%. The gesture ‘““click” has the highest recognition
accuracy, which is 98%, while the gesture *“flip right’” has the
lowest recognition accuracy at 88%.

To deeply investigate the recognition accuracy among all
gestures, we count the estimation results of our algorithm
on each gesture and present them in the form of a confusion
matrix. As Figure 13(b) illustrates, estimation errors are more
likely to occur between the same set of gestures in different
directions. For example, the gesture “flip left” is prone to
be estimated as “flip right”, gesture ““scroll up” and *‘scroll
down” are likely to confuse with each other, and gesture
“zoom out™ tends to be estimated as “zoom in”’. The reason
behind the phenomenon is that these confused gestures have
a relatively high similarity except the direction, thus the
corresponding acoustic features are hard to be distinguished.

2) AVERAGE ACCURACY OF DIFFERENT USERS

We then test the average accuracy among different users. In
this experiment, we leverage the data in the previous experi-
ment and calculate the average gesture recognition accuracy
of each user. Due to the difference in sliding habits of different
users, the gesture signal will vary in spectrum, which may
affect the accuracy of the corresponding gesture recognition.
Figure 13(c) plots the average accuracy of 10 volunteers. The
figure intuitively shows that although there is a difference in
the recognition rate among different users, the recognition
accuracy of each user is still with an average of 93.2%. It
demonstrates the robustness of the unique features and the
effectiveness of the algorithm.
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FIGURE 14. Experimental scenario.

3) AVERAGE ACCURACY WITH MISMATCHED SCENARIOS

In our previous experiments, the training data set and testing
data set are conducted in the same scenario, and our algorithm
maintains a high-level recognition accuracy. We would like to
know whether our system can perform well even the training
environment is not the using environment. We evaluated our
system in a task where the acoustic conditions of training and
testing are mismatched, i.e., the training data were conducted
under one environment while the test is conducted in another
place. We choose three typical scenes (laboratory, classroom,
dormitory) for testing, the noise level is about 35dB,' 484B
and 55dB, respectively. Figure 15(a) shows the average recog-

IThe dB (decibel) here is the sound intensity level
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nition accuracy with different training scenarios and testing
scenarios. The X-axis is the training place while the Y-axis is
the testing place. As shown in the figure, when the training
scenarios and testing scenarios are the same, the accuracy
is above 89% with 7 typical gestures. Even the training
scenarios and testing scenarios are mismatched, the average
recognition accuracy can still reach up to 81%. The rationale
behind this is that, although the acoustic features generated by
different scenarios are diverse, with each person correspond-
ing to their training set, the accuracy of gesture recognition is
impervious in other places. In other words, each user’s input
habits and gesture features are also included in the extraction
feature of our gesture recognition algorithm.

4) AVERAGE ACCURACY WITH MISMATCHED INDIVIDUAL:

Due to the diversity in input gesture habits, the feature
established by different users are various. We evaluated the
impact of the training set for mismatched individual. We reuse
the data in Figure 13(c) and select the data of the top five
volunteers. We choose the gesture data from one of the five
volunteers as the training set, the other input gesture data as
the testing set, for each gesture we observe the recognition
accuracy of the mobile phone and count the identification
results. As shown in Figure 15(c), although the training
set and the testing set are not extracted from one person,
our algorithm still maintains a relatively high-level recogni-
tion accuracy, the recognition accuracy could be 88% with
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7 typical gestures. The explanation is that the input habits of
different users only affect the features in the time domain of
the acoustic signal, and the influence in the frequency domain
is not obvious.

5) AVERAGE ACCURACY WITH DIFFERENT LEVELS OF
SIGNAL PER NOISE RATIO (SNR)

