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ABSTRACT In the manuscript, synthesis and stability analysis for fuzzy H2/H∞ sampled-data control of
dynamical systemswith delay behavior are studied by employing the input delaymethod. By using Lyapunov
theory, a new H2/H∞ standard is derived and the fuzzy sampled-data controller is proposed to ensure H∞
performance andH2 performance simultaneously. Meanwhile, the control design is verified by two practical
examples. Furthermore, experimental results also indicate that the H2/H∞ sampled-data control has a better
performance.

INDEX TERMS Dynamical systems, delay behavior, fuzzy sampled-data control, H2/H∞ control.

I. INTRODUCTION
Recently, fuzzy control method has always been a hot topic
in the field of control and can be widely employed. Because
of its logical reasoning abilities and superior approximation
performance, T-S fuzzy model was adopted to capture the
nonlinear dynamical system in [1]. Subsequently, fuzzy con-
trollers were also designed to guarantee the system stabil-
ity in [2]–[6]. Generally, in the field of control, the role
of computer is to control the controlled plants as a digital
controller. When the continuous-time measurement signal is
processed by the digital computer, the measurement signal is
sampled and quantized firstly. Next, the discrete-time signal
is generated by a zero-order holder, and then transmitted back
to the continuous-time control input signal.

By now, there have been a lot of reports on the syn-
thesis and analysis of sampled-data control with fuzzy
form [7]–[37]. Among these existing literatures, [7], [9], [12],
[21], [23], [24], [28]–[31] had analyzed the stability of the
system, [18], [19], [23], [32], [33] had carried on the sta-
bilization, [8], [10], [13], [14], [16], [25], [27] had dis-
cussed the H∞ control, [15], [21] had studied the H2 GC
control, [11], [17], [26] had discussed the tracking control,
and [20], [22] had considered the filtering. Meanwhile, delay
phenomena often occur in some engineering systems, such
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as manual control, aircraft stability, ship stability and nuclear
reactor. Moreover, in practical systems, the phenomenon of
time delay leads to oscillations and instability frequently.
In [9], [10], [14], [16], [34], [35], some fuzzy sampled-
data control schemes were designed for nonlinear dynam-
ical systems with delay behavior. The control performance
design was described clearly in [9]. In [10], the issue of reli-
able non-uniform H∞ sampling fuzzy control was analyzed,
in which the generalized model transformation and input
delay method were employed. Meanwhile, H∞ control was
also investigated by utilizing Leibniz-Newton formula and
Lyapunov-Krasovskii functional [14]. Furthermore, a dis-
tinctive delay-dependent stabilization standard was proposed
in [16]. For T-S fuzzy systems with time delay and para-
metric uncertainties, a robust guaranteed cost sampled-data
fuzzy control design method was proposed in [34]. In [35],
the stabilization of a T-S fuzzy system with time delay was
explored, in which the designed fuzzy controller of sampled-
data contained both the current and delayed state information.
In addition, if the H2 performance and H∞ performance can
be optimized simultaneously, the control system will show
a better performance. Nevertheless, fuzzy H2/H∞ sampled-
data control issue of dynamical systems with delay behavior
has not been explored yet.
H2 performance focuses on the system state and the

system input. H∞ performance is mainly reflected in the
gain between the system state and the external disturbance.
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However, H2 control or H∞ control can only achieve a sin-
gle control performance. In the existing literatures, fuzzy
sampled-data H2 control and fuzzy sampled-data H∞ con-
trol have been explored respectively. But, the dimension of
LMIs is very large, which can bring about the conservatism
of the results. Therefore, for some engineering systems,
how to design a more convenient and easier to implement
sampled-data controller with larger sampling interval is still
an unsolved problem.

Based on the above researches, fuzzy H2/H∞ sampled-
data control issue is proposed for dynamical systems with
delay behavior. A new H2/H∞ criterion is constructed and
formulated as the linear matrix inequalities (LMIs) form.
The feasibility of sampled-data control scheme is tested by
simulation results. Moreover, by considering both H∞ per-
formance and H2 performance, the global optimization algo-
rithm is achieved and a fuzzy H2/H∞ sampled-data control
scheme is firstly investigated for dynamical systems with
delay behavior. The presented control algorithm is less con-
servative, which reduces the dimension of the LMIs and
shortens the implementation time.

