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ABSTRACT Generative Adversarial Network has proven to produce state-of-the-art results by framing a
generative modeling task into a supervised learning problem. In this paper, we propose Attentively Condi-
tioned Generative Adversarial Network (ACGAN) for semantic segmentation by designing a segmentor
model that generates probability maps from images and a discriminator model which discriminates the
segmentor’s output from the ground truth labels. Additionally, we conditioned the discriminator’s dual
inputs with extra information as a conditional adversarial model such that, an attention obtained probability
distribution of the segmentor’s feature maps is incorporated, and the ground truth is also accompanied by a
vector of the class label. We demonstrate that our proposed model can provide better semantic segmentation
results while stabilizing the discriminator to model long-range dependencies as a result of the supplementary
inputs to the network. The attention network particularly provides more insights by extracting cues from the
feature locations, and alongside the class label vector, gives the model an advantage to inform better spectral
sensitivity. Experiments on the PASCAL VOC 2012 and the CamVid datasets show that our adversarial
training technique yields improved accuracy.

INDEX TERMS Generative adversarial network, deep convolutional neural network, attention network,

conditional gan, semantic segmentation, deep learning.

I. INTRODUCTION

Vision is a very crucial mechanism for our daily activity as
humans rely heavily on visual information and cues which
make up the largest percentage of our knowledge base.
Objects interact with light through reflection and transmis-
sion which ultimately makes them visible to the human eyes.
The transmitted and reflected light arrays are then translated
into intuitive visual information. In the same manner, as the
human eyes, images are made up of pixels which store the
color information or intensity of the light photons at a par-
ticular point in an image [1]. With increasing technological
advances, computers are being used to analyze digital data,
for example, computer vision study attempts to use machine
learning techniques to accomplish various advance image
processing tasks such as object detection and classification,
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pattern recognition, object localization, landmark detection,
captioning and image segmentation [2]. Computer vision
generally aims at training computers to analyze and under-
stand extracted information from digital forms like images,
videos and scanners just like humans.

In this work, we focus on semantic segmentation which
is a subset of computer vision. Image segmentation in itself
involves the partitioning of an image into different com-
ponents, and it differs from instance segmentation because
instance segmentation not only partitions an image, it clas-
sifies the partitioned segments into a well-defined mean-
ingful component [3]. This way, in semantic segmentation,
each pixel in an image is identified to a specified class of
objects such as cars, trees, dogs and so on [4]. Deep learning
approaches have been used in recent years to accomplish the
task of segmentation including the artificial neural networks
(ANN) which uses artificial neurons that are designed to
mimic the human biological neurons to computationally learn
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image mappings. However, convolutional neural network
(CNN) has emerged as a better option for image analysis as
it can extract image features and valuable attributes at differ-
ent levels. CNN architecture uses weight sharing strategy to
reduce parameter complexities and takes advantage of spatial
coherence which is beneficial for training images [5].

In this paper, we investigate the problem of semanti-
cally segmenting objects in an image by proposing an
Attentively Conditioned Generative Adversarial Network
(ACGAN) which is based on the popular Generative Adver-
sarial Network (GAN). The GAN model uses neural networks
to learn the distribution of data such that it could generate the
same distribution from a random sample space [6]. The nov-
elty of our model compared to other GAN-Based segmenta-
tion techniques is presented in the structure and design of our
conditioned discriminator model. Where n represents the total
number of classes available in the dataset, our model design
consists of a segmentation network (Segmentor) which gen-
erates n feature maps of the input image, an attention model
which generates the probability distribution vector of the
objects in the feature map, and a discriminator model which
distinguishes the predicted feature maps from the ground
truth label distribution.

Compared to other approaches, the two inputs to our dis-
criminator are conditioned, first the probability features from
the segmentor are attentively conditioned, and the second
discriminator input which is the transformed multi-channel
labels is also conditioned with a vector representing the con-
stituent object classes. Obviously, convolutional-based GAN
has been more successful in computer vision tasks because
of its invariant property [7], but it was realized that the net-
work encounters certain challenges in learning the mapping
of datasets containing multiple classes, resulting in sample
space mismatching [8]. Building on the idea of conditional
GAN [9], we use an attention module to obtain the salient
objects of the predicted probability maps and label distri-
bution, which is then included as an additional input to the
discriminator to inform the classes of the constituent objects
in the image. In like manner, we accompany the ground
truth images with a vector of the images’ class label as extra
information to the discriminator. Our adversarial training is
designed such that the segmentation network outputs proba-
bility feature maps of the input image labels, and its loss is
measured using cross-entropy while the discriminator maxi-
mizes the probability assigned to the output of the segmentor
and the image labels [10].