The ambient noises (human voice, traffic noise, and life
noise) have a non-negligible influence on gesture detection
and recognition. We conducted gesture identification exper-
iments on the testing set with different levels of SNR. The
training acoustic signal of gesture was recorded under clean
testing environment, and then different noise is added to the
clean testing data at increasing intensity, there are six testing
conditions in the experiment (i.e., noisy level at 0dB.? 5dB,
10dB, 15dB, 20dB and 40dB SNR). From Figure 15(c) we
can see that the SNR level directly affects the performance of
the gesture recognition accuracy. When the SNR is reduced
to OdB, the gesture recognition rate could achieve 72%. The
performance of the algorithm will drop dramatically as the
SNR decreases when we only use MFCC. When the SNR
drops to 0dB, the accuracy is only about 23%, while the
accuracy can achieve 54% when we use CFCC. Neither of
them can compare with the combination MFCC and CFCC,
the gesture recognition rate could achieve 72%. When the
SNR increase to 40dB, both MFCC and CFCC can achieve
high accuracy. This experiment proves that the CFCC has
shown stronger robustness than MFCC in noisy environment,
and the MFCC combined with the CFCC will get the best
score in terms of accuracy.

C. IMPACT FACTORS

To have a deep understanding of our system, we conduct
extensive experiments to evaluate the impact of some key
factors on our algorithm performance.

1) AVERAGE ACCURACY IN DIFFERENT SCENARIOS:
To present the evaluation of our algorithm in real-world
environments, we selected three typical scenes to test: 1) a
laboratory with people moving around, the corresponding
ambient noise level is 35dB; 2) a classroom with some
students talking, the corresponding ambient noise level is
47.8dB; 3) a relatively noisy dormitory, the corresponding
ambient level is 59.84B. The volunteers are required to input
all 7 gestures and repeat each gesture 20 times in each
scenario. We measure both the error rate and recognition
accuracy of the gesture inputs to evaluate the performance
of gesture recognition

As depicted in Table 2, the ambient noise has a signif-
icant negative impact on gesture recognition. In general,
the noise intensity has a negative correlation with the accu-
racy of gesture recognition, that is to say, the stronger the
noise, the lower the accuracy of gesture recognition. The
mis-detection (P, false negative) and false-alarm(Py;, false

2The dB here is the unit of SNR

31492

TABLE 2. Accuracy with Different Scenarios.

Environment | laboratory | classroom | dormitory
Nosie level 35dB 47.8dB 59.8dB
Accuracy 91.2% 90.62% 85.49%
Pois 0.49% 1.69% 2.26%
Py 0.0% 0.60% 1.94%
TABLE 3. Accuracy with different materials.
Material paper cardboard | wood metal
Accuracy 85.6% 89.5% 93.2% 91.3%

positive) rates are used to measure the gesture input detection
rate. We can see that when the noise level is lower than 60dB,
the Py and Py is very low, namely, our system has a very
high detection sensitivity and a very low misjudgment rate.

2) AVERAGE ACCURACY WITH DIFFERENT SURFACE
MATERIALS

Different materials may have different effects on the gesture
signal due to the difference in hardness and friction coeffi-
cient. In order to investigate the relationship among different
surface materials and gesture recognition, we considered four
common materials, paper, cardboard, wood and metal. In this
experiment, we placed the phone on the above materials,
respectively, and then volunteers input gestures among these
materials in turn.

As Table 3 illustrates, different materials have a discrepant
impact on the accuracy of gesture recognition. Specifically,
the accuracy of metal and wood has a better performance than
that on paper and cardboard. The reason is that the surfaces of
metal and wood are rough and solid which emit larger amount
of detectable acoustic signal, while the surface of paper and
cardboard are smooth and soft which make the sound weak.
The strong acoustic signal power contributes to eliminating
ambient noise and extracting gesture features, and with more
significant and sufficient information, the system will per-
form better and achieve high gesture recognition accuracy.

3) AVERAGE ACCURACY WITH DIFFERENT SMARTPHONES
Different smartphones have various hardware configurations
and microphone. As a consequence, the acoustic capture
ability of different smartphones may not be equal. In order to
verify the stability of our algorithm on different smartphones,
we select three different types of mobile phones (Xiaomi
MI6, Samsung S5 and HUAWEI Mate9) to test and compare
their recognition accuracy of different gestures. The experi-
mental results are shown in Table 4.

As Table 4 shows, the distinction in hardware configura-
tion makes the gesture recognition have a small variations
among different smartphones, and the average accuracy per-
formance is kept at around 90%. The accuracy performance
on HUAWEI Mate 9 achieves the best performance, while
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TABLE 4. Accuracy with different smartphones.