The main innovation points of this paper are embodied in
several aspects.
(I) The proposed control algorithm is less conservative,

where the dimension of the LMIs is simplified, which
adds the existence of the feedback gains, reduces the
computational complexity and lowers the implementa-
tion time.

(II) The proposed method achieves a better performance,
where fuzzy sampled-data controller has a larger sam-
pling interval and shows a better attenuated level and
faster state responses.

Notations: Throughout the manuscript, the notation W >

0(< 0) means the positivity (negativity) W T represent the
transpose of a matrixW ; and ∗ describes the symmetric term
of a symmetric matrix. It is assumed that the matrices are
compatible.

II. PROBLEM FORMULATION
Analyze the T–S fuzzymodel capturing the dynamical system
with delay behavior:

Rule i : IF σ1(t) is Ni1 and · · · and σp(t) is Nip, THEN

ẋ(t) = Âix(t)+ Âidx(t − d)

+B̂iu(t)+ ω(t), i = 1, · · · ,M (1)

where the state, the input, and the disturbance are expressed
by x(t), u(t), and ω(t), respectively; the matrices Âi, B̂i, and
Âid are time-invariant; and time delay d is a constant.

The global system is deduced as

ẋ(t)=
M∑
i=1

ξi(σ (t))
[
Âix(t)+Âidx(t−d)+B̂iu(t)+ω(t)

]
(2)

where ξi(σ (t)) ≥ 0, i = 1, 2, . . . ,M , and
M∑
i=1
ξi(σ (t)) = 1.

The j th rule of fuzzy controller is as follows:
Rule j : IF σ1(tk ) is Nj1 and · · · and σp(tk ) is Njp,THEN

u(t) = Gjx(tk ), tk ≤ t < tk+1, j = 1, 2, . . . ,M

where Gj represents the gain, and 0 < tk+1 − tk = hk ≤ h.
Therefore, the global controller is shown as

u(t) =
M∑
j=1

ξj(σ (tk ))Gjx(tk ). (3)

Let τ (t) = t − tk , tk ≤ t < tk+1. Obviously, the derivative
τ̇ (t) = 1 for t 6= tk . By employing the input delay method,
(3) is rewritten as

u(t) =
M∑
j=1

ξj(σ (tk ))Gjx(t − τ (t)) (4)

By considering the system (2) and the controller (4),
the closed-loop system is obtained as

ẋ(t) =
M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))
[
Âix(t)+ Âidx(t − d)

+ B̂iGjx(t − τ (t))+ ω(t)
]
. (5)

where two delays x(t − d) and x(t − τ (t)) are independent.
Let us take into account the following H∞ control

performance∫
∞

0
xT (t)S1x(t)dt ≤ ε2

∫
∞

0
ωT (t)ω(t)dt (6)

where ε denotes a attenuation level and the matrix S1 is
positive-definite.

The H2 control performance is as follows:

J =
∫
∞

0
(xT (t)S2x(t)+ uT (t)Qu(t)) dt (7)

where S2 and Q are positive-definite matrices.
By analyzing a desiredH∞ disturbance rejection constraint

in (6), the suboptimalH2 control performance (7) is obtained.
Our control objective aims to explore a fuzzy sampled-data
controller to ensure the H2/H∞ performance for the closed-
loop system (5).

