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ABSTRACT Reinforcement Learning (RL) agents often encounter the bottleneck of the performance
when the dilemma of exploration and exploitation arises. In this study, an adaptive exploration strategy
with multi-attribute decision-making is proposed to address the trade-off problem between exploration and
exploitation. Firstly, the proposed method decomposes a complex task into several sub-tasks and trains each
sub-task using the same training method individually. Then, the proposed method uses a multi-attribute
decision-making method to develop an action policy integrating the training results of these trained sub-
tasks. There are practical advantages to improve learning performance by allowing multiple learners to learn
in parallel. An adaptive exploration strategy determines the probability of exploration depending on the
information entropy instead of the suffocating work of empirical tuning. Finally, transfer learning extends
the applicability of the proposed method. The experiment of the robot migration, the robot confrontation,
and the real wheeled mobile robot are used to demonstrate the availability and practicability of the proposed
method.

INDEX TERMS Reinforcement learning, exploration and exploitation, multi-attribute decision-making,
adaptive exploration, transfer learning.

I. INTRODUCTION
A. REINFORCEMENT LEARNING
Reinforcement learning allows agents to perform tasks
through trial-and-error learning, which is a type of machine
learning algorithm [1]. Agents gain experience by interacting
with the environment constantly and ultimately acquire the
optimal strategy to guide them get the greatest cumulative
reward in the learning process. RL methods require agents
to actively explore the unknown environment and receive
feedback from the environment to one action taken [2], [3].
Agents use positive or negative feedback to acquire experi-
ence that they need to optimize the policy when they perform
a task. Recently, this multi-learner parallel learning approach,
such as the A3C algorithm [4], has successfully helped agents
achieve beyond the human-level in some video games [5], [6].
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B. THE DILEMMA OF THE EXPLORATION
AND EXPLOITATION
The trade-off between exploration and exploitation has
always been a dilemma without a unified solution in rein-
forcement learning systems [7]. The exploration strategy
guides the learning agent to explore more unknown environ-
ments by collecting new experience. An appropriate method
for exploration must determine the opportunity to collect
new experiences and to exploit current experience so as to
obtain the greatest cumulative reward [8]. Conversely, it is
inappropriate for agents to exploit for a long period and even
the current experience is inaccurate or inadequate. Therefore,
it is crucial to develop an appropriate action policy for the
exploration scheme, which will affect the convergence rate
of the RL algorithm and the cumulative reward that agents
can receive.

Previous researchers usually used the probabilistic explo-
ration method to tackle this problem, such as the epsilon-
greedy [9], [10]. The epsilon-greedy involves a disadvantage,
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which is that the learning time is exponentially proportional
to the scale of state space [11]. Meanwhile, a fixed value for ε
always maintains the same probability of each action selected
in the learning process, so a lot of ineffective exploration has
emerged even the dilemma of local optimum. The softmax
policy is another common method for exploration [12], [13].
Previous researchers proposed a method of using Boltzmann
distribution and simulated annealing (SA) to tackle the con-
flicting requirements of exploration and exploitation [14].
Exploration guided by an intrinsic motivation has been exten-
sively studied by scholars before [15]. Not only the intrinsic
motivation, Thompson sampling, bootstrapped models [16]
and parameter space exploration [17] can be used as a mech-
anism to guide exploration.

C. MULTI-ATTRIBUTE DECISION-MAKING METHODS
Problems of multi-attribute decision-making (MADM) are
common occurrences when decision-makers are faced with
multiple factors to make a wise decision [18]. These factors
can be regarded as attributes and used as evaluation crite-
ria to evaluate a scheme, and the scheme with the highest
evaluation is adopted by a decision-maker as the best one,
which is the process of the MADM. Multiple attributes for
the decision-making result need to be ranked or sorted by
taking into account many related factors that are usually
measured or evaluated using either numerical values with
certain units based on the prior experience [19]. The ordered
weighted averaging (OWA) operator is a very common and
effective method for a multi-attribute decision-making prob-
lem [20]. The learning experience gained bymultiple learners
serves as the prior experience for the source task, if the avail-
able actions act as the scheme set. The value functions learned
by each learner contribute to the final decision-making result
as an evaluation factor, that is, an effective action that the
agent will take. Multi-attribute decision-making provides a
solution to exploit the prior experience gathered from these
sub-tasks.

D. RESEARCH GAPS
For the dilemma of exploration and exploitation, prior works
provide good exploration without exploiting the particular
structure of the task itself. However, agents need to learn
many tasks, not just one, in which prior experience can be
used to inform how exploration in new scenarios should be
performed. Complex tasks often require a lot of learning
time. Moreover, the classical training method does not effec-
tively collect more experience when this training method
is compared with the parallel training method of multi-
learner [21], [22]. Therefore, it is an important issue for a
learning agent to determine a way of exploration for new
experience and exploitation using the current experience.

For the MADM, the conventional methods use the empiri-
cal aggregation operator, which has a subjective impact on the
decision-making results. Conventional aggregation operator
weight attributes empirically, which undoubtedly bring a lot
of subjective factors to decision-making results. Moreover,

evaluation values are often inaccurate because they are cal-
culated using these unreasonable weights.

E. RESEARCH METHODS
In this study, we use three ways: designing an effective explo-
ration strategy, expanding prior experience for exploitation
and designing an appropriate action policy with the current
knowledge, to fill the gaps mentioned above for the trade-off
problem between exploration and exploitation.