HUAWEI
93.16%

Xiaomi
91.32%

Device
Accuracy

Samsung
90.35%

Xiaomi MI6 and Samsung S5 achieve slightly lower per-
formance. This is because Mate 9 is equipped with four
microphones which can capture the slighter sound produced
by the finger sliding.

4) THE IMPACT OF TOUCH STRENGTH ON AVERAGE
ACCURACY

One common concern about the impact factor for ges-
ture recognition is the touch strength. Intuitively, the input
strength may be at strong, medium and weak level. Usually,
the intensity of gesture input varies from person to person
because of different input preferences among volunteers. In
the experiment, we required the volunteers to input gesture
with three different touch strength, the intensity was 3.56N,
1.76N and 0.75N, respectively, and N is the unit of force.
These are derived from the mechanical formula F = mg
in physics, where m is the mass and g is the gravitational
acceleration, the minimum resolution of the input intensity in
weighting scale is 0.01g. The statistical results are depicted
in Figure 16(a), which clearly demonstrates that the gesture
recognition accuracy is positively correlated with the sliding
strength. When our fingers slide on the desktop, different
touch strength will lead to different intensity of friction.
Generally speaking, the weak friction signal is easily sub-
merged in strong ambient noise, while strong friction sound is
conducive to gesture signal extraction and feature matching.

5) THE IMPACT OF SLIDING SPEED ON AVERAGE ACCURACY
Another impact factor for gesture recognition we evaluate
in the experiment is the sliding speed. The sliding speed of
gesture directly affects the quality of signal acquisition and
the length of the effective segmentation gesture signal. We
invite the volunteers to slide their fingers on the table with
different sliding speeds. For instance, the volunteers input
gesture “flip left” at the sliding distance 10cm within 1.5s,
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0.7s and 0.3s, respectively, the amplitude of gesture “flip
left” with different sliding speed is shown in Figure 17.

Figure 16(b) illustrates the collected results, from the fig-
ure, we can distinctly see that compared with the medium
sliding speed, too fast or too slow gesture sliding will have
a negative impact on the recognition accuracy of the system.
This phenomenon is explained as follows, the number of
sampling points for each divided frame in MFCC and CFCC
is constant, the slower the slide speed, the larger amount
of frame sequence will be extracted, which leads to more
ambient noise to be mixed up with the effective gesture
feature, thus obstructs the final feature matching. On the other
hand, too fast slide speed will reduce the length of effective
acoustic signal, namely, less frame sequence information can
be utilized for the feature extraction, and the accuracy drops
sharply consequently.

6) THE IMPACT OF TRAINING SET ON AVERAGE ACCURACY

Machine learning algorithms are generally highly dependent
on the number of samples. Without a large number of train-
ing samples, there is no good training model. Figure 16(c)
shows the recognition results of the SVM algorithms with
the increase in the number of training set in detail. As the
figure demonstrates, when the initial training set is five, SVM
algorithm doesn’t perform well, and with an extremely low
level of recognition rate. However, when the number of sam-
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ples escalates to 15, the system recognition rate has reached
91.3% in SVM. Marginal improvement is achieved by further
increasing the number of training instances beyond 15.

V. DISCUSSION

A. FEATURE EXTRACTION TECHNIQUE

This section compares some mainstream feature extraction
techniques such as fusion of feature warped MFCC and dis-
crete wavelet transform (DWT), and the fusion of MFCC
feature and other features such as power normalized cepstral
coefficients (PNCC).

1) FEATURE WARPED MFCC & DWT

Strong noise and channel distortion will corrupt the loga-
rithmic energy of MFCC and lead to nonlinear distortion
of the distribution of the cepstral features over time [35].
Feature warped MFCC [36] was used to compensate this
nonlinearity and generate a stronger distribution representa-
tion for each cepstrum feature. Besides, the discrete wavelet
transform (DWT) is a prevalent tool for analyzing the acoustic
signal in time and frequency. Many researchers have intro-
duced the wavelet transform (WT) into the extraction of
feature warped MFCC (FW-MFCC), for instance, Ahmed
Kamil Hasan et al. combine FW-MFCC and DWT for speaker
verification [37], [38]. They apply DWT to decompose the
speech into the low frequency sub-band and the high fre-
quency sub-band coefficients, and then splice the frequency
response of the wavelet coefficients into a complete fre-
quency spectrum, finally, they acquire the Mel logarithmic
power spectrum by calculating the wavelet coefficient energy.
The experiment shows the fusion of FW-MFCC and DWT
will decrease the performance of speaker verification sys-
tem. The reason behind this phenomenon is that the fusion
lost some crucial correlation information between sub-band
features, the lack of the correlation between these small
bands brings negative influence on the speaker verification
system [39]. Compared with this method, we use the original
MEFCC feature, it contains sufficient spectrum information to
recognize the gesture signal.

