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ABSTRACT In this paper, a rigorous formalism of information transfer with respect to relative entropy or
Kullback-Leiber divergence within a multi-dimensional deterministic dynamical system is established. It is
derived from the mechanism that the governance of the predictability change could come from the evolution
itself and a transfer of the evolutions ofmultiple components for a given component. The presented formalism
of three-dimensional systems and its several generalizations in high-dimensional systems provide a precise
quantification of transfers among variables in complex dynamical systems, with which some properties are
explored and given. These results of information transfers are different from that with respect to Shannon
entropy inmulti-dimensional systems, due to aminus sign which reflects the opposite notion of predictability
vs. uncertainty. Explicit formulas are demonstrated and verified in the Rössler system and a four-dimensional
system. These studies can be used to investigate the propagation of uncertainties and perform the dynamic
sensitivity analysis statistically. The simulation results suggest that the generalized formalisms provide
more underlying information about multi-dimensional dynamical systems compared with currently existing
methods. It is beneficial for prediction and control of systems better, with broad application prospects in
many fields.

INDEX TERMS Information transfer, relative entropy, predictability, Rössler system, a four-dimensional
dynamical system.

I. INTRODUCTION
Uncertainty quantification is of great theoretical impor-
tance and practical significance in investigations of complex
dynamical systems. It is very important to understand and
predict their dynamics in analysis of interacting nonlinear
systems. Causality analysis and information flow/transfer are
closely related concepts, whereby information or knowledge
of certain states can be thought of as coupling influence onto
the future states of other processes in a complex system [1].
This flow or transfer related to the spatiotemporal structure
of predictability is important as it can determine how pre-
dictability in one place is altered due to other places and how
uncertainties propagate in the system, which helps to identify
the source regions of unpredictability [2].
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Transfer and transferlike entropies have been, and still
are, the subject of much research on both theoretical and
practical shortcomings, and the very popular techniques for
studying causality in coupled dynamics shown according to
these continued efforts are information-theoretic tools [3].
A great many works exist in the literature. As such, the appli-
cations of Schreiber’s transfer entropy [4], [5], the measure-
ments of information transfer in different disciplines [6]–[9],
the measurement uncertainty of hypertension and stress on
kidney [10], the comparison of Shannon, Kullback-Leibler
and renormalized entropies within successive bifurca-
tions [11], the connection between topological and
algebraic entropy [12], the analysis of heart rate variabil-
ity using fuzzy measure entropy [13], the measurement
entropy of semi-independent hyper MV-algebra dynam-
ical systems [14], the information entropy of hyper
MV-algebras [15], the Algebraic and Shannon entropies
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of commutative hypergroups [16], the evaluation of an
information system effect on the learning of the space struc-
ture [17], the investigation of the ergodic properties of prob-
ability dynamical systems using concept of entropy [18], etc.
Given the broad and pressing need to realistic applications
on complex dynamical systems, information flow can be
used substantially. During the past decades, the formalisms
of information transfer have been established empirically
or half-empirically based on observations of diverse disci-
plines, for example, time-delayed mutual information [8]
and transfer entropy [4]. Until 2005, Liang and Kleeman
put forward a rigorous formalism to measure information
transfer of two-dimensional (2D) systems with the dynamics
are given, which can be referred as LK2005 formalism hence-
forth [19]. The idea is derived from interactions between two
components in complex dynamical systems. In terms of its
applications, the LK2005 formalism has yielded remarkable
results by thoroughly describing the statistical behavior of a
system. However, the LK2005 formalism and its generalized
forms [20]–[23] are only suitable for some dynamical sys-
tems of arbitrary dimensionality with successful applications
between two variables, but it is invalid to quantify uncertainty
of many real-world coupled systems. Considering realistic
applications of sensitivity analysis of an aircraft system with
interactions between multiple components, recently, a rigor-
ous formalism of information transfer with respect to Shan-
non entropy among the components in multi-dimensional
deterministic complex dynamical systems has been estab-
lished in [24] based on the LK2005 formalism to deal
with the uncertainty change of one component given by the
other components. The measurements of information transfer
can help us to better understand the intrinsic mechanism
and explore deeply hidden information in the evolution of
multi-dimensional dynamical systems. The above mentioned
formalisms of information transfer are given with respect to
shannon entropy or absolute entropy, which are the measure-
ment of uncertainty.

Causation inference and information flow are classi-
cal topics in diverse disciplines nowadays, which remain
advancements in continuing to strengthen the theory and
push the applications [1]. There is another measure of
the predictability in information theory, that is, relative
entropy, which is also called Kullback-Leibler divergence.
The Kullback-Leibler divergence was introduced as the dis-
crimination information between two distributions [25]. The
Kullback-Leibler divergence is a measure of how one prob-
ability distribution is different from a reference probability
distribution [26], whose advantages have been shown in that
it possesses some appealing properties compared to Shan-
non entropy [27]. It is a measure on how much additional
information is added when the reference probability is fixed
as the initial distribution and for dynamical systems with
the joint density evolve [28]. Furthermore, it has the invari-
ance upon nonlinear transformation and the consistency with
the second law of thermodynamics in the context of Markov
chain [29]–[31]. Therefore, it is well accepted as a measure

of predictability [29], [32]. Since the information flow is an
important physical problem in practical concern and nature,
a formalism of information flow with respect to relative
entropy has been examined in 2D deterministic system [2] to
study how predictability propagates in physical space better.
However, it cannot capture the indirect information transfer,
that is, it fails to identify whether the information is from a
direct transfer via the other variable or an indirect transfer via
some other variables [33], [34].

Hence, we develop a formalism of information trans-
fer with respect to relative entropy to several variables of
multi-dimensional dynamical systems for catering to practi-
cal requirements such as sensitivity analysis of aircraft sys-
tems in this paper. In other words, we extend the results in
[19] to the information flow with respect to relative entropy
between groups of components, rather than individual com-
ponents in arbitrary multi-dimensional dynamical systems
when dynamics is fully known. It is a follow-up of the study
in [2], [24]. In addition, the relationships among several
generalized formalisms are highlighted. Compared with the
previous formalisms, the generalized formalisms can be used
to quantify information transfer from several variables and
high order interactions among them to another variable. Fur-
thermore, the generalized formalisms can help to identify
direct or indirect information transfer between variables in
dynamical systems. It is beneficial for exploring the com-
plexity of evolution of multi-dimensional dynamical systems.
Meanwhile, it is also a measure of performing dynamic sensi-
tivity analysis. Considering the large body of aircraft designs
work on uncertainty studies, this research is expected to
provide some help to determine design parameters and guide
decision-making for predicting complex computer models.
It is significant to investigate real-world problems.

The structure of this paper is as follows: Section 2 recalls
the recent developed formalisms of information flow
in multi-dimensional systems briefly; In Section 3,
multi-dimensional formulas of information transfer with
respect to relative entropy are established. Details on the
derivations of the formalisms and the related properties are
demonstrated; Section 4 gives a description about the for-
malisms with multi-dimensional applications; the summary
of this paper is given in Section 5.