Firstly, to achieve the first way, this study uses an adaptive
exploration strategy to determine the value for ε using the
information entropy [23], which encourages agents to explore
more in the early stage of learning and exploit more in the
later stage. Generally, for an action policy, it is appropriate
to require agents to make rational use of the current learning
experience. Secondly, to achieve the second way, this paper
proposes an effective method that collects learning expe-
rience using a divide-and-conquer approach. The proposed
method decomposes the source task into several sub-tasks and
exploits the prior experience from sub-tasks that are trained
by the same (Temporal Difference)TD method [24]. The
method of multi-learner parallel learning expands the source
of prior experience and improves the performance of learn-
ing algorithms, but the original method does not. Thirdly,
to achieve the third way, this study proposed an action policy
using the MADM, which regards the available actions taken
by an agent as schemes, and regards the state-action value
function obtained from each sub-task as attributes for these
schemes. This study uses the MADMmethod to calculate the
evaluation value for each scheme, and then the action with
a maximum evaluation value is almost one that the agent
will take. The average value for the standardized reward of
each sub-task is calculated to act as the current reward for the
source task and this average value is used to update the action
value function iteratively.

To fill the gaps mentioned above for theMADM, this study
presents a MADM method with a support function, which
weights attribute using the visibility graph theory [25]. This
method considers the influence of both the value and loca-
tion relationship of attributes on the decision-making results,
so the subjective factors are eliminated.

Transfer learning extends the learning model to different
task scenarios and accelerates the learning process for the new
task. Intermediate tasks bring more prior experience to agents
to reduce the difficulty of executing the target task, which
differs greatly from the source task.

F. CONTRIBUTIONS IN THIS WORK
The main contributions of this paper are as follows.

1) For the complex task, this study decomposes the source
task into several sub-tasks in a divide-and-conquer
approach, and then these sub-tasks are trained by the
same training method respectively. This divide-and-
conquer method can not only expand the source of
prior experience but also accelerate the learning rate by
multi-learner parallel training.
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2) An action policy is developed using a MADM method
and this action policy determines an action depending
on the acquired knowledge. This study uses a MADM
method integrating a support function to calculate the
weights of attributes, which can eliminate the sub-
jective factors of empirical methods and increase the
accuracy of results for a MADM problem.

3) To tackle the dilemma of exploration and exploitation,
this study first develops an adaptive exploration strat-
egy with a MADM. The adaptive exploration strategy
uses the information entropy technology to determine
the threshold for the epsilon-greedy. The experimental
results show that the proposed method outperforms
competitors.

G. STRUCTURE OF THIS PAPER
The remainder of this paper is organized as following.
Section II presents the background for the proposed methods
and briefly describes the Q-learning, the softmax policy and
theMADM. Section III presents a newMADMmethod using
a support function and this method is used for developing the
action policy. Section IV presents a training method for sub-
tasks and a standardized method for rewards obtained by each
learner. Section V presents an adaptive exploration strategy
and an action policy using the proposed MADM method.
Experiments are conducted to demonstrate the effectiveness
of the proposed methods in Section VI. Section VII gives
the detail of future improvement for the adaptive exploration
by using transfer learning. Conclusions are drawn in the last
section.

II. BACKGROUND
A. Q-LEARNING ALGORITHM
Q-learning is a model-free reinforcement learning algorithm,
which is proposed by Watkins in 1989 [26]. Q-learning is
commonly used because it is very simple and fast converges.
The Q value is given by,

Q(s, a) = E [r| (s, a)]+ γ
∑

s′
T ss
′

a maxQ(s′, a′) (1)

The law for updating Q values using the TD error is
given by,

Qt+1(s, a)=(1−α)Qt (st , a)+α
[
rt+γ maxQt (st+1, a′)

]
(2)

where α is the learning rate and the range is (0, 1). The
learning rate reflects the efficiency of the learning process.
A round of learning process is terminated when the agent
reaches the target state. The agent then returns to the initial
state and starts the next round until the end of the whole
learning process, so the optimal strategy is obtained.

B. SOFTMAX POLICY
Softmax policy is an action policy that is commonly used
for exploration schemes to tackle the dilemma of exploration
and exploitation [9]. The agent uses this method to select the

action using the average reward for each action. The action at
with the highest average reward is the best one to be selected.
The simulated annealing (SA) [27] algorithm optimizes the
softmax policy to control the randomness of actions.

The probability for each action is given by,

Pi =
exp (ai)∑K
k=0 exp (ak)

(3)

where Pi represents the probability for selecting an action ai
and the total number of available actions is K.

The probability for selecting action ai is given by,

P (ai|st) =
exp (Q (st , ai) /Tt)∑K
k=1 exp (Q (st , ak) /Tt)

(4)

where Tt is the temperature parameter. The temperature
parameter for the simulated annealing algorithm is tuned
using Eq.(5).{

T0 = Tmax

Tt+1 = η (Tt − Tmax)+ Tmin
(5)

where η is the annealing factor and its range is 0 ≤ η ≤ 1.

C. MULTI-ATTRIBUTE DECISION-MAKING
In general, selected schemes often have many predefined
attributes, which affect the decision-making result. MADM
measures each attribute and gives the evaluation value for
each scheme. The aggregation operators are commonly used
to find a solution for the problem ofMADM,which calculates
the evaluation value for each scheme effectively. Ordered
weighted averaging (OWA) operator is a simple but effec-
tive information aggregation operator among all aggregation
operators and it weights each attribute depending on its sig-
nificance [28].