III. FUZZY H2/H∞ SAMPLED-DATA CONTROL
Based on the LMIs, a fuzzy sampled-data H2/H∞ control
criterion is proposed as follows.
Theorem 1: Considering the closed-loop system (5), for

given matrices S1 > 0, S2 > 0, and Q > 0, scalars ε > 0,
h > 0, and λ > 0, theH2/H∞ control performance in (6) and
(7) is satisfied, simultaneously, if there exist matricesQ1 > 0
and Q2 > 0 satisfying the LMIs (8) and (9)

Rij=


Rij11 Rij12 Rij13 Rij14 Rij15
∗ Rij22 0 0 0
∗ ∗ Rij33 Rij34 0
∗ ∗ ∗ Rij44 Rij45
∗ ∗ ∗ ∗ Rij55

 < 0

i, j = 1, 2, · · ·,M (8)
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Zij =


Zij11 Zij12 Zij13 0 Zij15 Zij16
∗ Zij22 0 0 0 0
∗ ∗ Zij33 Zij34 Zij35 0
∗ ∗ ∗ Zij44 0 0
∗ ∗ ∗ ∗ Zij55 Zij56
∗ ∗ ∗ ∗ ∗ Zij66

<0

i, j = 1, 2, · · ·,M

(9)

where

Rij11 = ÂiW +WÂTi + Q̄1 − Q2 +
1
ε2
I , Rij12 = W

Rij13 = B̂iḠj + Q2, Rij14 = λWÂTi , Rij15 = ÂidW

Rij22 = −
1

1+ λ
S−11 , Rij33 = −Q2, Rij34 = λG

T
j B̂

T
i

Rij44 = −2λW + h2Q2 +
λ

ε2
I , Rij45 = λÂidW

Rij55 = −Q1, Zij11 = ÂiW̄ + W̄ ÂTi + Q1 + Q2

Zij11 = ÂiW̄ + W̄ ÂTi + Q1 + Q2, Zij12 = W̄

Zij13 = B̂iḠj + Q2, Zij15 = λWÂTi , Zij16 = ÂidW

Zij22 = −S−12 , Zij33 = −Q̄2, Zij34 = G
T
j

Zij35 = λG
T
j B̂

T
i , Zij44 = −Q−1, Zij55 = −2λW + h2Q2

Zij56 = λÂidW , Zij66 = −Q̄1.

And, the control gains in sampled-data controller are Gj =
ḠjW

−1
, j = 1, 2, · · ·,M .

Proof: Selecting the Lyapunov-Krasovskii functional as
the candidate

V (xt ) = V1(x)+ V2(xt )+ V3(xt ) (10)

where

V1(x) = xT (t)Wx(t)

V2(xt ) = V2(x, t) =
∫ t

t−d
xT (s)Q1x(s)ds

V3(xt ) = V3(x, t) = h
∫ 0

−h

∫ t

t+θ
ẋT (s)Q2ẋ(s)dsdθ

with W > 0, Q1 > 0, and Q2 > 0.
The derivative of V is as follows:

V̇1(x) = ẋT (t)Wx(t)+ xT (t)Wẋ(t)

=

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[xT (t)ÂTi Wx(t)

+ xT (t − d)ÂTidWx(t)

+ xT (t − τ (t))GTj B̂
T
i Wx(t)+ ω

T (t)Wx(t)

+ xT (t)WÂix(t)+ xT (t)WÂidx(t − d)

+ xT (t)WB̂iGjx(t − τ (t))+ xT (t)Wω(t)]

=

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[xT (t)ÂTi Wx(t)

+ xT (t − d)ÂTidWx(t)

+ xT (t − τ (t))GTj B̂
T
i Wx(t)+ x

T (t)WÂix(t)

+ xT (t)WÂidx(t − d)+ xT (t)WB̂iGjx(t − τ (t))

+
1
ε2
xT (t)WWx(t)+ ε2ωT (t)ω(t)

− (
1
ε
Wx(t)− εω(t))T (

1
ε
Wx(t)− εω(t))]

≤

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[xT (t)ÂTi Wx(t)

+ xT (t − d)ÂTidWx(t)

+ xT (t − τ (t))GTj B̂
T
i Wx(t)+ x

T (t)WÂix(t)

+ xT (t)WÂidx(t − d)+ xT (t)WB̂iGjx(t − τ (t))

+
1
ε2
xT (t)WWx(t)+ ε2ωT (t)ω(t)]. (11)

V̇2(xt ) = xT (t)Q1x(t)− xT (t − d)Q1x(t − d). (12)