II. MULTI-DIMENSIONAL FORMALISM OF
INFORMATION TRANSFER WITH RESPECT
TO SHANNON (ABSOLUTE) ENTROPY
For a three-dimensional (3D) continuous and deterministic
autonomous system,

dx
dt
= F(x), (1)

where F = (F1,F2,F3) is a known flow vector with Fi =
Fi(x1, x2, x3) for any i = 1, 2, 3 and x = (x1, x2, x3) ∈ � for
which the sample space� is assumed to be a direct product of
�1, �2 and �3. A stochastic process X = (X1,X2,X3) ∈ �
with joint probability density ρ(x1, x2, x3, t) at time t is
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the random variables corresponding to the sample values
(x1, x2, x3). For convenience, we will use the notation ρ
instead of the notation ρ(x1, x2, x3, t) except where noted.
The probability density ρ associated with (1) satisfies the
Liouville equation [35]:

∂ρ

∂t
+
∂(F1ρ)
∂x1

+
∂(F2ρ)
∂x2

+
∂(F3ρ)
∂x3

= 0. (2)

After some algebraic manipulations about (2) with assum-
ing that ρ vanishes at the boundaries (the compact sup-
port assumption for ρ and the assumption is reasonable in
real-world problems [19]), it is found that the time rate of

the joint absolute entropy change of X1,X2 and X3, H (t)
def
=

−
∫
�
ρ log ρdx, satisfies

dH
dt
= E(∇ · F), (3)

where E(∇ · F) =
∫∫∫

�
ρ(∇ · F)dx1dx2dx3. The property

holds for deterministic systems of arbitrary dimensionality
[20]. A detailed derivation on (3) is referred to [21].

As mentioned above, the time rate of change of H equals
to the mathematical expectation of the divergence of the flow
vector F. The marginal density of xk in 3D systems is

ρk (xk , t) =
∫∫

�i×�j

ρ(xi, xj, xk , t)dxidxj,

where i, j, k = 1, 2, 3 with different i, j, k at the same time.
The shannon entropy for the component

Hk (t) = −
∫
�k

ρk log ρkdxk

evolves as
dHk
dt
= −

∫∫∫
�

ρ

[
Fk
ρk

∂ρk

∂xk

]
dxidxjdxk . (4)

Equation (4) states howHk evolves with time. The evolution-
ary mechanism ofHk derives from two parts: One is from the
evolution itself,

dH∗k
dt ; another from the transfers of Xi and Xj

according to the coupling in the joint density distribution ρ.
When Xk evolves on its own, denoted by

dH∗k
dt and

dH∗k
dt
= E

(
∂Fk
∂xk

)
=

∫∫∫
�

ρ
∂Fk
∂xk

dxidxjdxk , (5)

whereE means themathmatical expectationwith respect to ρ.
The rate of information flow/transfer with respect to absolute
entropy from Xi,Xj to Xk is

Ti,j→k =
dHk
dt
−
dH∗k
dt

=

∫
�

ρ

(
Fk
ρk

∂ρk

∂xk
+
∂Fk
∂xk

)
dx

= −

∫
�

ρi,j|k (xi, xj|xk )
∂(Fkρk )
∂xk

dx, (6)

where ρi,j|k (xi, xj|xk ) =
ρ(xi,xj,xk ,t)
ρ(xk ,t)

.

Moreover, when several variables are involved, the infor-
mation transfers from components Xi,Xj, . . . ,Xn to Xk of

multi-dimensional continuous and deterministic autonomous
systems has the following form:

Ti,j,...,n→k = −

∫
�

ρi,j,...,n|k (xi, xj, . . . , xn|xk )

·
∂(Fkρk )
∂xk

dx. (7)

Equation (7) can be used to quantify the information transfers
from several variables and high order interactions among
them to the other variable. In addition, the generalized for-
malism can be reduced to 2D cases when only considering
information transfer between two variables of a system.

III. MULTI-DIMENSIONAL FORMALISMS OF
INFORMATION TRANSFER WITH RESPECT
TO RELATIVE ENTROPY
A. THE FORMALISMS OF 3-DIMENSIONAL SYSTEMS
At first, we consider a three-dimensional dynamical sys-
tem (1):

dx1
dt
= F1(x1, x2, x3, t),

dx2
dt
= F2(x1, x2, x3, t),

dx3
dt
= F3(x1, x2, x3, t).

We research the predictability change of one component of
x contributed by the other two components, that is to say,
how information is transferred from two variables to the other
variable with respect to relative entropy. It is known that
the definition of relative entropy, for two joint probability
densities ρ and q of x,

DKL(ρ ‖ q)
def
=

∫
�

ρ log
ρ

q
dx. (8)

It is a measure of the distance between ρ and q. In general,
q is the initial density or equilibrium density. In this paper,
it can be treated as the initial density except where specified.
Now consider the information transfer from X2 and X3 to X1.
The marginal relative entropy of X1 is

D1
KL(ρ1 ‖ q1) =

∫
�1

ρ1 log
ρ1

q1
dx1, (9)

where q1(x1, t) =
∫∫
�2×�3

q(x1, x2, x3, t)dx2dx3.
Equation (8) can be written as

DKL(ρ ‖ q) = −H −
∫∫∫

�

ρ log qdx1dx2dx3. (10)

Derivatives for (10) with respect to t and combining (2)
and (3), the time rate of the joint relative entropy change of
X1,X2 and X3 is

dDKL
dt
= −

dH
dt
−

∫∫∫
�

∂ρ

∂t
log qdx1dx2dx3

= −E(∇ · F)+
∫∫∫

�

(∇ · ρF) log qdx1dx2dx3

= −E(∇ · F)− E(F · ∇ log q). (11)
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The evolution equation of ρ1 is derived by taking the integral
of (2) with respect to x2 and x3 over the subspace �2 ×�3:

∂ρ1

∂t
+

∫∫
�2×�3

∂(F1ρ)
∂x1

dx2dx3 = 0. (12)

After multiplying by (1+log ρ1) for (12) with some algebraic
manipulations:

∂(ρ1 log ρ1)
∂t

+

∫∫
�2×�3

∂(F1ρ)
∂x1

dx2dx3

+

∫∫
�2×�3

log ρ1
∂(F1ρ)
∂x1

dx2dx3 = 0. (13)

By integrating for (13) and using the assumption that ρ
vanishes at the boundaries, the evolution equation of marginal
absolute entropy H1 is

dH1

dt
=

∫∫∫
�

[
log ρ1

∂(F1ρ)
∂x1

]
dx1dx2dx3. (14)

Derivatives for (9) with respect to t , then substituting (12)
and (14) with the fact

∫∫∫
�
∂(F1ρ)
∂x1

dx1dx2dx3 = 0 by the com-
pact support assumption for ρ, similar to the two-dimension
situation in [2], the evolution of the marginal relative entropy
D1
KL is

dD1
KL

dt
= −

dH1

dt
−

∫
�1

∂ρ1

∂t
log q1dx1

= −

∫∫∫
�

[
log ρ1

∂(F1ρ)
∂x1

]
dx1dx2dx3

+

∫∫∫
�

∂(F1ρ)
∂x1

log q1dx1dx2dx3

= −

∫∫∫
�

log
ρ1

q1

∂(F1ρ)
∂x1

dx1dx2dx3

= −

∫∫∫
�

(1+ log
ρ1

q1
)
∂(F1ρ)
∂x1

dx1dx2dx3, (15)

here q1 does not depend on time. For convenience, dD
1
KL
dt is

written as dD1
dt in the following context.