A set of original data is (b1, b2, . . . , bm), which is
sorted from large to small to obtain an ordered sequence
(b̂1, b̂2, . . . , b̂m). The OWA operator is given by,

OWA(b1, b2, . . . , bm) =
∑m

i=1
ωib̂i (6)

where, (ω1, ω2, . . . , ωm) is a weight vector and
∑m

i=1 ωi =

1, ωi ∈ [0, 1].

III. A MULTI-ATTRIBUTE DECISION-MAKING METHOD
WITH A SUPPORT FUNCTION
A. SUPPORT FUNCTION
Graph technology has been used to address a type of the
machine learning problem, such as the sparse feature extrac-
tion, the dimensionality reduction and so on, and has been
proved to have excellent performance [29], [30]. After the
values for attributes are ordered, the visibility graph theory
converts the values in the data sequence into nodes in a
complex network (CN) [31]. Each node in a CN corresponds
to the value in the data sequence one by one. The degree of
support is the degree of correlation between values in the data
sequence, which is reflected by the connection relationship
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between nodes in a CN. The more connections a node has,
the higher the support for the value receives.

The definition of a visibility graph is as follows:
Definition 1: Two data are represented by two-tuple (i, b̂i)

and (j, b̂j) respectively in the data sequence. If there is a
correlation between two arbitrary data, then for any data
(k, b̂k ) between the two data, it satisfies Eq.(7).

b̂k < b̂j + (b̂i − b̂j)
j− k
j− i

(i, b̂i) (7)

If two values in the data sequence satisfy Eq.(7), the vis-
ibility graph theory emphasizes that the corresponding two
nodes are connected in complex networks. The degree of a
node is defined as the number of edges connected with other
nodes in the CN. In general, the degree of a node is positively
related to its importance and the support function describes
the support degree for nodes. Coulomb’s law emphasizes that
the support between nodes needs to consider both the value
for nodes and the distance between nodes [32].

Definition 2: If the values of the two nodes are Di,Dj and
the distance between the two nodes is disij =

∣∣Di − Dj∣∣. The
support function between the two nodes is given by,

Supp(DiDj) =
DiDj
disnij

(8)

where n is a positive integer. Supp(DiDj) denotes the support
for the node Dj to the node Di. The sum of support for the
node Di received by all nodes is given by,

Sum(Di) =
n∑
j=1
j 6=i

Supp(Di,Dj) (9)

B. THE ORDERED WEIGHTED AVERAGING OPERATOR
WITH A SUPPORT FUNCTION
A set of ordered data (b1, b2, . . . , bn) from large to small
is represented by D = {D1,D2, . . . . ,Dn}. In the ordered
data sequence, the number of data is n. Ordered weighted
averaging with a support function (VOWA) is given by,

VOWA(D1,D2,D3, . . . ,Dn) =
∑n

i=1
ωiDi (10)

where ωi ∈ [0, 1],
∑n

i=1 ωi = 1, ωi is the weight for the
data Di.
If there is a data sequence (b1, b2, . . . , bn), and any permu-

tation of that data sequence is represented by (b̂1, b̂2, . . . , b̂n).
Evaluation values of the VOWA operator for the two data
sequences are equal, as shown in Eq.(11).

VOWA(b̂1, b̂2, . . . , b̂n) = VOWA(b1, b2, . . . , bn) (11)

Then, the weight for the data Di is given by,

ωi =
Sum(Di)∑n
i=1 Sum(Di)

(12)

where the sum of the support for the node Di is Sum(Di).
All nodes that satisfy Eq.(7) are connected with the node Di.

So, evaluation value using the VOWA operator for this
sequence is given by,

VOWA(D1,D2,D3, . . . ,Dn) =
∑n

i=1

(
Sum(Di)∑n
i=1 Sum(Di)

)
Di

(13)

IV. TRAINING FOR SUB-TASKS
A. A TRAINING METHOD FOR SUB-TASKS
This paper proposes an adaptive exploration strategy with a
MADM to address the dilemma of exploration and exploita-
tion. For a type of the problem of themulti-objective decision-
making, it is hard to solve the source task. So, the divide and
conquer approach may be a solution for the multi-objective
decision-making problem. Several trained sub-tasks can be
used as modular building blocks to develop a rapid prototype
for a complicated task to improve the learning performance.
For the complicated task, the learning experience for related
sub-tasks is assembled to induce an action policy. In this
work, inspired by the divide and conquer approach, a complex
task is decomposed into sub-tasks, and the learning experi-
ence of trained sub-tasks are fused to complete a complex
task. A TD method [24] is used to train the sub-tasks and
this training method is shown in Algorithm 1. For example,
in robot soccer games, we define the task of a robot playing
soccer as a complex task, which consists of several sub-tasks:
passing the ball, taking the ball away, avoiding obstacles,
shooting and so on.

B. A STANDARDIZED METHOD FOR REWARDS
These sub-tasks are trained by the same training method
separately and each learner receives a different reward. The
reward received by an agent for the source task needs to
consider the rewards received by all sub-tasks. The standard-
ized method deals with all rewards, which belong to different
sub-tasks.