Il. RELATED WORK

A. GENERATIVE ADVERSARIAL MODELS

Generative Adversarial Network has accomplished incredible
success in artificial intelligence, especially in the area of
computer vision where it has been utilized for data genera-
tion [11], image-to-image translation [12], text-to-image syn-
thesis [13], image super-resolution [14], face generation [15],
object generation [16], and neural style transfer [17]. Taking
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samples from a fixed sample space distribution z, the first
GAN was built using two multi-layer perceptron networks to
learn and model such distribution into a copy of an existing
distribution sample. Building on this, a convolutional GAN
was introduced for advance image feature learning, then
integrated with transposed convolution to upscale learned
features to a higher resolution [18]. Reiteratively, adver-
sarial models learn to discriminate generated samples from
empirical data by approximating the distribution of the real
training data through minimization of the discriminator’s
cross-entropy loss, while the generator, in turn, has a vari-
ational loss function which maximizes the log probability
of the discriminant model. Supplementary information was
considered for GAN input which is especially useful when
considering tasks with single input mapping to an output
of many mappings, such that class mismatching is avoided
during training [19]. In most cases, the supplementary input
is a modeled vector of the input data classes which acts as a
conditional supervisory parameter.

Recently, several mechanisms have been devised to reg-
ulate GAN’s susceptibility to factors such as sample space
distribution, cost function, training stability, distribution dis-
parity and flawed rivalry between discriminator and genera-
tor. The stability and quality of GANS were improved using a
progressive growth approach rather than simultaneous learn-
ing, this explores learning large-scale features of an image at
the initial stage before including finer features at later stages
of training [20]. An Earth Mover (EM) distance was proposed
to compute the distance between the real distribution and the
predicted distribution of the GAN network, aiming at com-
bating saturation in probability distribution convergence [21].
A variant method of calculating the distance of real data
distribution and generated distribution over mini-batches was
implemented using the Cramer Distance. This is done to
match both distributions with an impartial function over the
data batches in generating unbiased gradients [22].

B. SEMANTIC SEGMENTATION
Image segmentation, in general, relates to the computer vision
task of labeling definitive regions on an image, however,
semantic segmentation on the other hand specifically marks
individual pixel in an image to a single segment or class.
Recently, the encoder-decoder architecture has become the
most famous semantic segmentation approach which mostly
uses two different convolutional networks, whereby the
encoder network extracts features from the input images and
the decoder spatially expands the encoder’s output to the input
resolution. This is done to eliminate errors in matching the
predicted results to the input images [23]. Over the years,
the task of upsampling has been achieved via several methods
such as Nearest Neighbor and Bed of Nails, but transpose
convolutions which learn the upsampling procedures and
simple bilinear interpolation which uses linear interpolating
have been the most prevalent.

In most cases, the architectures are mostly fully convo-
lutional networks, eliminating dense layers from the model
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FIGURE 1. Proposed ACGAN framework. The segmentor’s generated feature maps are conditioned on a weighted attention
to the discriminator model. The ground truth label is also transformed into a one-hot C channel dimension and conditioned

on the class label vector into the discriminator.

designs. Because of the boundary and shape inaccuracies as
a result of the loss of information during processing, skip
connections are introduced. Indices from previous layers on
the downsample network which learns the higher-resolution
features are transferred to layers on the upsample network
to encode fine-grain details of the feature textures [24].
Likewise, contracting path and context modules have been
researched to enable definite localization as well as multi-
scale supervision [25]. Increased receptive field and field of
view is achieved at the same time maintaining the spatial
dimension of the features through dilated convolutions [26].

C. REFINEMENT NETWORKS
To improve the localization problem of segmentation as well
as improve the accuracy of segmentation, many techniques
have involved different approaches. The deeplab model con-
nects the output of their segmentation to a Conditional
Random Field (CRF) post-processing network [27]. The
probability graphical model was able to achieve a pixel-level
classification to enhance the localization of object detec-
tion. Subsequently, domain transform was included to ensure
faster computation and improvement in object boundary
classification [28].