Similar to the situation with respect to absolute entropy,
the evolution of the predictability of X1,

dD1
dt derives from two

parts: one is from the evolution of itself,
dD∗1
dt ; another from

the influences of X2 and X3 according to the coupling in the
joint density distribution ρ. The latter is the information flows
from X2 and X3 to X1, denoted by TD2,3→1. From (11), the
time change of D only depends on ∇ · F and F · ∇ log q. If it
evolves on its own, one may argue that the entropy with X1
changes with ∂F1

∂x1
and F1 · ∇ log q1 based on the concept of

joint relative entropy. According to (11), it should have an
equation:

dD∗1
dt
= −E(∇ · F1)− E(F1 · ∇ log q1). (16)

It is worth note that (16) can be derived from (51) with n = 3.
Similar to (35) in [2], we obtain the following theorem:

Theorem 1: For system (1), the information flow with
respect to relative entropy from X2 and X3 to X1 is

TD2,3→1 =
dD1

dt
−
dD∗1
dt

=

∫∫∫
�

ρ2,3|1(x2, x3|x1)
∂(F1ρ1)
∂x1

dx1dx2dx3. (17)

The detailed derivations of Theorem 1 are demonstrated
in Appendix A. As in Section II, for any other transfers,
i.e., TDi,j→k , we may insert 1,2 and 3 correspondingly to
obtain all. There is a clear interpretation for information
flow/transfer associated with the formulas (17). As stated
in [2], the information transfer from X2 and X3 to X1, T2,3→1
quantifies the influence of X2 and X3 on the predictability
of X1. Meantime, when T2,3→1 > 0, it means that the
evolution of X2 and X3 favors the prediction of X1, that is
to say, it will make X1 more predictable. Otherwise, when
T2,3→1 < 0, it implies that the evolution of X2 and X3 reduces
the predictability of X1, which means that it will bring to
X1 more uncertainties. The positive or negative information
transfer T2,3→1 means that the evolution of X2 and X3 gain or
reduce the uncertainty of X1. Meantime, It is found that the
formula (6) is same as the formula (17), except for a minus
sign. It conformswith the concept of shannon entropy and rel-
ative entropy as a measure of uncertainty and predictability,
respectively.

B. THE FORMALISMS OF n-dimensional systems
Similarly, for n-dimensional systems with n > 3

dx1
dt
= F1(x1, x2, · · · , xn, t),

dx2
dt
= F2(x1, x2, · · · , xn, t),

...
...

dxn
dt
= Fn(x1, x2, · · · , xn, t), (18)

we can obtain the formalism of information flows with
respect to relative entropy from X2,X3, . . . ,Xn to X1 using
the same derivation with the Liouville equation

∂ρ

∂t
+
∂(F1ρ)
∂x1

+
∂(F2ρ)
∂x2

+ · · · +
∂(Fnρ)
∂xn

= 0, (19)

that is

TDi,j,...,n→k =
dDk
dt
−
dD∗k
dt

=

∫
�

ρi,j,...,n|k (xi, xj, . . . , xn|xk )
∂(Fkρk )
∂xk

dx,(20)

we can insert 1, 2, . . . , n to (20) correspondingly to obtain
all transfers. The obtained formalism is the transfer to one
component from all other components in multi-dimensional
dynamical systems. Now one can consider how to screen
out the part contributed from x2 and x3 to x1 from (20).
The difficulty is how to obtain the evolution of D1 with the
influence of x2 and x3 excluded, which is different from the
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evolution of D1 itself,
dD∗1
dt in 3D systems. In fact, we have

known that the evolution of D1 includes the transfer from
X2 and X3 and the evolution without effect from X2 and X3,
which can be written as dD12\3\

dt in systems with dimensionality
higher than 3. It is the tendency of D1 with x2 and x3 fixed at
time t and the subscript 2\3\ signifies the effect of x2 and x3 is
removed. Obviously, when ρ involved with the subscript 2\3\,
ρ2\3\, it signifies marginalization of the component, that is,

ρ2\3\ = ρ2\3\(x1, x4, . . . , xn)

=

∫
�2×�3

ρ(x1, x2, . . . , xn)dx2dx3 (21)

Without loss of generality, we consider the information trans-
fer with respect to relative entropy from X2 and X3 to X1
in multi-dimensional systems firstly, which is the difference
between dD1

dt and dD12\3\
dt , that is

TD2,3→1 =
dD1

dt
−
dD12\3\

dt
. (22)

Now the main problem is converted to compute dD12\3\
dt .

It cannot be obtained via using the Liouville equation (19)
corresponding to multi-dimensional deterministic dynamical
systems, as the dynamics is changed with time t on manipu-
lating x2 and x3 [2]. Based on the previous derivation by Liang
[21], the evolution of D1 when X2 and X3 is fixed, dD12\3\

dt in
multi-dimensional systems can be written as

dD12\3\

dt
= lim
1t→0

D12\3\(t +1t)− D1(t)
1t

. (23)

Here we compute it by using the definition of derivatives
and approach it through to find how the relative entropy D1
increases from time t to time t + 1t with the limit 1t → 0
in a discretization of the system (18).

The discrete mapping form of system (18), 8 : � −→ �

is

8 : x(t +1t) = x(t)+ F(x; t)1t, (24)

which is an approximation of system (18) up to the first order
of 1t and drives x(t) = (x1, x2, . . . , xn) to x(t + 1t) =
8(x(t)). To avoid confusion and express shortly, x(t +1t) =
8(x(t)) can be replaced by y = (y1, y2, . . . , yn) in this paper.
The above mapping is as follows in component form:

8 :


y1 = x1 + F1(x) ·1t
y2 = x2 + F2(x) ·1t
...
...

yn = xn + Fn(x) ·1t.

(25)

Since x is steered forth with the transformation 8 =

(81,82, . . . , 8n) from time step t to t + 1, correspondingly
its density ρ is driven forward by Frobenius-Perron operator
(F-P operator) [35]: P : L1(�)→ L1(�), which is defined as∫

ω

Pρ(x)dx =
∫
8−1(ω)

ρ(x)dx

with any subset of �, ω. Liang [2], [21] showed some useful
properties of 8 and its corresponding F-P operator. Firstly,
8 and its variables are invertible as 1t → 0 with the
form

8−1 :


x1 = y1 − F1(y) ·1t + O(1t2)
x2 = y2 − F2(y) ·1t + O(1t2)
...
...

xn = yn − Fn(y) ·1t + O(1t2),

(26)

the high order terms may be omitted with1t → 0. Secondly,
the Jacobian matrix of 8 and its inverse are

J = 1+
n∑
i=1

∂Fi
∂xi

1t + O(1t2) (27)

and

J−1 = 1−
n∑
i=1

∂Fi
∂xi

1t + O(1t2), (28)

which can be learned from 8. The last property is that the
corresponding F-P operator of the invertible 8 is written
clearly as

Pρ(y1, y2, . . . , yn) = ρ(8−1(y1, y2, . . . , yn))|J−1|

= ρ(x1, x2, . . . , xn)|J−1|. (29)

We can fix x2 and x3 to obtain the influence from X2 and
X3 excluded, correspondingly the mapping 8 is modified as
follows:

82\3\ :


y1 = x1 + F1(y) ·1t + O(1t2)
y4 = x4 + F4(y) ·1t + O(1t2)
...
...

yn = xn + Fn(y) ·1t + O(1t2)

(30)

with x2 and x3 fixed as parameters at time t and an associated
modified F-P operator, P2\3\. The marginal density of x1 at t +
1t with x2 and x3 fixed as parameters at t ,

(P2\3\ρ)1(y1) =
∫
�4×···×�n

(P2\3\ρ)(y1, y4, . . . , yn)dy4 . . . dyn

is dependent on x2 and x3 as well as has extra dependencies
about x4, x5, . . . , xn introduced by the conditional density of
x2 and x3 on x1, x4, . . . , xn [23]. It is worth noting that, wewill
use�4...n instead of�4× · · · ×�n throughout for notational
convenience. Therefore, the marginal absolute entropy of the
first variable evolved from H1 with contribution from X2 and
X3 excluded as t → t +1t is