2) MFCC & PNCC

The feature power normalized cepstral coefficients (PNCC)
is based on auditory processing, and it shows higher robust-
ness than MFCC in noisy environment [40]. Kim et al
explore the combination of MFCC and PNCC features
for robust biometric speaker identification [41]. They use
three fusion methods (fusion maximum, fusion mean and
fusion weights) for the two acoustic features, the experi-
ments demonstrate the combination of MFCC and PNCC
can achieve higher identification rate than using each fea-
ture separately. However, the PNCC has a relatively higher
error rate in the clean environment, because the power-bias
subtraction will result in signal distortion when removing the
background noise [40]-[42]. Compared with the above fea-
tures, the CFCC performs consistently high accuracy in noise
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environment especially under a variety of mismatched testing
conditions. Even in clean condition, the CFCC achieves a
high accuracy and outperform the PNCC [22]. In comparison,
the CFCC feature generates superior results under real envi-
ronment, and the fusion of MFCC feature and CFCC feature
has shown robustness in various experiments.

B. VOICE ACTIVITY DETECTION (VAD)

Nowadays, a host of researches for voice activity detec-
tion (VAD) have emerged. Apart from the method based on
the short time energy and zero-crossing rate, another tech-
nique which is widely used is statistical model. The method
derives from the likelihood ratio test (LRT). It assumes that
the speech and background noise are independent distribu-
tions, and then calculates the model parameters of each frame
of signal respectively, and finally detects the effective speech
signal by calculating the likelihood ratio [43]. Though the
approach based on statistical model achieves high detection
recognition rate in speech recognition, it relies on the accu-
racy of the model, and the detectability on speech-like noise
is poor. The methods often hypothesize the discrete Fourier
transform (DFT) coefficients of noise is single Gaussian dis-
tribution for simplifying the calculation, although it is not the
case in practice. This problem leads to the methods based on
statistical model give a bad distinguishing ability in low SNR
especially in non-stationary noisy conditions [44]. Besides,
the complicated computation of the method increases the time
cost and is not conducive to implementing on smartphone
in real time. In order to model the noise or characterize the
speech distribution, they often use large training sets to obtain
Gaussian mixture models (GMMs) [45]. On the contrary,
the method based on zero-crossing rate and short-time energy
has low time cost and is suitable for real-time applications on
mobile phone. The dual-thresholds methods can reach high
recognition accuracy with low complexity, it is highly desir-
able for acoustic signal processing applications especially in
real-time systems.

C. CLASSIFIER TECHNIQUE

Currently, the common classifier techniques for gesture
recognition mainly include machine learning and deep learn-
ing. We will give a detailed discussion about these methods.

1) MACHINE LEARNING

Machine learning methods extract specific acoustic features
as the input data to classify gestures, e.g., SVM, hidden
Markov model (HMM), length normalized GPLDA. HMM
is a kind of statistical analysis model and can effectively han-
dle time-varying sequences. Many researchers adopt HMM
model to classify hand gesture and achieve satisfying per-
formance. DuG [46] utilizes two speakers and a microphone
to recognize a set of 11 gestures under a common HMM
model, the system maintains average 98% accurate gesture
recognition. Despite the high recognition, the HMM model
needs a long time to train and the recognition time is too
long [47], the complexity of HMM is high in the compu-
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tational process [48]. While SVM has better generalization
performance and recognition efficiency than HMM, and the
training time of the SVM is also significantly shorter than
HMM [49]. The length normalized GPLDA is initially used
for face recognition [50] and then widely used in i-vector
speaker verification [51]. Although the GPLDA classifier can
achieve significant achievements in speech recognition [37],
it cannot be applied well in the acoustic gesture recognition.
The performance of GPLDA degrades at an increasing rates
as speech duration decreases, when the acoustic signal utter-
ance duration is 4 seconds, the equal error rate (EER) can
soar to 17.38% [52], which will bring a relatively high equal
error rate on gesture recognition system because the duration
of input gesture is within 3 seconds or less. In contrast, SVM
has fast training speed and high recognition accuracy, it does
not rely on the length of the sound signal, which is suitable
for implementation on mobile phones.