If the starting time of an episode is t1, the reward received
by sub-task k is r t1k .r

tp
k is the reward that sub-task k receives

at time tp. The average value of rewards for all sub-tasks
receives at the time tp is µtp . The variance of the rewards that
all sub-tasks received at the time tp is σtp . The average and
variance of the rewards for all sub-tasks are given as Eqs. (14)
and (15).

µtp =

∑m
k=1 r

tp
k

m
(14)

σtp =

√
1
m

∑m

k=1
(µtp − r

tp
k )

2 (15)

where, m is the number of sub-tasks.
The standardized reward R

tp
k for sub-task k is given by,

R
tp
k =

r
tp
k − µtp

σtp
k = 1, 2, . . . ,m (16)

The average value of the standardized rewards at the time
tp for each sub-task is R̂tp , which will be given to the source
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Algorithm 1 The Training for Each Sub-Task
1. Definition
2. st := Current state
3. at := Current action
4. reward(t) := Instant reward
5. st+1 := The state of the next moment
6. at+1 := The action of the next moment
7. α := Learning rate for RL agent
8. γ := Discount factor
9. δt := The TD error for the current state and action
10. Initialization
11. Initialize st , st+1, at , at+1, reward(t), Q table and
cumulative reward totalreward .

12. Repeat (for each step)
13. Choose an initial state s0
14. t ← 0; i← 0;
15. Repeat (for each step of the episode):
16. Take action at (e.g.,ε-greedy strategy)
17. Observe st+1, and reward reward(t)
18. totalreward+ = reward(t);
19. Take action at (e.g.,ε-greedy strategy)
20. st ← st+1
21.

Q(st , at )← Q(st , at )

+α [reward(t)+ γQ(st+1, at+1)− Q(st , at )]

22. Update the TD error:
23. δt = α[Q_next(st , at )− Q_current(st , at )]
24. t ++
25. until s is terminal.
26. i++

task, as shown in Eq.(17).

R̂tp =

∑m
k=1 R

tp
k

m
(17)

V. AN ADAPTIVE EXPLORATION STRATEGY WITH A
MULTI-ATTRIBUTE DECISION-MAKING
A. AN ADAPTIVE EXPLORATION STRATEGY
An adaptive exploration strategy uses information entropy to
achieve a more effective exploration. The proposed method
achieves a state-action-dependent exploration with a certain
probability. The value ε depends on the number of all avail-
able actions in the current state. At the beginning of a learning
process, if a common action appears, the agent will explore
more, which is indicated by the defined information entropy
during this learning process. If the agent acquires sustainable
experience indicated by the temporal difference error (TD
error), the probability of exploration will be reduced. In this
study, we use fluctuation value |1Q(st , at )| to represent the
TD error. The TD error is given by,

|1Q(st , at )| = |r + γ maxQ(st+1, at+1)− Q(st , at )| (18)

If the fluctuation value is large, the agent makes more explo-
ration and vice versa. After a learning step, the probability
for exploration is calculated. A =

{
a1, a2, . . . , aNA

}
is the

action set and the number of actions is NA. The number of
times that the action ai is taken at the state st is N (ai, st).
The probability of taking action ai in the state st is given by,{
P (ai|st)=N (ai, st) /

∑
ai∈A

N (ai, st), if N (ai, st) 6=0

P (ai|st)=0, if N (ai, st)=0
(19)

The entropy EH (st ) for the state st is given by,{
EH (st ) = −

∑
ai∈A

(logP (ai|st)) · (P (ai|st))

ĒH (st ) = EH (st )/ logNA
(20)

where, ĒH (st ) is the normalized entropy.(log 0)× 0 = 0.
The value for ε in the epsilon-greedy can be calculated

using the ĒH (st ), which is shown in Eq.(21).

ε =



(
1− ĒH (st )

)
, otherwise(

1− ĒH (st )
) (

1− exp

(
− |1Q(st , at )|∑
ai∈A N (ai, st)

))
,

if

(
− |1Q(st , at )|∑
ai∈A N (ai, st)

)
< Hc

(21)

where,Hc is a constant value, and |1Q(st , at )| is the TD error.
ĒH (st ) is a measurement of the uniformity for the available
actions. The value of ĒH (st ) is maximum, if each action has
been tried the same frequency at state st . The smaller the value
of ĒH (st ), the more the agent will explore, and vice versa.
ĒH (st ) gives an opportunity for an agent to try each action
possible. In the early stage of a learning process, the agent
will explore more and the agent performs more exploitation
in the later stage.

B. AN ACTION POLICY WITH A MADM
The source task is decomposed into multiple sub-tasks, and
then each sub-task is trained in the same way. The prior
experience for an agent depends on the learning experience of
each sub-task, which enlarges the source of prior experience.
This study uses a MADM method using a support function
to calculate the weight for attributes. The state-action value
function for m in the current state st and the current action at
is Q(1)(st , at ),Q(2)(st , at ), . . . ,Q(m)(st , at ). The action set is
defined as the scheme set that the agent takes. Attributes for
the scheme is the state-action value function of the source task
and the state-action value function of each sub-task. Then we
use the MADM method to give each scheme an evaluation
value. The agent performs the action that belongs to the max-
imum evaluation value according to the definition ofMADM.
Q(p)(st , a1),Q(p)(st , a2),Q(p)(st , a3), . . . ,Q(p)(st , an) is the
state-action function for sub-task p for the state st
and action at . n is the number of actions. The state-
action value function of the source task for state st is
{Q(st , a1),Q(st , a2),Q(st , a3), . . . ,Q(st , an)}.
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The decision-making matrixQ is given in (22), where (22),
as shown at the bottom of this page.