By applying Lemma in [38], we can obtain

−h
∫ t

t−h
ẋT (s)Q2ẋ(s)ds

≤ −τ (t)
∫ t

t−τ (t)
ẋT (s)Q2ẋ(s)ds

≤ −

(∫ t

t−τ (t)
ẋ(s)ds

)T
Q2

(∫ t

t−τ (t)
ẋ(s)ds

)
. (13)

Leibniz-Newton formula is∫ t

t−h
ẋ(s)ds = x(t)− x(t − h). (14)

By employing (13) and Leibniz-Newton formula, we get

V̇3(xt ) = h2ẋT (t)Q2ẋ(t)− h
∫ t

t−h
ẋT (s)Q2ẋ(s)ds

≤ h2ẋT (t)Q2ẋ(t)− (x(t)

− x(t − τ (t)))TQ2(x(t)− x(t − τ (t)))

= h2ẋT (t)Q2ẋ(t)− xT (t)Q2x(t)

+ xT (t − τ (t))Q2x(t)+ xT (t)Q2x(t − τ (t))

− xT (t − τ (t))Q2x(t − τ (t)). (15)

It should be clarified that for a given µ > 0, we have

0 = −2λẋT (t)Wẋ(t)

+ λẋT (t)W


M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))
[
Âix(t)

+ Âidx(t − d)+ B̂iGjx(t − τ (t))+ ω(t)
]}

+ λ{

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[Âix(t)+ Âidx(t − d)

+ B̂iGjx(t − τ (t))+ ω(t)]}TWẋ(t)

= −2λẋT (t)Wẋ(t)+
M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))
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×

[
λẋT (t)WÂix(t)+ λẋT (t)WÂidx(t − d)

+ λẋT (t)WB̂iGjx(t − τ (t))

+ λẋT (t)Wω(t)+ λxT (t)ÂTi Wẋ(t)

+λxT (t − d)ÂTidWẋ(t)

+λxT (t − τ (t))GTj B̂
T
i Wẋ(t)+ λωT (t)Wẋ(t)

]
≤ −2λẋT (t)Wẋ(t)

+

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))
[
λẋT (t)WÂix(t)

+ λẋT (t)WB̂iGjx(t − τ (t))+ λẋT (t)WÂidx(t − d)

+λxT (t)ÂTi Wẋ(t)+ λxT (t − d)ÂTidWẋ(t)

+ λxT (t − τ (t))GTj B̂
T
i Wẋ(t) +λ

1
ε2
ẋT (t)WWẋ(t)

+ ε2ωT (t)ω(t)
)]
. (16)

By utilizing (11)-(13) and (15)-(16), we can acquire that

V̇ (xt ) ≤
M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))

×

[
x̃T (t)C′ijx̃(t)+ ε̄

2ω(t)Tω(t)
]

(17)

where

x̃(t) = [ xT (t) xT (t − τ (t)) ẋT (t) xT (t − d) ]T

ε̄ =
√
1+ λε

C′ij =


C′ij11 C′ij12 C′ij13 C′ij14
∗ C′ij22 C′ij23 0
∗ ∗ C′ij33 C′ij34
∗ ∗ ∗ C′ij44

 . (18)

with

C′ij11 = ÂTi W +WÂi + Q1 − Q2 +
1
ε2
WW

C′ij12 = WB̂iGj + Q2, C′ij13 = λÂ
T
i W , C

′

ij14 = WÂid

C′ij22 = −Q2, C′ij23 = λG
T
j B̂

T
i W

C′ij33 = −2λW + h
2Q2 +

λ

ε2
WW , C′ij34 = λWÂid

C′ij44 = −Q1.