2) DEEP LEARNING

Deep learning methods convert acoustic signal to a series
of spectrograms and utilize the latent and sophisticated
image features to recognize hand gestures, for instance,
deep neural network (DNN), deep recurrent neural network
(DRNN). DNN increases the number of layers of neural
network and hidden layers in order to improve the accuracy
of recognition. DRNN combines deep neural network and
recurrent neural network, it considers time sequence of differ-
ent sequence lengths, so that it can extract the time informa-
tion effectively and achieve more fine-grained identification.
WordRecorder [53] refines original acoustic signals into
normalized spectrograms and utilizes deep neural network
models to recognize handwriting, it eventually achieves 81%
accuracy rate on the smartwatch. Although the deep learn-
ing approaches based on neural network have been widely
used in gesture recognition and handwriting classification,
the real-time implementation on smartphone with high accu-
racy in noise and mismatched environment is not adequately
addressed. The reason behind this phenomenon is that the
neural network architectures are too large and deep in order to
pursue high accuracy, this will sacrifice the real-time imple-
mentation of the system in practice [54]. Besides, the over-
fitting problem easily occurs in neural network model for
the lack of massive training set [55]. Furthermore, if the
ambient noise signal contaminates the original spectrogram,
this recognition accuracy of deep learning will be greatly
reduced. Some researchers explore applying the deep learn-
ing approaches on smartphone in real-time, they have to cre-
ate complicated multi-threading technology [56]. Compared
to the deep learning approaches, our system can run on smart-
phone efficiently in real-time with relatively low computation
complexity. With only a small training set, the system can
achieve a satisfactory accuracy in noise and mismatched
environment.

VI. RELATED WORK
We classify existing work into (i) device-based gesture
recognition and (ii) device-free gesture recognition. The
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device-based gesture recognition demands individuals to use
tactile and haptic devices such as wireless sensors, cameras or
accelerometers to support it, while device-free gesture recog-
nition doesn’t have the limits. The individuals can interact
with smart devices freely without having to wear additional
wearable devices.

A. DEVICE-BASED GESTURE RECOGNITION

Accelerometer sensor is often used for gesture sensing, for
it can measure proper acceleration (*“‘g-force’) from vibra-
tions and the gravity. Accelerometer can sense the activi-
ties of human and capture the motion trajectory informa-
tion precisely for recognizing gestures [57], [58]. Surface
electromyography (SEMG) sensors provide another potential
technology for gesture sensing. It has strong capability in cap-
turing subtle movement such as wrist and finger movements,
for example, with a wearable gesture sensing device (embed-
ded with a three-axis accelerometer and four SEMG sensors)
worn on the forearm, PG Scholar [59] is able to manipulate
a mobile phone using 19 predefined gestures. AAMouse [60]
uses the frequency shifts to estimate the velocity and track
hand movement by smartphone, it calculates the distance in
real time to locate the smartphone. Spartacus [61] leverages
a novel acoustic technique based on the Doppler shift to
estimate the device’s moving direction and be interactive
with devices through a pointing gesture. CAT [62] develops a
distributed FMCW and combines it with the Doppler shift and
IMU sensors over multiple time intervals to track and locate
the moving object. RF-IDraw [63] can estimate the finger
trajectory with high resolution and low ambiguity via 8 RFID
antennas and the wearable RF tag.

However, all these systems demand the user to wear the
interface devices, which is not convenient for VR/AR appli-
cations. Contact-based gesture recognition has many limits
and is not adaptable to new users.

B. DEVICE-FREE GESTURE RECOGNITION

Except for the device-based gesture recognition schemes we
discussed above, there are some device-free gesture recogni-
tion algorithms.