The scheme set is represented as U = {a1, a2, . . . , an}.
Y = {Q1(st , ai),Q2(st , ai), . . . ,Qm(st , ai),Q(st , ai)} is the
attribute for the scheme ai. The process of calculating the
evaluation value VOWA(ak ) of the action ak for the sub-task
k involves the following steps.
Step 1: For the scheme ak , attributes V = {Q1(st , ak ),

Q2(st , ak ), . . . ,Qm(st , ak ),Q(st , ak )} are ordered from large
to small and the ordered data is {Q(1)(st , ak ),Q(2)(st , ak ), . . . ,
Q(m)(st , ak ),Q(m+1)(st , ak )}.
Step 2: Visibility between nodes is defined as the direct

connection between nodes in complex networks. We evalu-
ate the visibility nodes for each node in turn. For the node
Q(i)(st , ak ), the set VQ for the visibility nodes is given by,

VG(ps) : Q(kp)(st , ak ) ≤ Q(ps)(st , ak )
+
(
Q(i)(st , ak )− Q(ps)(st , ak )

)
·

(
ps− kp
ps− i

)
·
(
i,Q(i)(st , ak )

)
; ∀i < kp < ps

VQ = {Q(ps)(st , ak )|VG(p), 1 ≤ ps ≤ m+ 1}

(23)

where kp and ks are indexes from (1,m) for any two nodes,
which satisfy kp < ks.
Step 3: The support for the node Q(i)(st , ak ) received from

its visibility nodes is given by,

Sum
(
Q(i)(st , ak )

)
=

∑
Q(ps)(st ,ak )∈VQ

Supp
(
Q(ps)(st , ak ),Q(i)(st , ak )

)
(24)

Step 4: The weight of each node is calculated using the
support for this node and the weight vector is written as ω =

(ω1, ω2, ω3, . . . , ωm+1). Taking ωs as an example, we use
Eq.(25) to calculate the weight.

ωs =
Sum

(
Q(s)(st , ak )

)∑m+1
j=1 Sum

(
Q(j)(st , ak )

) (25)

Step 5: The evaluation value for the scheme ak is given by,

VOWA(ak ) =
∑m+1

i=1
ωkQ(i)(st , ak )

=

∑m+1

i=1

(
Sum

(
Q(i)(st , ak )

)∑m+1
j=1 Sum

(
Q(j)(st , ak )

))
·

(
Q(i)(st , ak )

)
(26)

The action ak with the highest evaluation value VOWA(ak )
will be selected.

FIGURE 1. The network for robot migration.

C. THE WHOLE ALGORITHM FOR THE ADAPTIVE
EXPLORATION STRATEGY WITH A MADM
This study defines a randomnumber ran. If ran < ε, the agent
chooses an action randomly or chooses an action using the
MADMmethod. Compared with the classical ε -greedy strat-
egy, the proposed adaptive exploration strategy avoids the
trouble of manual tuning and increases the learning perfor-
mance. The values of attributes change if the learning agent
moves to the next state. So, these weights are recalculated
transiently. These weights for attributes will be recalculated
using the support function when choosing a new action. The
adaptive exploration strategy with MADM is detailed below.

VI. EXPERIMENTS AND ANALYSIS
A. EXPERIMENT ON ROBOT MIGRATION
In this experiment, a robot migration experiment was
performed to validate the efficiency of the proposed
epsilon-greedy with adaptive strategy (adaptive strategy).
Competitors include: epsilon-greedy (epsilon-greedy) [33]
and Boltzmann probabilistic exploration (Boltzmann explo-
ration) [34]. As shown in Fig.1, the network for robot migra-
tion satisfies the structure of the binary tree. In this study,
two groups of comparative experiments with 4 layers of the
network (nodes’ number is 15) and 10 layers of the network
(nodes’ number is 1023) are set respectively. Each node in
the robot migration network represents a state, and there
is no transition between the same layers. The experimental
parameters for robot migration are shown in Table 1.

There are 15 endpoints on the network with 4 layers.
Starting from the starting position, the robot will repeatedly
follow the branches to reach the lowest endpoint and will
be rewarded for each endpoint. A total of 14 actions can be

Q =


Q(1)(st , a1) Q(1)(st , a2) · · · Q(1)(st , an−1) Q(1)(st , an)
Q(2)(st , a1) Q(2)(st , a2) · · · Q(2)(st , an−1) Q(2)(st , an)

...
...

...
...

...

Q(m)(st , a1) Q(m)(st , a2) · · · Q(m)(st , an−1) Q(m)(st , an)
Q(st , a1) Q(st , a2) · · · Q(st , an−1) Q(st , an)

 (22)
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Algorithm 2 The Adaptive Exploration Strategy With
MADM
1.Definition:
2. N := the number of actions
3. Hc:= the constant threshold
4. VOWA():= Evaluation Value that is given by MADM
5. P(at |st ):= the probability of action at at state st
6. EH (st ) := the entropy at state st
7. ĒH (st ) := the normalized entropy at state st
8. Initialization:
9. Randomly Initialize Q(s, a) for state and action stat
11. Initialize ε← 1
12. Repeat (for each step )
14. Initialize the current state st .
15. Repeat (for each step of the episode):
16. Initialize a random number ran← rand (0, .., 1)
17. If ran < ε then
18. Randomly choose an action at .
19. else
20. at ← max{VOWA(st , a1), . . . ,VOWA(st , an)}
21. End if
22. Take action at , and observe rewards from each sub-task

23. Observe the next state st+1.
24. Calculate the average value R̂ for the standard rewards
using the rewards obtained from the sub-tasks.
25.