Since semantic segmentation task involves establish-
ing common grounds between object semantics and their
localization, thus magnifying the invariance problem of
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convolutional neural network. Consequently, an end-to-end
network comprising of a convolutional network and Markov
Random Field (MRF) which embeds the label contexts
and high-order relations was designed to both reduce post-
processing model computation and increase segmentation
accuracy [29]. A combination of long-range residual con-
nection and residual pooling was employed to achieve
multi-path fine-grained features for attaining efficient seg-
mentation refinement. This allows increased flow of feature
information flow along subsampling and upsampling lay-
ers, thereby increasing fine-grained resolution output [30].
In the same way, aggregated context prior of image global
information containing all the different regions in the image
was optimized using a specially designed pyramid pooling
module [31].

D. ATTENTION MODELS

Convolutions generally extract features from images by learn-
ing high-level structures as the layer increases, but the task of
segmentation is mostly affected by pooling operations which
come along with increased layers. To eliminate the loss of
spatial information, attention models have been included in
different architecture to achieve an improved segmentation
by modeling long-range dependencies [32]. Both global and
local dependencies are combined to incorporate channel and
spatial dimensions of features in an image by attributing a

31735



IEEE Access

A. Oluwasanmi et al.: ACGAN for Semantic Segmentation

DeeplLabV3 [2]

G-FRNet [28]

Images

MobileNetV2 [5]

ShelfNet [30]

I I
AL

ACGAN Ground Truth

Ground Truth

ACGAN

FIGURE 2. Qualitative results of segmentation depicting results of our model compared to the other models

on the PASCAL VOC dataset.

weighted sum to all the regions in the image. This builds on
the logic that identical objects would have similar features
regardless of their distance apart [33].

The rate of object co-occurrence in an image was inves-
tigated by building an Aggregated Co-occurrence Feature
Model which learns the mapping of invariant representations
in a given feature. This gives a global elaboration about the
interrelationship of objects in a scene [34]. The local neigh-
borhood constraint of the convolution network was tackled
by connecting all available points in an image, such that
the prediction and the classification of a particular pixel
are dependent on all other points in the image through the
use of a point-wise spatial network of attention [35]. Multi-
scale resizing of input images has been used to demon-
strate the effectiveness of different scales and positioning of
objects [36].

lll. ACGAN

We propose an adversarial segmentation model which is
conditioned on an attended identification of the object class
in an image, and the goal of the model is to semantically
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classify objects in an image into a definite range of classes.
First, as displayed in Fig. 2, the input images are fed to the
segmentor which outputs the feature probability maps of the
input image such that the output image has channels equal
to the number of predefined semantic classes c. Accordingly,
a one-hot encoding technique is implemented to transform
the images’ ground truth labels into a map of C probability
channel in the same scope as the output of the segmentor. This
way, the discriminator model can then take as input the output
of the segmentation model or the transformed ground truth
label, after which it would generate a map, where each pixel
p equals 1 or equals 0, which would be predicted as origi-
nating from the ground truth label or segmentation network.
To incorporate more cues from the images feature locations,
we apply an attention network to leverage responses from
the feature positions which is added as additional informa-
tion alongside the segmentor output. Also, the transformed
ground truth label is fed into the discriminator with a vector
representing the class label of the one-hot encoded ground
truth. The attention network basically computes an attention
vector of weighted sum of the feature map regions, thereby
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informing more intuition and cues for the discriminator’s
training. This efficiently helps to incorporate long-range
dependencies over the internal states of the model and create
a good balance of multi-class feature detection which clearly
improves the segmentation accuracy.

A. ATTENTION NETWORK

The only two inputs to the discriminator are the probability
feature maps of the segmentor and the transformed one-
hot ground truth encoding, both considered as feature score
maps f°, where n represents all ranges of spatial positions
and c is the label classes. Therefore, the weighted sum of the
segmentor’s feature score maps f,© of each inputs is repre-
sented as:

N
fE=D wods (1
n=1

where the weight w¢ is measured as:

Wl — exp(h;)
" Yo exp(hy)
where £ is the score map obtained from the attention model
at time ¢. The attention network is designed with two layers of

dense network having 64 nodes in the first layer and C nodes
in the second layer.