H12\3\(t +1t) =
∫
�

(P2\3\ρ)1(y1) log(P2\3\ρ)1(y1)

·ρ(x2, x3|x1, x4, . . . , xn)

·ρ4...n(x4, x5, . . . , xn)dy1dx2 . . . dxn. (31)

The marginal relative entropy of the first variable evolved
from D1 with contribution from X2 and X3 excluded as

39468 VOLUME 8, 2020



Y. Yin et al.: Information Transfer With Respect to Relative Entropy in Multi-Dimensional Complex Dynamical Systems

t → t +1t can be obtained in the same way, that is,

D12\3\(t +1t) =
∫
�

(P2\3\ρ)1(y1)
log(P2\3\ρ)1(y1)

q1(y1)
·ρ(x2, x3|x1, x4, . . . , xn)

·ρ4...n(x4, x5, . . . , xn)dy1dx2 . . . dxn, (32)

here ρ4...n is the joint probability density function of
(x4, x5, . . . , xn). For n-dimensional system (18) with dynam-
ics given, the time rate of themarginal relative entropy change
on X1 with the influence of X2 and X3 excluded is

dD12\3\

dt
= lim

1t→0

D12\3\(t +1t)− D1(t)
1t

= −

∫
�

(
1+ log

ρ1

q1

)
∂(F1ρ2\3\)
∂x1

22,3|1dx

+

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

θ2,3|1dx, (33)

here θ2,3|1 =
ρ
ρ2\3\
ρ1\2\3\,22,3|1 =

∫
�4···n

ρ
ρ2\3\
ρ1\2\3\dx4 · · · dxn. See

Appendix B for the detailed derivations of (33).
Similarly, we have the following theorem:
Theorem 2: For system (18), the information flow with

respect to relative entropy from X2 and X3 to X1 is

TD2,3→1 =
dD1

dt
−
dD12\3\

dt

=

∫
�

(
1+log

ρ1

q1

)(
∂(F1ρ2\3\)
∂x1

22,3|1−
∂(F1ρ)
∂x1

)
dx

−

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

θ2,3|1dx, (34)

where ρ1\2\3\ =
∫
�1×�2×�3

ρdx1dx2dx3.
Proof of Theorem 2: Substract (15) from (33), we can

obtain the formula (34).
In particular, we can find that ρ2\3\ = ρ1, 22,3|1 = θ2,3|1 =

ρ
ρ1
= ρ2,3|1 when n = 3. In this situation, (34) is

TD2,3→1 =

∫
�

(
1+log

ρ1

q1

)(
∂(F1ρ2\3\)
∂x1

22,3|1−
∂(F1ρ)
∂x1

)
dx

−

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

θ2,3|1dx

=

∫
�

(
1+ log

ρ1

q1

)(
∂(F1ρ1)
∂x1

ρ

ρ1
−
∂(F1ρ)
∂x1

)
dx

−

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

ρ

ρ1
dx

=

∫
�

∂(F1ρ1)
∂x1

ρ

ρ1
dx −

∫
�

∂
(
F1ρ log

ρ1
q1

)
∂x1

dx

=

∫
�

ρ2,3|1
∂(F1ρ1)
∂x1

dx

with the compact support assumption for ρ. Therefore, The-
orem 1 is a special case of Theorem 2.

If we replaceX2,X3 with a variable Z of (35) in [2], it seems
that it is possible to get the information transfer from (X2,X3)

to X1, however, it is a misleading problem. Firstly, if we
replace X2,X3 by a variable Z , the two equations F2 and F3
are lost, which resulting in the incorrect information flow.
Aswe can see from equation (19), all the equations are needed
to get the probability densities. Secondly, if the given form
is taken, we lost the information between other variables and
X2, X3, as well as the indirect information transfers associated
with X2 and X3. Finally, (34) is a more universal form, while
the modified form is a special form which can be valid only
at some special conditions.

We can also insert i, j and k correspondingly to (34) to
obtain other transfers from Xi and Xj to Xk , TDi,j→k and all
information transfers from Xi,Xj, . . . ,Xn to Xk following the
same procedure:

TDi,j→k =
dDk
dt
−
dDki\j\
dt

=

∫
�

(
1+ log

ρk

qk

)(
∂(Fkρi\j\)
∂xk

2i,j|k −
∂(Fkρ)
∂xk

)
dx

−

∫
�

∂
(
Fkρk log

ρk
qk

)
∂xk

θi,j|kdx (35)

and

TDi,j,...,n→k

=
dDk
dt
−
dDki\j\...n\
dt

=

∫
�

(
1+ log

ρk

qk

)(
∂(Fkρi\j\...n\)

∂xk
2i,j,...,n|k −

∂(Fkρ)
∂xk

)
dx

−

∫
�

∂
(
Fkρk log

ρk
qk

)
∂xk

θi,j,...,n|kdx. (36)

The information flows obtained by (35) and (36) are asym-
metric, for instance, while Xk gains information from Xi or
Xj, or Xi and Xj, Xi or Xj might have no dependence on
Xk in system (18). A property of information flow is its
asymmetry among the components, which implies causality
[36]. In addition, when Fk is independent of xi and xj, there
should be no information transfer from Xi and Xj to Xk . It is
consistent with the information flows defined in (35). As a
matter of fact, another property of the information flow is
given below as an extension of (36) in [2].
Theorem 3: For system (18), if Fk is independent of xi and

xj with different i, j and k , then the information flow with
respect to relative entropy from Xi and Xj to Xk , TDi,j→k = 0.
Proof of Theorem 3: According to the formalism (35) of

information transfer for system (18) with the notation ofFk =
Fk (xk ), after integrating with respect to xi and xj for ρ, θi,j|k
and 2i,j|k , respectively,∫

�

ρdxidxj = ρi\j\,∫
�

θi,j|kdxidxj =
∫
�

ρ

ρi\j\
ρi\j\k\dxidxj = ρi\j\k\,∫

�

2i,j|kdxidxj =
∫
�

(∫
�i\j\k\

θi,j|kdxi\j\k\

)
dxidxj = 1,
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where the notation i\ signifies that the component i is excluded
from the set of variables in systems.

Then, integrating for (35) with respect to xi and xj, and
using the assumption that ρ is compactly supported,

TDi,j→k

=

∫
�i\j\

(
1+ log

ρk

qk

)(
∂(Fkρi\j\)
∂xk

−
∂(Fkρi\j\)
∂xk

)
dx1dx4 · · · dxn

−

∫
�

∂
(
Fkρk log

ρk
qk

)
∂xk

θi,j|kdx

= −

∫
�i\j\

∂
(
Fkρk log

ρk
qk
ρi\j\k\

)
∂xk

dxi\j\ = 0.

However, there is possibility that the flows in other directions
may be nonzero when Fi depends on xj and xk or Fj depends
on xi and xk .
As a special case of (35), (17) is also equal to zero with the

case of F1 is independent of x2 and x3, that is,

TD2,3→1 =

∫∫∫
�

ρ2,3|1
∂(F1ρ1)
∂x1

dx1dx2dx3

=

∫
�1

(∫∫
�2×�3

ρ2,3|1dx2dx3

)
∂(F1ρ1)
∂x1

dx1

=

∫
�1

∂(F1ρ1)
∂x1

dx1 = 0.