∣∣∣1Q(st , at )| ← |R̂+ γ maxQ(st+1, at+1)− Q(st , at )
∣∣∣

26. Q(st , at )← α1Q(st , at )+ Q(st , at )
27. Calculate the action probability P(at |st ).
28. Calculate EH (st ) and ĒH (st ) respectively.

30. If
(
−|1Q(st ,at )|∑
ai∈A

N (ai,st )

)
≥ Hc then

31. ε =
(
1− ĒH (st )

)
32. else
33. ε =

(
1− ĒH (st )

)
·

(
1− exp

(
−|1Q(st ,at )|∑
ai∈A

N (ai,st )

))
34. End if
35. st ← st+1
36. until st is terminal.
37. End

selected by the robot, and the Q value for each endpoint is
written as Q1 ∼ Q15. If the robot reaches the endpoint 15,
the reward is +1000. If the robot reaches the remaining
endpoints, they are not rewarded. The experimental results
give the value for Q1 ∼ Q15.

In the migration network, the endpoint Q7 is the only node
leading to the endpoint Q15, and the experimental results
show that the Q value of Q15 will change in the experi-
ment, so this study uses the changes of the Q value of Q15
to compare different methods. In this network, the robot is
encouraged to choose the endpoint Q7 because the Q7 node
is the only node leading to Q15. Fig.2 shows the curve of
the value for Q15, where three different methods are com-
pared. The adaptive exploration method converges at 12th

TABLE 1. Experimental parameters.

FIGURE 2. The value of Q15 obtained by these three methods.

FIGURE 3. The value for Q3 obtained by these three methods.

time steps. The Boltzmann exploration method and epsilon-
greedy method converge at 23th time steps and 43th time
steps respectively. The experimental results show that the
curve of the adaptive exploration strategy converges faster
than the other two methods and the adaptive strategy can
accelerate the convergence of learning algorithm.

We extend the 4-layers network to 10-layers and then
analyze the experiment results. In this experiment, different
strategies, the adaptive exploration strategy, epsilon-greedy
strategy, and Boltzmann exploration were compared using
the value of Q3. In Fig.3, the adaptive exploration strategy
is represented by the blue curve, the Boltzmann exploration
policy is represented by the yellow curve and epsilon-greedy
strategy is represented by the purple curve. The adaptive
exploration method converges at 3746th time steps. The
Boltzmann exploration and epsilon-greedy method converge
at 3970th time steps and 5337th time steps respectively. Com-
pared with other strategies, the adaptive exploration strategy
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FIGURE 4. Robocode platform.

has the fastest convergence rate, in terms of the value of Q3.
Similar results are shown for a more complex task scenario.

B. EXPERIMENT ON ROBOT CONFRONTATION
Robocode [35], [36] is an open-source platform developed
for the multi-robot confrontation. The introduction to the
Robocode platform is shown in https://robocode.sourceforge.
io/. We use several scenarios with different enemies to test the
availability of the proposed method in this experiment.

In the platform, robots will take strategies to attack the
enemy and get rewards, which is shown in Fig.4. Both sides
have 100 health points at the beginning of each round. It indi-
cates the end of a round if the health point of one side
becomes 0. The state space, action space and the reward
function for an agent are shown below.
State space: The state space includes: the absolute ori-

entation angle, the relative direction angle, and the distance
between the robots. The range of absolute direction angle is
0 ∼ 360◦, which is discretized into four states and the relative
direction angle is also discretized into four kinds of states.
The distance between the robots is divided into 20 discrete
values.
Action space: The movement of the robot consists: move-

ment and rotation. Each robot canmove to arbitrary directions
with arbitrary distances in the ground at each time step. Our
robot can attack their opponents with bullets of different ener-
gies. The action space includes forward, backward, clock-
wise rotation, and anticlockwise rotation 4 kinds of different
movements.
Reward function: If a robot is hit by bullets or fires bullets

hit the enemy, its health point will change. Different states
have different health changing rules for the agent and the
bullets have a different energy. Different reward functions are
designed for different sub-tasks, respectively. Three different
sub-tasks are designed for this experiment.
Sub-Task 1: Attack the enemy. The reward signal for sub-

task 1 is shown in Eq.(27).

r =

{
+3, Hit the enemy
−3, Hit by the enemy

(27)

Sub-Task 2: Don’t get hit by the enemy. The reward signal
is negative. r = −3 if our robot is hit by the enemy.

TABLE 2. Experimental parameters.

FIGURE 5. Score ratios of the ε-decreasing, the AE method, the MADM
method and the proposed AE with MADM.

Sub-Task 3: Do not collide with the enemy. The reward
signal is negative r = −2 if our robot collides with the enemy.
The adaptive exploration strategy with the MADM

(AE with the MADM), the AE method, the MADM
method, the ε-greedy strategy with an attenuation threshold
(ε-decreasing) [4] and the Softmax-greedy method (softmax-
greedy) [34] were compared in this platform to demonstrate
the effectiveness of the proposed method. The experimental
parameters are set, which is shown in Table 2.