@

B. LOSS FUNCTION

Denoting the input image as X, and the ground truth prob-
ability map as Y, the segmentator with the input image is
represented as S(X) while the discriminator alongside the
segmentor’s feature map is described as D(S(X)) and along
the label map input is described as D(Y). With this, we mea-
sure the losses of the network using the technique of [37],
such that the cross entropy of the segmentor loss S; prediction
to the ground truth is given as:

Si==>_ > ¥ og(S(X,) ") 3)
how c=C
With &, w and ¢ being the image height, width and number
of label categories respectively, then the adversarial loss A; of
the model conditioned on the attended feature maps alongside
the discriminator is measured as:

Ar ==Y log(D((S(Xy)|Aatt) "™ @
hw

Such that the discriminator is trained by minimizing the
loss stated as:

Dy = (1 = yylog(l — DS (X,)|Aat)*™)
h,w
+ Yulog(D(Y, V)" (5)
With Aatt as the computed weight of the attention mod-
ule and V as the class label vector, the objective function

is optimized by training the discriminator to minimize the
loss of the confidence map. To convert the image labels
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into probability channels, we ignore the scaling and product
techniques [38] and implemented the basic approach as the
one-hot probability channels have no effect when trained on
fully convolution network [37], including the class vector as
an additional input into the discriminator.

C. MODEL ARCHITECTURE

Our model is a conditioned adversarial network which uses
two sub-models; segmentor and discriminator to semantically
segment images in a supervised manner. Firstly, the seg-
mentor which is a fully convolutional network is built on
the ResNet-101 model with the last dense layer removed
is fed with images of 3 dimensions which represents RGB,
and outputs a C channel dimension, where C represents the
number of object classes in the dataset. The generated feature
maps from the segmentor is fed as input to the discriminator
alongside the probability weights of the feature maps’ salient
objects. Also, the ground truth label is transformed into a one-
hot encoding of C dimension. In the same way, the trans-
formed one-hot ground truth is fed to the discriminator and
conditioned with a vector representing each label’s class. The
discriminator which was designed as the method of [37] is
also a fully convolutional network with five convolutional
layers having 64, 128, 256, 512, 1 filters respectively with
a stride of 2 and kernel size of 4 * 4. The discriminator
model however outputs a confidence map of one dimen-
sion, where each pixel belongs to a particular label class.
Therefore, the discriminator is tasked with discriminating if
a pixel in the confidence map belongs to the segmentor’s
feature maps or the ground truth distribution. This process
eventually trains the segmentor to produce feature maps as
similar as possible to the ground truth labels, as such, learning
to accurately segment the training images. In both cases,
the segmentor and discriminator output are up-sampled to the
same size of the input images to ensure accurate comparison
with ground truth label.

IV. EXPERIMENTAL RESULTS
A. DATASET

The PASCAL VOC 2012 Dataset [39] is arguably the most
popular semantic segmentation data available today and
beyond segmentation, it extends to four different tasks includ-
ing classification, detection, action classification and person
layout. For it segmentation task, the dataset is augmented
with more annotations from [40] totaling 10,582 training
images with 1, 456 and 1449 images for test and validation
respectively. The PASCAL VOC 2012 dataset has 20 object
class categories such as vehicle, animal and person.

The CamVid Dataset [41] is designed purposely for road
scene understanding and semantic segmentation which is
used for many autonomous driving learning. In total, it con-
tains 701 annotated images of 367 training images, 233 test-
ing images and 101 validation images respectively. The
dataset has 11 semantic classes which are pixel-level anno-
tated and is augmented during draining to increase learning
capacity.
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B. EVALUATION METRIC

The performance of the ACGAN-SEG on both the CamVid
and PASCAL VOC 2012 Dataset is measured using the popu-
lar mean Intersection over Union (mloU) technique proposed
in [23] as:

mloU = (1/n.) Y _ nii / > nij+ > nji —nii | (6)
i j j

where n. is the number of classes, nii is the number of pixels
of class i predicted to be in class i and nij is the number of
pixels of class i which are predicted to belong to class j. If the
total pixels of a class i is represented as t; = Zj nij, then the
pixel accuracy pacc and mean accuracy macc are given as:

pacc: Y nii/ y 1 @)

macc : (1/n0) Y nii/t; )

C. ADVERSARIAL TRAINING

The model framework is optimized by the loss function stated
in Eq. (5) by systematically framing the generative training as
a supervised problem whereby the segmentation model which
is also called segmentor produces predicted probability maps
which is to be distinguished from ground truth distribution
by the discriminator network. Firstly, the segmentor which
is built on pre-trained ImageNet and MSCOCO dataset of the
ResNet-101 model is modified by removing the classification
layer such that the model is fully convolution and the reduced
dimension is upsampled to the size of the input images,
with each feature map representing each label class. The
segmentor receives the training images as input and generates
probability maps of their semantic labels.