Let S̃ = diag
[
(1+ λ)S1 0 0 0

]
. Let Cij = C′ij + S̃, then

Cij=


C′ij11 + (1+ λ)S1 C′ij12 C′ij13 C′ij14

∗ C′ij22 C′ij23 0
∗ ∗ C′ij33 C′ij34
∗ ∗ ∗ C′ij44

. (19)

Left- and right-multiplying Cij by
diag[W−1 W−1 W−1 W−1 ] yields

Ĉij =


Rij11 + (1+ λ)S̄1 Rij13 Rij14 Rij15

∗ Rij33 Rij34 0
∗ ∗ Rij44 Rij45
∗ ∗ ∗ Rij55

 (20)

where

W = W−1, Q1 = W−1Q1W−1, Q2 = W−1Q2W−1,

S̄1 = W−1S1W−1, Ḡj = GjW̄ , j = 1, 2, · · ·,M .

By adopting the Schur complement in (8), we have Ĉij < 0.
Therefore, Cij < 0. Substituting C′ij < −S̃ into (17), one has

V̇ (xt ) ≤ −x̃T (t)S̃x̃(t)+ ε̄2ωT (t)ω(t). (21)

Owing to S̃ = diag
[
(1+ λ)S1 0 0 0

]
, ε̄ =

√
1+ λε,

we get

V̇ (xt ) ≤ −(1+ λ)xT (t)S1x(t)+ (1+ λ)ε2ωT (t)ω(t). (22)

Integrating both sides of (22), there is∫
∞

0
xT (t)S1x(t)dt ≤ ε2

∫
∞

0
ωT (t)ω(t)dt. (23)

Remark 1: Eq. (8) provides a new relaxed stability con-
dition for the system (2). Unlike the existing works, in the
proof, eq.(16) is introduced to consider the fuzzy relationship
between ẋ(t), x(t), x(t − τ (t)) and x(t − d). By using of the
LMIs, it is easy to determine the feedback gains.

Now, we continue to consider the H2 control performance
for the closed-loop system (5) in the absence of ω(t).
The derivative of V in the absence of ω(t) is as follows:

V̇1(x) = ẋT (t)Wx(t)+ xT (t)Wẋ(t)

=

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[xT (t)ÂTi Wx(t)

+ xT (t − d)ÂTidWx(t)+ x
T (t − τ (t))GTj B̂

T
i Wx(t)

+ xT (t)WÂix(t)+ xT (t)WÂidx(t − d)

+ xT (t)WB̂iGjx(t − τ (t))]. (24)

V̇2(xt ) = xT (t)Q1x(t)− xT (t − d)Q1x(t − d). (25)

By using (15),

V̇3(xt ) ≤ h2ẋT (t)Q2ẋ(t)− xT (t)Q2x(t)

+ xT (t − τ (t))Q2x(t)+ xT (t)Q2x(t − τ (t))

− xT (t − τ (t))Q2x(t − τ (t)). (26)

It is noted that for a given µ > 0, one has

0 = −2λẋT (t)Wẋ(t)

+ λẋT (t)W {
M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[Âix(t)

+ Âidx(t − d)

+ B̂iGjx(t − τ (t))]}

+ λ{

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[Âix(t)+ Âidx(t − d)

+ B̂iGjx(t − τ (t))]}TWẋ(t)

= −2λẋT (t)Wẋ(t)
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+

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))[λẋT (t)WÂix(t)

+ λẋT (t)WÂidx(t − d)+ λẋT (t)WB̂iGjx(t − τ (t))

+ λxT (t)ÂTi Wẋ(t)+ λxT (t − d)ÂTidWẋ(t)

+ λxT (t − τ (t))GTj B̂
T
i Wẋ(t)]. (27)

From (24)-(27), we can obtain that

V̇ (xt )+ xT (t)S2x(t)+ uT (t)Qu(t)

≤

M∑
i=1

M∑
j=1

ξi(σ (t))ξj(σ (tk ))x̃T (t)=ijx̃(t) (28)

where

x̃(t) = [ xT (t) xT (t − τ (t)) ẋT (t) xT (t − d) ]T

=ij =


=ij11 =ij12 =ij13 =ij14
∗ =ij22 =ij23 0
∗ ∗ =ij33 =ij34
∗ ∗ ∗ =ij44

 (29)

with

=ij11 = ÂiW +WÂTi + Q1 − Q2 + S2,

=ij12 = WB̂iGj + Q2

=ij13 = λÂTi W , =ij14 = WÂid ,

=ij22 = −Q2 + GTj QGj

=ij23 = λGTj B̂
T
i W , =ij33 = −2λW + h

2Q2,

=ij34 = λWÂid
=ij44 = −Q1.