Every 10 rounds are counted as a session, and the session
score is the average score that is calculated using the scores
collected every 10 rounds. Three sub-tasks were trained by
the TD method to converge respectively before this experi-
ment was performed. Firstly, we train a robot ‘‘ε-decreasing’’
using the ε-decreasing method and then use the robot using
the proposed AE with the MADM method, the AE method
and theMADMmethod to fight it for 500 rounds respectively.
We define the score ratio as an indicator for these experimen-
tal results, which is calculated using the ratio of one side’s
score to the total score of both sides, as shown in Eq.(28).

Scoreratioi =
scorei∑M
i=1 scorei

(28)

where M = 2 is the number of individuals participating in
the count.

Fig.5 shows the curve of the score ratio for the ε-decreasing
method, the AE method, the MADM method and the pro-
posed AE with MADM. The experimental results show
that the proposed method has the highest score and the
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FIGURE 6. Score ratios of the ε-decreasing, the AE method, the MADM
method, the proposed AE with the MADM and the softmax-greedy.

ε-decreasing method has the lowest one. The scores of the
AE method and the MADM method are lower than those of
the proposed method, which shows that the two methods can
be effectively combined to improve learning performance.

Then, we use the robot using the AE with the MADM
method, the AE method, the MADMmethod, the robot using
the softmax-greedy method and the robot using ε-decreasing
to fight 500 rounds with the robot using the ε-greedy strategy
respectively.

Fig.6 shows the score ratio for these five methods. Similar
to the results shown in Fig.5, the score of the AE with the
MADM is higher than that of methods AE and MADM. The
experimental results shown in Fig.6 further demonstrate that
the combination of the AE and the MADM can improve the
performance of the learning algorithm. Besides, compared
with the ε-decreasingmethod and the softmax-greedy, the AE
with the MADM method has a higher score ratio, which
shows that the action policy using MADM helps the agent
get higher scores in confrontation. We decompose the source
task into several sub-tasks by a divide-and-conquer method
to expand the source of prior experience for the agent. Mean-
while, the MADM method can help the agent select actions
more effectively by using prior experience.

In order to demonstrate the low fluctuation for the three
methods, a fluctuation curve of score ratio to describe the
learning performance for different algorithms. The fluctua-
tion of score ratio is described by the first-order difference
of score ratio, that is, scoreratiot+1 − scoreratiot , where the
ratio of the latter score is used successively minus the ratio
of the former score. As shown in Fig. 7-8, the experimental
results show that the fluctuation range of the proposedmethod
is smaller than the other two competitors by comparing the
fluctuation curves of these methods, which indicates that the
proposed method has low fluctuation. A lower fluctuation
means that the agent chooses more appropriate actions to
maintain a stable decision.

C. EXPERIMENT ON THE REAL WHEELED
MOBILE ROBOT (WMR)
In order to test the practicality of the proposed method,
this study executed the image-based visual servoing (IBVS)

FIGURE 7. The fluctuation value of the ε-decreasing and the AE with the
MADM method.

FIGURE 8. The fluctuation value of the softmax-greedy and the AE with
the MADM method.

FIGURE 9. The experimental environment for the WMR.

control experiment in the real environment, based on the
previous works [10], [37]. The experimental environment is
shown in Fig.9. Previous work has shown that Q-learning can
improve the performance of the IBVS controller by adjusting
the mixture parameter for the IBVS controller [10], [37].
We carried out experiments on the basis of this work and
the four vertex coordinates of the Quick Response (QR)
code are used as the feature points in IBVS [10]. Firstly,
we train the WMR in the simulation environment, and then
the prior knowledge (the Q-table) that is learned in simulation
is directly transferred to the WMR before the real-world
experiment, in order to reduce the training time of real-world
experiments.

Three different methods were compared: the pro-
posed method (AE with the MADM), ε-greedy strategy
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TABLE 3. Experimental parameters.

(ε-greedy) [33] and the softmax strategy with simulated
annealing algorithm (Softmax-SA) [37]. For the real-world
environment, the parameters for this experiment are set as
shown in Table 3. For the RL model in this experiment, based
on the previous work [10], [37], we decompose the source
task into three sub-tasks: not losing any feature, reaching the
desired position and achieving the desired position faster.
Sub-Task 1: The reward +100 is given when the WMR

reaches its target position. In other cases, however, a few
negative rewards are given. The reward function is given by,

reward =

{
+100, Reach the target position
−2, Others

(29)

Sub-Task 2: If the WMR is deemed to be losing the target
and is given a bad reward−100. In other cases, a few positive
rewards are given. The reward function is given by,

reward =

{
−100, Missing the target features
+2, Others

(30)

Sub-Task 3: The reward is given according to the distance
between the WMR and the desired position, which drives the
WMR to reach the target position faster. The reward function
is given by,

reward=−100
(∑N

j=1

∣∣∣Fcj −F∗j ∣∣∣ /N√col2+row2

)
(31)

where N is the number of image features used in the IBVS
system. Fcj is the current feature and F

∗
j is the desired feature.

col and row are the length and width of the obtained image
plane, respectively.