1) VISION-BASED

A great deal of the research into object tracking and gesture
recognition is based on computer vision and vision pro-
cessing technology. For example, Microsoft Kinect [1] uses
depth sensor as well as camera to recognize a wide range of
gestures, Wii [2] uses infrared cameras to track movement.
LeapMotion [3] uses sophisticated vision technique similar
to Kinect to track object.

However, these approaches are not suitable in smartphones
for VR/AR applications since existing smartphones have
limited computation power, energy, and sensing capability
(i.e., no depth sensors). As a consequence, audio based
interaction method is more attractive than vision to sup-
port smartphone-based VR by using the existing speaker
and microphone on the phone, which will reduce energy
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consumption significantly. As [64] reports, acoustic sensing
only consumes 20% energy compared to vision-based object
recognition.

2) RF-BASED
Recently, RF-based device-free object tracking algorithms in
smart home and office environment have been widely inves-
tigated [65]-[70]. WiTrack [65] and WiTrack 2.0 [66] apply
Frequency Modulated Continuous Wave (FMCW) to track a
user’s hand in high accuracy, WiDraw [69] estimates angle of
arrival (AoA) using CSI and achieves a median tracking error
of 5 cm using 25 WiFi access points (APs), mTrack [70] and
Soli [68] use 60 GHz signals for gesture recognition.
Although these algorithms achieve considerably high per-
formance, it is hardly to apply these algorithms in smart-
phones. For example, the FMCW signal used in WiTrack [65]
and WiTrack 2.0 [66] needs customized hardware which can
sweep the channel in nearly 2 GHz bandwidth. The large
amount of AP used in WiDraw [69] limits its applicability.
And WiDeo [67] uses WARP platform which is not readily
available on the market. Moreover, 60GHz based gesture
recognition schemes requires significant extra hardware for
sending, receiving, and processing signals in real-time. Com-
paring with these RF-based applications, our system only
requires the embedded microphone on the smartphone.

3) ACOUSTIC-BASED

Both LLAP [10] and FingerIO [12] track the finger move-
ment using the reflected audio from a mobile phone. LLAP
develops a phase based tracking while FingerIO uses OFDM
symbol based movement detection. In addition, Strata et al.
extract the path associated with the finger movement and
track its phase change instead of using the mixed signals [13].
Although these schemes can track the finger movement in
high accuracy, they cannot support gestures that require two
or more fingers such as zoom in and out. On the other hand,
WritingHacker [71] leverages the embedded microphone on
the phone to snoop the victim’s input gesture but it suffers
from the poor recognition accuracy, and its performance is
inevitably vulnerable to the ambient noise. UltraGesture [14]
utilizes channel impulse response (CIR) based on ultrasonic
finger motion perception to recognize human hand gesture,
itidentifies 12 hand postures with an average accuracy greater
than 97%. WritePad [27] realizes consecutive number writ-
ing on the hand with a hybrid convolutional neural network
model, the accuracy of number recognition is over 95%.
Ipanel [24] is another system which utilizes passive acoustic
sensing for gesture recognition and handwriting, it recog-
nizes the finger movement and maintains 91.3% accuracy.
iPand [55] adopts similar method and enables finger gesture
input on the skin, it can classify 12 gestures with an overall
accuracy of 83.8%.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new algorithm for gesture recog-
nition using passive acoustic sensing and implemented it on
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COTS Android phones. We validated its effectiveness and
robustness via comprehensive experiments. Comparing with
our previous work “SoundWrite” [19], we apply a robustness
signal segmentation scheme instead of detecting touch peak
and end peak. Besides, we combined more advanced acoustic
feature such as “MFCC”, “CFCC”, “STE” and “ZCR” to
characterize the input acoustic signal. This fusion algorithm
contributes to a sensible improvement (around 30%) accu-
racy. The results show that our algorithm can achieve 93.2%
gesture recognition accuracy with 7 typical gestures, and it
is robust in the presence of ambient noise and mismatched
conditions.

We will incorporate more complicated gestures and
improve the accuracy with deep learning algorithms such
as CNN or DNN in the future. Besides, we will consider
leveraging ultrasonic to detect the precise sliding position and
direction for various gestures via multi-phone. Furthermore,
we are to investigate how to decrease the memory consump-
tion and make the system fast for real-time process to some
extent.
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