Left- and right-multiplying =ij by
diag[W−1 W−1 W−1 W−1 ] yields

=̂ij =


Zij11 + S2 Zij13 Zij15 Zij16
∗ Zij33 + G

T
j QGj Zij35 0

∗ ∗ Zij55 Zij56
∗ ∗ ∗ Zij66

 (30)

where

W = W−1, Q1 = W−1Q1W−1, Q2 = W−1Q2W−1,

S2 = W−1S2W−1, Ḡj = GjW̄ , j = 1, · · ·,M .

Applying the Schur complement to (9), there is =̂ij < 0.
And, we have =ij < 0 in (29). Thus, as for (28), we have

V̇ (xt )+ xT (t)S2x(t)+ uT (t)Qu(t) < 0 (31)

which implies that V̇ (xt ) < 0.
Integrating (31) from t = 0 to t = ∞, there is

V (xt (∞))− V (xt (0))

+

∫
∞

0
(xT (t)S2x(t)+ uT (t)Qu(t))dt < 0. (32)

Due to V (xt (∞)) = 0, one has

J < V (xt (0)) = xT (0)Wx(0). (33)

The design of this paper is formulated as the following
optimization problem.
Theorem 2: Considering the fuzzy closed-loop system (5),

if the following problem

min
W̄

Trace(U )

s.t. W̄ > 0, Q1>0, Q2>0, (8), (9), and
[
U I
∗ W̄

]
> 0

(34)

has a solution Gj, j = 1, · · ·,M andW , then a whole optimal
H2/H∞ control performance is achieved. The control gains
are Gj = ḠjW̄−1, j = 1, 2, · · ·,M .
Remark 2: Fuzzy H2/H∞ sampled-data control is firstly

discussed for time-delay systems. In practical engineering
systems, the H2/H∞ sampled-data control is more appealing
in achieving the desired control performance. And, the focus
of H∞ performance is mainly on the gain between the sys-
tem state and the external disturbance. Meanwhile, both the
system state and the system input are considered inH2 perfor-
mance. Furthermore, H2/H∞ control synthesizes the merits
of H∞ control and H2 control.
Remark 3: The proposed control algorithm simplifies the

dimension of the LMI, reduces the computational complexity,
and is less conservative. At the same time, it increases the
existence of the feedback gain and shortens the implemen-
tation time. The designed method has better performance,
in which the fuzzy sampled-data controller has a larger sam-
pling interval, a faster state response and a better attenuation
level.

IV. SIMULATION EXAMPLES
The proposed design is demonstrated by two practical dynam-
ical systems with delay. In addition, the superiority is obvious
in the obtained simulation results.
Example 1: The truck-trailer system in [39] is

ẋ1(t) = −ã
vt
Lt0

x1(t)− (1− ã)
vt
Lt0

x1(t − td )

+
vt
lt0
u(t)+ w(t)

ẋ2(t) = ã
vt
Lt0

x1(t)+ (1− ã)
vt
Lt0

x1(t − td )

ẋ3(t) =
vt
Lt0

sin(x2(t)

+ ã(vt/2L)x1(t)+ (1− ã)(vt/2L)x1(t − td )) (35)

where l = 2.8,L = 5.5, v = −1.0 ã = 0.7, t̄ = 2.0, t0 =
0.5, w(t) is the external disturbance.
Let x(t) = [x1(t) x2(t)x3(t)]T . The truck-trailer system is

represented as

ẋ(t) =
2∑
i=1

ξi(σ (t))
[
Âix(t)+ Âidx(t − d)+ B̂iu(t)+ ω(t)

]
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TABLE 1. The dimensions of the LIMs.