Since the average errors for four feature points are similar,
only the feature errors for two diagonal feature points are
shown. Each method was tested 50 times, and the aver-
age value for the 50 tests was selected as the experimen-
tal results. The experimental results are shown in Fig.10.
Fig.10 shows the convergence curve for the feature error.
From the experimental results, these three methods converge
at last, but the convergence rate is different. The AE with the
MADM method converges at 148th time steps, the Softmax-
SA method converges at 181th time steps and the ε-greedy
method converges at 198th time steps. The experimental
results show that compared with the other two methods, the
proposed method has the fastest convergence rate. The results
on the real-robot show that the adaptive exploration and the

FIGURE 10. Comparison of the feature error for the three methods.
(a) The AE with the MADM method. (b) The Softmax-SA method. (c) The
ε-greedy method.

MADM can accelerate the convergence rate of the learning
algorithm. Reducing training time means that the risk of
damaging the real-robot will be reduced.

VII. A FUTURE IMPROVEMENT FOR ADAPTIVE
EXPLORATION STRATEGY USING
TRANSFER LEARNING
To further investigate the improvement of learning perfor-
mance, this study uses the transfer learning extends the
learning model to different scenarios to improve the gener-
alization of the proposed AE with MADM. This study com-
pares the AE with the MADMmethod using transfer learning
(AE-MADM with TF) with the MADM method without
transfer learning (AE-MADM without TF). The contrast
experiment was divided into two groups. The first group
used AE-MADM with TF and AE-MADM without TF to
fight with two formations of tank robots that are trained
by ε-greedy strategy respectively. The second group used
AE-MADM with TF and AE-MADM without TF to fight
with four formations of tank robots that are trained by
ε-greedy strategy respectively. The robots were set in differ-
ent formations to ensure the robots in the same team will not
attack each other. The robot that is trained using the ε-greedy
strategy and the robot that is trained using the AE-MADM
method will fight for 500 rounds before the beginning of
the experiment, so the robot ‘‘AE-MADM’’ has some prior
experience. The direct transfer strategy [38] is performed if
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FIGURE 11. The experimental results for the first group.

FIGURE 12. The experimental results for the second group.

agents have the same state and action space in the different
tasks, which is given by,{

ρS : Spast → Scurrent
ρA : Apast → Acurrent

(32)

An intermediate task gives the agent more prior experience
to achieve the target task if the target task is far away from
the source task. In this experiment, the second experiment is
regarded as the target task, then the first experiment can be
regarded as the intermediate task.

Fig.11 and Fig.12 show the experimental results for the
first and second experiments, respectively. In the first exper-
iment, we used a formation as the enemy, which con-
sists of two robots trained by ε-greedy strategy. The score
ratio of AE-MADM with the TF method and AE-MADM
without the TF method remained between 0.5 and 0.81.
However, the experimental results show that the score ratio
of AE-MADM with the TF method is still higher than that
of AE-MADM without the TF method because agents learn
from prior experience using transfer learning, so the score is
higher. With the number of rounds increases, the score ratio
of AE-MADMwith the TFmethod remains around 0.7, while
the score ratio of AE-MADMwithout the TFmethod remains
around 0.6.

Comparedwith the first experiment, the second experiment
is more difficult. The learning experience that is gained in
the first experiment is transferred to the second experiment
using the direct transfer strategy. In the first 220 rounds, the
AE-MADMwith the TF method does not perform better than
AE-MADM without the TF method. With the increase of

rounds, the former scores gradually higher than the latter,
which shows that the agent can not only exploit the past expe-
rience but also gain new knowledge. The experimental results
show that transfer learning extends the proposed method to
more difficult task scenarios.

VIII. CONCLUSION
The dilemma of exploration and exploitation in RL systems is
a challenging problem. In this work, to address the dilemma
of exploration and exploitation, an adaptive exploration strat-
egy with multi-attribute decision-making is proposed. The
probability of exploration is determined by an adaptive explo-
ration strategy, which uses the information entropy instead
of the experience of manual tuning. Meanwhile, we investi-
gate how to expand the source of prior experience from the
structure of the task itself, and how to integrate these multi-
source prior experience. Firstly, the source task is decom-
posed into several sub-tasks, and these sub-tasks are trained
by the sameTDmethod separately. Because each sub-task has
a different reward function, a reward standardization method
is proposed. The average value of standardized rewards for
each sub-task is used as a reward for the complex task.
Compared with the conventional method that the agent learns
directly in the environment, the training method running sev-
eral learners in parallel can accelerate the learning rate. The
transfer learningmethod extends the proposed learningmodel
to more difficult tasks. We executed several experiments to
demonstrate the effectiveness of the proposed method. The
experimental results show that the proposed method outper-
forms the conventional methods in terms of convergence rate
and learning performance.

In the future, we will try to extend the proposed method to
the RL systems in high-dimensional space and this learning
method needs to be framed in the existing works, such as
hierarchical RL [39] and curriculum learning [40], [41]. Since
some rough prior experience exists in the previous learning
tasks, advanced knowledge transfer methods and the Domain
adaptation might lead to more efficient learning performance.
Previous works have focused on the RL methods to address
the fault diagnosis and fault tolerant control [42]–[44]. So, we
will investigate the application of the proposed method to
the fault diagnosis. In addition, integrating the possibility of
applying multi-attribute decision-making in the deep rein-
forcement learning system is also worthy of study.
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