Then the discriminator network which is also a fully con-
volutional network serves the adversarial learning purpose by
differentiating the segmentor output from the ground truth
labels. It accepts either of the segmentor network predic-
tion or the ground truth label map as input. We complemented
the segmentor’s feature maps with an attended vector repre-
senting object classes to the discriminator while the ground
truth is conditioned with a vector of the constituent class
label. However, in preprocessing the image labels, we uti-
lized the basic one-hot transformation technique, ignoring the
product and scaling methods as there are no differences when
running a fully convolutional network [37]. The final output
of the discriminator is a single map where pixels are classified
as binary, either from segmentor probability maps or ground
truth labels.

The segmentor was trained using the Stochastic Gradi-
ent Descent (SGD) optimization method, thus applying a
learning scheduler such that the initial learning rate is set
as 0.0002, while the polynomial decay of 0.9, momentum
of 0.9 and weight decay of 0.0001 is also same as the discrim-
inator which has 0.0001 learning rate trained on Adam opti-
mizer. The model was trained on the PASCAL VOC dataset
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TABLE 1. Comparison of results performance on the PASCAL VOC
2012 test dataset.

Method mean IOU
WAILS [42] 55.9
PSP-CRF [43] 65.4
Semi-weakly [44] 65.8
FCN-8 [23] 67.2
DeepLabl [26] 71.6
SmallFOV-light [38] 72.0
GCREF [45] 73.2
Dilation10 [25] 73.9
DPN [46] 74.1
Piecewise [47] 75.3
Baseline 74.9
Ours 75.6

for 20k iterations at a batch size of 10 and 40k iterations with
a batch size of 2 on the CamVid dataset, running on an Nvidia
Geforce 1080Ti Graphics Card. As the training continues,
the evaluation loss is minimized and the model continues to
converge.

D. EVALUATION

To analyze the efficiency of our ACGAN model, we compare
the model’s semantically segmented results to the image
labels and their degree of correlation. Using our attentively
conditioned GAN, we train the model to generate images
corresponding to the real training data label. In evaluating
the results, we compared the intersection over union of the
labels and the generated images. We adequately juxtaposed
the proposed model with other schemes to validate its quality
alongside other state-of-the-art methods using adv-seg [37]
without semi-supervised learning as the baseline.

1) RESULTS ON THE PASCAL VOC DATASET

As depicted in Table 1, the proposed model exceeds exist-
ing models for the task of segmentation, meaning that the
predicted class label classification is more resembling of the
ground truth label. From Table 1, it indicates that our GAN
model is able to learn the distribution space of the classes and
able to classifier each object or feature to the right cluster with
a high assurance.

Compared to other state-of-the-art which did not have an
adversarial training, our model shows better spatial consis-
tency between label classes and obtain an improvement from
67.2% to 75.6% compared to FCN [23], and an improvement
of 2.25% against Dilation10 [25]. In comparison with the
saints that are trained on adversarial learning, our proposed
model records an increase from 65.8% to 75.6% against
Semi-weakly [42] and 2.25% against SmallFOV-light [38].
In essence, the shows the advantage of our adversarial model
structure and the influence of the attended conditional param-
eter included in recognizing patterns.

In Fig. 2, an illustration of the proposed model is
depicted compared to the labels and other models such
as DeepLabV3 [2], MobileNet [5], G-FRNet [28] and
ShelfNet [30], revealing the efficiency of the model. The
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FIGURE 3. Qualitative results of segmentation on the CamVid dataset. Where a, b, ¢, d, e and f represents the input image,
ground truth label, Segnet [24], FCN-Deconv [24], DeepLab-LargeFOV-denseCRF [24] and our ACGAN model result
respectively.

TABLE 2. Comparison of results performance on the CamVid test dataset.