Likewise, Theorem 3 can be generalized tomulti-dimensional
cases associated with (36) in the same way.

Moreover, the information flow with respect to relative
entropy is invariant upon coordinate transformation.
Theorem 4: For the deterministic system (18), the infor-

mation flow obtained by formula (34) is invariant upon coor-
dinate transformation of (x4, x5, . . . , xn).
Proof of Theorem 4: Since we consider the information

flow with respect to relative entropy from X2 and X3 to
X1, the transformation cannot be made for x1, x2 and x3.
Assuming that the transformation G : x 7→ v(Rn → Rn)
has the following form:

v1 = x1,

v2 = x2,

v3 = x3,

v4 = G4(x4, x5, . . . , xn),
...

...

vn = Gn(x4, x5, . . . , xn). (37)

then system (18) can be changed to

dv1
dt
= F1[G−1(v)],

dv2
dt
= F2[G−1(v)],

dv3
dt
= F3[G−1(v)],

d[G−1(v)]4
dt

= F4[G−1(v)],

...
...

d[G−1(v)]n
dt

= Fn[G−1(v)]. (38)

Actually, here the Jacobian ofG = (G1,G2, . . . ,Gn), J is the
same as that of (G4,G5, . . . ,Gn), J1\2\3\. And the density of v
is as follws:

ρ(v) = ρ(x)|J−11\2\3\|

according to the Frobenius-Perron operator result. The infor-
mation flow with respect to relative entropy from v2 and v3 to
v1, T̂D2,3→1 is

hatTD2,3→1

=

∫
G(Rn)

(
1+ log

ρ1(v1)
q1(v1)

)(
∂{F1[G−1(v)]

∫
ρ(v)dv2dv3}

∂v1

·

∫ [
ρ(v)∫

ρ(v)dv2dv3
·

∫
ρ(v)dv1dv2dv3

]
dv4 · · · dvn

−
∂(F1[G−1(v)]ρ(v))

∂v1

)
dv

−

∫
G(Rn)

∂
(
F1[G−1(v)]ρ1(v1) log

ρ1(v1)
q1(v1)

)
∂v1[

ρ(v)∫
ρ(v)dv2dv3

·

∫
ρ(v)dv1dv2dv3

]
dv

=

∫
G(Rn)

(
1+ log

ρ1(v1)
q1(v1)

)
·

(
∂{F1[G−1(v)]

∫
ρ[G−1(v)]|J−11\2\3\|dv2dv3}

∂v1

·

∫ [
ρ[G−1(v)]|J−11\2\3\|∫

ρ[G−1(v)]|J−11\2\3\|dv2dv3

·

∫
ρ[G−1(v)]|J−11\2\3\|dv1dv2dv3

]
dv4 · · · dvn

−
∂(F1[G−1(v)]ρ[G−1(v)]|J−11\2\3\|)

∂v1

)
dv

−

∫
G(Rn)

∂
(
F1[G−1(v)]ρ1(v1) log

ρ1(v1)
q1(v1)

)
∂v1

·

[
ρ[G−1(v)]|J−11\2\3\|∫

ρ[G−1(v)]|J−11\2\3\|dv2dv3

·

∫
ρ[G−1(v)]|J−11\2\3\|dv1dv2dv3

]
dv

= |J−1|
∫
G(Rn)

(
1+ log

ρ1(v1)
q1(v1)

)
·

(
∂{F1[G−1(v)]

∫
ρ[G−1(v)]dv2dv3}
∂v1

·

∫ [
ρ[G−1(v)]∫

ρ[G−1(v)]dv2dv3
·

∫
ρ[G−1(v)]dv1dv2dv3

]
·|J−1|dv4 · · · dvn −

∂(F1[G−1(v)]ρ[G−1(v)])
∂v1

)
dv
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− |J−1|
∫
G(Rn)

∂
(
F1[G−1(v)]ρ1(v1) log

ρ1(v1)
q1(v1)

)
∂v1

·

[
ρ[G−1(v)]∫

ρ[G−1(v)]dv2dv3
·

∫
ρ[G−1(v)]dv1dv2dv3

]
dv

= TD2,3→1.

In addition, it is interesting to note that if the evolution of
X3 is independent of X1 and X2, the formula (35) in [2] is
changed to

TD2→1 =

∫
�

(
1+ log

ρ1

q1

)(
∂(F1ρ2\)
∂x1

22,3|1
ρ(x3|x1\2\3\)
ρ(x1, x3|x1\2\3\)

−
∂(F1ρ)
∂x1

)
dx

−

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

θ2,3|1
ρ(x3|x1\2\3\)
ρ(x1, x3|x1\2\3\)

dx,

it is consistent with the formula (34).

IV. APPLICATIONS: THE ROSSLER SYSTEM AND
ROSSLER HYPERCHAOS SYSTEM
A. THE rössler system
In this subsection, we present an application study of the
information flows with respect to relative entropy about the
Rössler system [37]:

dx1
dt
= −x2 − x3

dx2
dt
= x1 + ax2

dx3
dt
= b+ x3(x1 − c),

where a, b and c are parameters, x1, x2 and x3 are the system
state variables, and t is time. The chaotic attractor of Rössler
system with a = 0.2, b = 0.2, c = 5.7 is shown in Figure 1.

FIGURE 1. The attractor of Rössler’s system with x(0) = (1, 1, 1). The
former three trajectories are x1, x2-plane, x1, x2-plane and x2, x3-plane,
respectively. The last trajectory is a 3-dimensional plot of x1, x2 and x3.

To compute the information flows with respect to relative
entropy within three variables through formula (17) of 3D
systems, the key step is to obtain the joint probability density

FIGURE 2. An estimated marginal density of x1, x2 and x3 of the Rössler
system via counting the bins and initializing with a Gaussian distribution,
respectively.

function ρ(x1, x2, x3) of X . Actually, the evolution of the joint
density ρ(x1, x2, x3) in deterministic systems with known
dynamics can be obtained by solving the Liouville equation
but the computational load. Here we estimate the joint density
ρ(x1, x2, x3) by the way of counting the bins according to the
ensemble prediction of the Rössler system at each time step.

The Rössler system is solved by applying a fourth order
Runge-Kutta method with a time step 1t = 0.01 to generate
the ensemble. According to Figure 1, the computation domain
is restricted to � ≡ [−16, 16] × [−18, 14] × [−4, 28], for
including the attractor of the Rössler system. We discretize
the sample space into 320 × 320 × 320 = 32768000 bins
such that the attractor lies within the computation domain and
one draw per bin on average via making 32768000 random
draws. We assume X is distributed as a Gaussian process
N (u(t),Σ(t)), with a mean u and a covariance matrix Σ :

u(0) =

 u1
u2
u3

 , Σ(0) =

 σ 2
1 0 0
0 σ 2

2 0
0 0 σ 2

3


in the initial conditions. After using different parameters uk
and σ 2

k (k = 1, 2, 3) to compute information flows for the
Rössler system, we find that the final results are the same and
the trends stay invariant. It is open for different experiments
to adjust the parameters uk and σ 2

k . Here we only show the
results of one experiment with u1 = 8, u2 = 2, u3 = 10
and σ 2

k = 4. The ensemble is driven by drawing sample
randomly with a pre-established distribution ρ0(x). We obtain
an ensemble of X and estimate the three-variable joint prob-
ability density function ρ(x1, x2, x3, t) of the Rössler system
through counting the bins at every time step. As these equa-
tions of the Rössler system are integrated forward, ρ can
be estimated at each time step with describing the statistics
of the system. The detailed discussions on probability esti-
mation through bin counting can be seen in [21], [38]. An
estimated marginal density corresponding to x1, x2 and x3 of
the Rössler system are displayed in Figure 2. The information
transfer with respect to relative entropy related to the couple
effect from two variables to another variable in 3D systems
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FIGURE 3. Information transfers among different pairs of components in
the Rössler system (in nats per unit time).

can be computed through formula (17). Firstly, we estimate
the transfers TDi,j→k , i, j, k = 1, 2, 3 with different i, j, k
at the same time. A nonzero TDi,j→k means that how much
predictability that Xi and Xj bring to Xk . The calculation
results are plotted in Figure 3, whose relative values represent
the magnitudes of information transfer. When we consider
the linear system with only two equations F1 and F2 in the
Rössler system, TD2,3→1 is larger than T

D
1,3→2 according to the

magnitude of parameters and the definition of the generalized
formalisms. However, the transfer from X1 and X3 to X2 is
smaller than the transfer from X2 and X3 to X1 in Figure 3.
It is consistent with the characteristics of complex systems
[38], that is to say, emergence does not result from rules
only [39]–[41]. The simulation results show the efficiency of
the generalized formalisms by revealing the inherent relation
in complex systems simultaneously. Moreover, as shown in
Figure 3, any two variables reduce the predictability of the
other variable and all information flows go to constants
over time, which means that the system reaches a steady
state gradually. The positive or negative information transfers
imply that the two components may increase or decrease the
predictability of another component. Repeated experiments
with different initialization are in line with the above results.
For the sake of demonstrating a more intuitive comparison

and revealing some underlying information in the chaotic
dynamical system better, we also give information transfer
between two components, TD1→2 through using the formula
(35) in [2], then compare TD1→2 with the transfer TD1,3→2
in Figure 4. According to the equations of Rössler system,
it is clearly shown that TD3→2 must vanish by the principle
of nil causality [23], that is TD3→2 = 0. It seems that the
transfer TD1→2 should be equal to TD1,3→2 in Rössler system.
What makes the results interesting is that there is a difference
between the graph TD1→2 and TD1,3→2 in Figure 4. In fact,
it is well-founded. As mentioned in [2], indirect information
transfers could take place through a third party or more
parties due to the fact that two variables could be related in
a high-dimensional system. More specially, indirect informa-
tion transfers mean that they may occur in multi-dimensional

FIGURE 4. T D
1→2 and T D

1,3→2 in the Rössler system (in nats per unit time).

dynamical systems, though one variable does not affect the
dynamics of the second variable directly, it does so via
another variable. In other words, xi affects xj the dynamics of
which in turn affects xk in dynamical systems [34]. There is
no information transfer from x3 to x2 in the Rössler system,
however, TD3→1 and TD1→2 do not vanish, hence information
does transfer from x3 to x2 with the help of x1 indirectly. Indi-
rect information transfers can help to identify which variable
leads to an indirect non-zero transfer.

From the above example, we can find that there exists
hidden sensitivity information by computing the informa-
tion transfer of high-dimensional dynamical systems: we can
identify the direct and indirect componentwise relations and
understand the indirect way of information flows. It will bene-
fitmany practical fields such as sensitivity analysis among the
variables in dynamical systems.Meanwhile, some underlying
information can be revealed through quantifying transfers
among the variables of the chaotic dynamical system.

In addition, we plot the transfers, TD2→1, T
D
3→1 and T

D
2,3→1

in Figure 5, then compare the magnitudes of three flows. The
absolute value of the transfer measures information flows
among the variables [23]. We can conclude that x2 is more
sensitive to x1 than x3 to x1 according to the measurements
of information transfers. Furthermore, TD1→2 in Figure 4 is
different from TD2→1 in Figure 5, implying the property of
asymmetry of information transfer.

B. A FOUR-DIMENSIONAL DYNAMICAL SYSTEM
To show that the generalized formalisms can be used to
multi-dimensional dynamical systems efficiently, we con-
sider the following four-dimensional(4D) system:

dx1
dt
= a(x2 − x1)

dx2
dt
= bx1 − x1x3 − x2 + x4

dx3
dt
= x1x2 − cx3

dx4
dt
= −dx2 − ex4,
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FIGURE 5. T D
2→1, T D

3→1 and T D
1,3→2 in the Rössler system (in nats per unit

time).

FIGURE 6. An attractor of the 4D system with x(0) = (1, 1, 1, 1). These
trajectories are 3-dimensional plots of x1 − x2 − x3, x1 − x2 − x4,
x1 − x3 − x4 and x2 − x3 − x4, respectively.

here xi(i = 1, 2, 3, 4) make up the system components and
the parameters are a = 12, b = 23, c = 2.1, d = 6, e = 0.2.
A computed attractor of the 4D system with initial value
(1,1,1,1) is shown in Figure 6. Follwing the above procedures,
the joint density ρ(x1, x2, x3, x4, t) can be estimated by count-
ing the bins at every step firstly. The appropriate computation
domain� ≡ [−50, 50]× [−50, 50]× [−50, 50]× [−50, 50]
which includes an attractor of the 4D system can be selected
to estimate the four-variable joint probability density func-
tion. The following computation is demonstrated by applying
a fourth order Runge-Kutta method. Similarly, we only show
the results of one experiment after computing information
flows multiple times by using different parameters. Suppose
that X is distributed as a Gaussian processN (u(t),Σ(t)), with
a mean u and a covariance matrix Σ in the initial state:

u(0) =


u1
u2
u3
u4

 =


4
4
4
4,



FIGURE 7. An estimated marginal density of x1, x2, x3 and x4 by counting
bins, respectively.

FIGURE 8. Information transfers among different pairs of components in
the 4D system (in nats per unit time).

Σ(0) =


σ 2
1 0 0 0
0 σ 2

2 0 0
0 0 σ 2

3 0
0 0 0 σ 2

 =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4.


We discretize the sample space into � = 100 × 100 ×
100 × 100 = 100000000 bins to ensure it is enough to
understand the information transfer and the evolution of
the system. An estimation result of four marginal densi-
ties is shown in Figure 7. Similarly, we discuss the cou-
pling effect from three components to the other component,
TD2,3,4→1,T

D
1,3,4→2,T

D
1,2,4→3 and TD1,2,3→4 by using (20) to

compute the information transfers within the 4D system at
first. The resulting transfers are shown in Figure 8. We can
quantify the predictability and give the dynamical influence
among variables of a system according to the simulation
results.
Secondly, we compute the transfers from any variables to

the other variable in the 4D system through (36). There are
twelve transfers on the couple effect from two components
to the other component in this system, here we only give the
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FIGURE 9. Information transfers among three components in the 4D
system (in nats per unit time).

FIGURE 10. Information transfers from different pairs of other
components to X4 in the 4D system (in nats per unit time).

flows TD2,3→1, T
D
2,4→1 and TD3,4→1 as examples. The results

are displayed in Figure 9. Any two other variables provide
the predictive impact on x1 from Figure 9. Besides, the results
show that x3 and x4 increase the predictability of x1, but the
other two pairs decrease the predictability of x1.
In particular, we plot the transfers from any one variable

and the high order interactions among them to x4 in Figure 10.
We can find that x2 is more sensitive to x4 than x1 to x4 and
x3 to x4 according to the resulting transfers.