Method mean IOU
ENet [48] 51.3
SegNet [24] 55.6
LinkNet [49] 55.8
FCN-8 [23] 57.0
ReSeg [50] 58.8
AttentionM [51] 60.1
LRN [52] 61.7
RTA-MC [53] 62.4
DeepLav-V2 [26] 65.2
Dilation10 [25] 65.3
Baseline 65.1
Ours 66.3

inclusion of the attention network is negligible in both time
and computational cost, therefore estimating the adeptness
of our model. Qualitatively, our ACGAN model depicted
in Fig. 2 indicates that most of the objects are properly identi-
fied and segmented as close as possible to the labels. Meaning
that pixels assignment is mostly accounted for in their right
classes, reducing the false positives and false negatives of the
model prediction compared to other approaches.

2) RESULTS ON THE CamVid DATASET

Table 2 shows the estimation of our proposed model on the
CamVid dataset which achieves a performance improvement
of 14% and 6.9% compared to FCN [23] and LRN [43]
respectively. This shows the ability of our segmentor to
generate images similar to the label truth, being trained via
the adversarial objective function such that it maximizes its
learning via the discriminator loss and converges its data
distribution to the label distribution. Also, our model shows
improved performance of 1.7% to DeepLabv2 [26] and 1.5%
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to Dilation10 [25]. In addition, Fig. 3 depicts clear vindication
of our model in comparison with the result from other models.

The adversarial training significantly boosts the pixel clas-
sification, invariably learning the data sample distribution
as close to the class distribution as possible and is able to
decide which class each pixel belongs to, showing spatial
consistency between the data curves and pattern. This, in turn,
ensures the discriminator’s task becomes more difficult and
correspondingly improves the quality of the model result and
strengthens the class. As displayed in Fig. 3, the model pro-
duces segmented images of the constituent objects compared
to the ground truth.

This shows that the loss function of the model is well
optimized to minimizing the loss of the segmentor such that
its outputs are similar to the ground truth, making it difficult
for the discriminator to distinguish between the predicted
feature maps and the ground truth. It is fascinating to see that
our model generates improved segmentation of object trough
adversarial learning by learning the sample space of the data
which would be resourceful for other transfer learning models
in computer vision. Conclusively, it could be deduced that our
ACGAN model benefited from the dual conditioned approach
of the discriminator to enhance the learning process of the
network compared to other methods.

E. ABLATION ANALYSIS

Without altering the model structure, parameters and hyper-
parameters, we remove the attention network of our work and
the conditioned class label vector of the ground truth, mean-
ing that the network becomes strictly adversarial training with
no conditioned or additional input. The model then becomes
the baseline which is closely similar to [37] without the semi-
supervised training.
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For the PASCAL VOC 2012 dataset, our model produced
performance improvement of 0.9% from 74.9% to 75.6%.
Evidently, the conditioned GAN which includes an attention
generated vector as an additional input for both the segmentor
network and the class vector for the ground truth label into the
discriminator helps in identifying the object patterns and in its
classification.

Also, on the CamVid dataset, the proposed model achieves
a performance improvement of 1.8% from 65.1% to 66.3%,
indicating that the segmentor can learn the ground truth
sample space to look very similar to the labels, such that
the discriminator cannot discriminate the labels from the
segmentor’s predictions.

Clearly, the extra inputs add to the information available
to the discriminator which enhances feature identification
and classification. This broadly improves the effectiveness
and generalization of the discriminator’s prediction, illus-
trating the importance of conditioned adversarial training
in multiclass task which eliminates class mismatching and
has improved GAN’s application especially in image style
transfer and transformation.

V. CONCLUSION

In this paper, we propose an Attentively Conditioned Gener-
ative Adversarial Network (ACGAN), which cleverly builds
on the logic of the Generative Adversarial Network (GAN)
to achieve a supervised learning problem for the task of
semantic segmentation using two sub-models; the segmentor
(segmentation model) and discriminator. Our proposed net-
work learns via a conditional adversarial network such that,
on the one hand, an additional input A,;, which represents
attended feature probability of the segmentor’s feature maps
X is incorporated as input p(X|A,y) to the discriminator, and
on the other hand, the second input to the discriminator which
is the ground truth Y is conditioned on a vector V of the class
label as p(Y|V).

By experimenting on the PASCAL VOC 2012 and the
CamVid dataset, ACGAN demonstrates its efficiency and
effectiveness by generating plausible segmented images and
shows an improve segmentation accuracy, as well as stabiliz-
ing the discriminator in modeling long-range dependencies
due to extra information provided to the network.
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