Using the same procedures, we can rank the importance
of variables in an aircraft system. The uncertainty analysis
and sensitivity analysis process of an aircraft system with
respect to variables, parameters and uncertainty factors is one
of the key steps for determining the optimal search direc-
tion and guiding the design and decision-making. It aims
at predicting complex computer models by quantifying the
sensitivity information of the coupling variables and leads
to high performance aircraft designs. We can use the gener-
ated formalisms of information flow as a sensitivity analysis

index to perform dynamic sensitivity information analysis
due to the fact that Liouville equations and Frobenius-Perron
analysis describe an ensemble of trajectories. The uncertainty
can be quantified among the variables, which benefits us to
improve understanding of dynamical systems.

V. CONCLUSION
In this paper, we develop a method to measure infor-
mation transfers with respect to relative entropy among
multi-dimensional complex dynamical system components
based on the previous formalisms [2], [24]. Information trans-
fers from some components to another component are quanti-
fied via the rigorous and general formalisms and some related
theoretical properties are given. The proposed formalisms
provide a measure of predictive impact and information flows
among variables, which enable us to better understand the
physical mechanism underlying the superficial behavior and
explore deeply the hidden information in the evolution of
complex dynamical systems. With contrast to the 2D for-
malism, the generated formalisms have advantages to reveal
much more information on multiple cases. We quantify not
only the correlation among variables and the system behav-
ior, but also how much they influence between each other.
Furthermore, our formulas are capable to identify the direct
transfer or indirect transfer from some variables to another
variable, and also can quantify the high order interactions
among variables. It benefits us for advancing our understand-
ing of coupled nonlinear dynamics.

The uncertainty can be quantified among the variables of
aircraft systems by the generalized formalism presented in
this paper, which benefits to reveal the nonlinear relationships
and to assess the dynamic stability and predict the forthcom-
ing states of aircraft designs. Since the formalism is built on
the statistical nature of information, it could be used to per-
form dynamic sensitivity analysis in multi-dimensional com-
plex systems. This issuemakes it possible not only to quantify
the amount of uncertainty created by information transfers
among variables of a system, but also to understand how these
transfers influence the system behavior. Moreover, it also
assists with determination of sensitive parameters in complex
dynamical systems. Thus, it may lead to improvement in
estimation, prediction and control tasks in aircraft systems.
In practice, it is not easy to give the dynamics analytically for
complex multi-dimensional dynamical systems. Considering
the fact that many critical data-driven problems take advan-
tage of the progress in data-driven discovery of dynamics
[33], [34], [42], further investigations can be conducted into
the dynamic-free formulation to analyze information trans-
fers of multi-dimensional systems and to make a comparison
between the results of current work and that of the computa-
tions on information transfer measure from time-series data
[43]–[46]. Moreover, the formalisms could be further gen-
eralized to multi-dimensional stochastic dynamical systems
and time-delay systems in future work. In addition, future
study also includes that how the information flow can be
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deployed in the frame of dynamic sensitivity analysis as a
novel indicator.

APPENDIXES
APPENDIX A
THE PROOF OF THEOREM 1
Since

dD∗1
dt
= −E(∇ · F1)− E(F1 · ∇ log q1)

= −

∫∫∫
�

ρ
∂F1
∂x1

dx1dx2dx3 −
∫∫∫

�

ρ
F1
q1

·
∂q1
∂x1

dx1dx2dx3

= −

∫∫∫
�

ρ1
∂F1
∂x1

ρ

ρ1
dx1dx2dx3 −

∫∫∫
�

F1
∂ρ1

∂x1

·
ρ

ρ1
dx1dx2dx3 −

∫∫∫
�

ρ
F1
q1

∂q1
∂x1

dx1dx2dx3

+

∫∫∫
�

F1
∂ρ1

∂x1

ρ

ρ1
dx1dx2dx3

= −

∫∫∫
�

∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3 +

∫∫∫
�

F1ρ

·

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

ρ

ρ1
dx1dx2dx3

= −

∫∫∫
�

∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

+

∫∫∫
�

log
ρ1

q1

∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

−

∫∫∫
�

log
ρ1

q1

∂(F1ρ1)
∂x1

·
ρ

ρ1
dx1dx2dx3

+

∫∫∫
�

F1ρ
∂
(
F1ρ1 log

ρ1
q1

)
∂x1

ρ

ρ1
dx1dx2dx3

= −

∫∫∫
�

(
1+ log

ρ1

q1

)
∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

+

∫∫∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

ρ

ρ1
dx1dx2dx3, (39)

we can obtain the formalism of information transfer with
respect to relative entropy from X2 and X3 to X1 with the
compact support assumption for ρ:

TD2,3→1 =
dD1

dt
−
dD∗1
dt

= −

∫∫∫
�

(1+ log
ρ1

q1
)
∂(F1ρ)
∂x1

dx1dx2dx3

+

∫∫∫
�

(
1+ log

ρ1

q1

)
∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

−

∫∫∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

ρ

ρ1
dx1dx2dx3

=

∫∫∫
�

∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

−

∫∫∫
�

log
ρ1

q1

∂(F1ρ)
∂x1

dx1dx2dx3

−

∫∫∫
�

F1ρ1
∂
(
log ρ1q1

)
∂x1

ρ

ρ1
dx1dx2dx3

=

∫∫∫
�

∂(F1ρ1)
∂x1

ρ

ρ1
dx1dx2dx3

−

∫∫∫
�

∂
(
F1ρ log

ρ1
q1

)
∂x1

dx1dx2dx3

=

∫∫∫
�

ρ2,3|1(x2, x3|x1)
∂(F1ρ1)
∂x1

dx1dx2dx3, (40)

where ρ2,3|1(x2, x3|x1) =
ρ
ρ1
.

APPENDIX B
THE DERIVATIONS OF EQUATION (33)
According to (29),

(P2\3\ρ)1(y1)

=

∫
�4···n

ρ2\3\(y2\3\ − F2\3\1t)|J
−1
2\3\ |dy4 · · · dyn, (41)

here F2\3\ is a function of (y1, x2, x3, y4, . . . , yn) and

J−12\3\ = 1−
∑
i 6=2,3

∂Fi
∂xi

1t + O(1t2). (42)

Then (41) can be written as

(P2\3\ρ)1(y1) =
∫
�4···n

ρ2\3\(y1 − F11t, x4, . . . , xn)

·|J−12\3\ | · |J4···n|dx4 · · · dxn

=

∫
�4···n

ρ2\3\(y1 − F11t, x4, . . . , xn)

·(1−
∑
i 6=2,3

∂Fi
∂xi

1t + O(1t2))

·(1+
n∑
i=4

∂Fi
∂xi

1t + O(1t2))dx4 · · · dxn

=

∫
�4···n

[
ρ2\3\(y1, x4, . . . , xn)−

∂ρ2\3\

∂y1
F11t

]
·

(
1−

∂F1
∂x1

1t
)
dx4 · · · dxn + O(1t2)

= −1t
∫
�4···n

∂(F1ρ2\3\)
∂y1

dx4 · · · dxn

+ρ1(y1)+ O(1t2) (43)

based on the fact that x1 and y1 are interchangeable up to an
order of 1t , where J4...n is the determinant of the Jacobian[
∂(y4,y5,...,yn)
∂(x4,x5,...,xn)

]
.

Meantime,

log(P2\3\ρ)1(y1) = log
[(
−1t

∫
�4···n

∂(F1ρ2\3\)
∂y1

dx4 · · · dxnt

+ρ1(y1)) ·
1

ρ1(y1)
· ρ1(y1)

]
+ O(1t2)

= −1t
∫
�4···n

1
ρ1(y1)

∂(F1ρ2\3\)
∂y1

dx4 · · · dxn

+ log ρ1(y1)+ O(1t2). (44)
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Moreover,

ρ(x2, x3|x1, x4, . . . , xn)

=

ρ(y1, x2, . . . , xn)−
∂ρ
∂y1
F11t

ρ2\3\(y1, x4, . . . , xn)−
∂ρ2\3\
∂y1

F11t
+ O(1t2)

= ρ(x2, x3|y1, x4, . . . , xn)+ ρ(x2, x3|y1, x4, . . . , xn)

·
∂ log ρ2\3\
∂y1

F11t −
1
ρ2\3\

∂ρ

∂y1
F11t + O(1t2). (45)

Replace y1 by x1 as y1 is a dummy variable in the definite inte-
gration [21], combining with equations (43), (44) and (45),
after some algebraic manipulations for (31), we get

H12\3\(t +1t)

= −

∫
�

ρ1(x1) log ρ1(x1) · ρ(x2, x3|x1, x4, . . . , xn)

·ρ4···n(x4, . . . , xn)dx+1t
∫
�

log ρ1(x1)

·

(∫
�4···n

∂(F1ρ2\3\)
∂x1

dx4 · · · dxn

)
ρ(x2, x3|x1, x4, . . . , xn)

·ρ4···n(x4, . . . , xn)dx+1t
∫
�

ρ1(x1)

·

(∫
�4···n

∂(F1ρ2\3\)
∂x1

1
ρ1(x1)

dx4 · · · dxn

)
·ρ(x2, x3|x1, x4, . . . , xn) · ρ4···n(x4, . . . , xn)dx−1t

·

∫
�

ρ1(x1) log ρ1(x1) · F1 · ρ(x2, x3|x1, x4, . . . , xn)

·
∂ log ρ2\3\
∂x1

ρ4···n(x4, . . . , xn)dx+1t
∫
�

ρ1(x1)

log ρ1(x1) · F1
1
ρ2\3\

∂ρ

∂x1
ρ4···n(x4, . . . , xn)dx+ O(1t2)

= H1(t)+1t
∫
�

(1+ log ρ1(x1))
∂(F1ρ2\3\)
∂x1

22,3|1(x1, x2, x3)

dx+1t
∫
�

ρ1 log ρ1(x1) · F1
∂
(
log ρ

ρ2\3\

)
∂x1

ρ

ρ2\3\
ρ1\2\3\dx,

(46)

where ρ(x2, x3|x1, x4, . . . , xn) =
ρ

ρ2\3\
, ρ4···n(x4, . . . , xn) =

ρ1\2\3\ =
∫
�1×�2×�3

ρdx1dx2dx3 and 22,3|1 = 22,3|1(x1, x2,
x3) =

∫
�4···n

ρ
ρ2\3\
ρ1\2\3\dx4 · · · dxn.

So
dH12\3\

dt
= lim

1t→0

H12\3\(t +1t)− H1(t)
1t

=

∫
�

(1+ log ρ1(x1))
∂(F1ρ2\3\)
∂x1

22,3|1(x1, x2, x3)dx

+

∫
�

ρ1(x1) log ρ1(x1) · F1
∂
(
ρ
ρ2\3\

)
∂x1

ρ1\2\3\dx. (47)

From (9) and (32), we can get

D1\2\3\(t +1t)− D1(t)

= −H1\2\3\(t +1t)−
∫
�

(P2\3\ρ)1(y1)q1(y1)

·ρ(x2, x3|x1, x4, . . . , xn)

·ρ4...n(x4, x5, . . . , xn)dy1dx2 . . . dxn + H1(t)

+

∫
�

ρ1 log q1dx1. (48)

We can find that the key question is converted to compute
the second term on the right side of (48), which is denoted
by Q̃ now. Analogous to the derivation in [2], a Taylor series
expansion around (y1, x2, . . . , xn) can be used in order to
unify the expressions since both x1 and y1 appear in Q̃ at the
same time:

ρ(x2, x3|x1, x4, . . . , xn)

=
ρ(x1, x2, . . . , xn)
ρ2\3\(x1, x4, . . . , xn)

=
ρ(y1, x2, x3, . . . , xn)
ρ2\3\(y1, x4, . . . , xn)

+

∂
(
ρ(y1,x2,x3,...,xn)
ρ2\3\(y1,x4,...,xn)

)
∂y1

(−F11t)+ O(1t2)

= ρ(x2, x3|y1, x4, . . . , xn)+ ρ(x2, x3|y1, x4, . . . , xn)

·
∂ log ρ2\3\
∂y1

F11t −
1
ρ2\3\

∂ρ

∂y1
F11t + O(1t2) (49)

From formulas (43) and (49) and with the fact that y1 (as
a dummy variable [21]) is replaced by x1, through some
algebraic manipulations for Q̃,

Q̃ =
∫
�

log q1(y1)
(
ρ1(y1)−1t

∫
�4···n

∂(F1ρ2\3\)
∂y1

dx4 · · · dxn

)
· (ρ(x2, x3|y1, x4, . . . , xn)+ ρ(x2, x3|y1, x4, . . . , xn)

·
∂ log ρ2\3\
∂y1

F11t −
1
ρ2\3\

∂ρ

∂y1
F11t

)
·ρ4···n(x4, . . . , xn)dy1dx2 · · · dxn + O(1t2)

=

∫
�

log q1(y1) · ρ1(y1) · ρ(x2, x3|y1, x4, . . . , xn)

·dy1dx2 · · · dxn +1t
∫
�

log q1(y1) · ρ1(y1)

·

[
ρ(x2, x3|y1, x4, . . . , xn)

∂ log ρ2\3\
∂y1

F1 −
1
ρ2\3\

∂ρ

∂y1
F1

]
·ρ4···n(x4, . . . , xn)dy1dx2 · · · dxn −1t

∫
�

log q1(y1)

·

(∫
�4···n

∂(F1ρ2\3\)
∂y1

dx4 · · · dxn

)
ρ(x2, x3|y1, x4, . . . , xn)

·ρ4···n(x4, . . . , xn)dy1dx2 · · · xn + O(1t2)

=

∫
�1

ρ1 log q1dx1 +1t
∫
�

∂(F1ρ1 log q1)
∂x1

θ2,3|1dx

−1t
∫
�

log q1
∂(F1ρ12\3\)
∂x1

22,3|1dx+ O(1t2), (50)

where θ2,3|1 = θ2,3|1(x1, x2, . . . , xn) =
ρ
ρ2\3\
ρ1\2\3\.

So
dD12\3\

dt
= lim

1t→0

D12\3\(t +1t)− D1(t)
1t

= −
dH12\3\

dt
−

∫
�

∂(F1ρ1 log q1)
∂x1

θ2,3|1dx
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+

∫
�

log q1
∂(F1ρ12\3\)
∂x1

22,3|1dx

= −

∫
�

(1+ log ρ1(x1))
∂(F1ρ2\3\)
∂x1

22,3|1dx

+

∫
�

∂(F1ρ1 log ρ1)
∂x1

θ2,3|1dx

−

∫
�

∂(F1ρ1 log q1)
∂x1

θ2,3|1dx

+

∫
�

log q1
∂(F1ρ12\3\)
∂x1

22,3|1dx

= −

∫
�

(
1+ log

ρ1

q1

)
∂(F1ρ2\3\)
∂x1

22,3|1dx

+

∫
�

∂
(
F1ρ1 log

ρ1
q1

)
∂x1

θ2,3|1dx. (51)
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