with

Â1 =



−ã
vt
Lt0

0 0

ã
vt
Lt0

0 0

ã
v2t2

2Lt0
vt
t0

0


,

Â1d =



−(1− ã)
vt
Lt0

0 0

(1− ã)
vt
Lt0

0 0

(1− ã)
v2t2

2Lt0
0 0



Â2 =



−ã
vt
Lt0

0 0

ã
vt
Lt0

0 0

ã
dv2t2

2Lt0

dvt
t0

0


,

Â2d =



−(1− ã)
vt
Lt0

0 0

(1− ã)
vt
Lt0

0 0

(1− ã)
dv2t2

2Lt0
0 0



B̂1 =


vt
lt0
0
0

 , B̂2 =


vt
lt0
0
0

 , d = 10t0/π

ξ1(θ (t)) =
(
1−

1
1+ exp(−3(θ (t)− 0.5π ))

)
×

(
1

1+ exp(−3(θ (t)+ 0.5π ))

)
ξ2(θ (t)) = 1− ξ1(θ (t)).

By employing the methods of [22], [10], and Theorem 1,
a lower dimension in the LMIs is obtained in this paper, see,
Table 1. That is to say, the computation burden of this paper
is smaller than that of the methods in [22] and [10].

Using the methods of [10] and Theorem 1, a larger sam-
pling interval is obtained, see, Table 2.

TABLE 2. The maximum sampling interval with ε = 1.0.

FIGURE 1. State response x1.

FIGURE 2. State response x2.

When ε = 1.0, Theorem1 gives the maximum sampling
interval h = 0.432. With λ = 0.6, S1 = diag{1 1 0.1} ×
10−8, S2 = diag{1 1 0.1}×10−8,Q = 1×10−5, fuzzy state
feedback gains are

G1 = [1.2749 − 0.6031 0.0122]

G2 = [1.2749 − 0.6031 0.0122].

Experimental results are depicted in FIGUREs. 1-4.
The system stability is confirmed and the piecewise con-

tinuous behavior of the control input is also plotted.
When h = 0.432, we find that this paper shows faster state

responses than those of the H∞ method in [22].
Example 2: The stirred tank reactor system in [40] is

ẋ1(t) = −
1
v
x1(t)+Dσ (1−x1(t))e

x2(t)
1+x2(t)/γ0 +(

1
v
− 1)x1(t−τ )

ẋ2(t) =
(
1
v
+ β

)
x2(t)+ HDσ (1− x1(t))e

x2(t)
1+x2(t)/γ0

+

(
1
v
− 1

)
x2(t − τ )+ βu(t)+ βw(t) (36)
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FIGURE 3. State response x3.

FIGURE 4. Control input u.

where γ0 = 20,H = 8,Dσ = 0.072, v = 0.8, β = 0.3,
0 ≤ x1(t) ≤ 1, and w(t) is the external disturbance.
Let x(t) = [x1(t), x2(t)]T . The stirred tank reactor system

is described as

ẋ(t) =
3∑
i=1

ξi(σ (t))[Âix(t)+ Âidx(t − τ )+ B̂iu(t)+ ω(t)]

with

Â1 =
[
−1.4274 0.0757
−1.4189 −0.9442

]
, Â1d =

[
0.25 0
0 0.25

]
Â2 =

[
−2.0508 0.3958
−6.4066 1.6268

]
, Â2d =

[
0.25 0
0 0.25

]
Â3 =

[
−4.5279 0.3167
−26.2228 0.9387

]
, Â3d =

[
0.25 0
0 0.25

]
B̂1 =

[
0
0.3

]
, B̂2 =

[
0
0.3

]
, B̂3 =

[
0
0.3

]

ξ1(x2(t)) =


1, x2≤0.8862

1−
x2(t)− 0.8862
2.7520− 0.8862

, 0.8862<x2<2.7520

0, x2≥2.7520

ξ2(x2(t)) =

{
1−ξ1(x2(t)), x2 ≤ 2.7520
1−ξ3(x2(t)), x2 > 2.7520

ξ3(x2(t)) =


0, x2≤2.7520

1−
x2(t)−2.7520

4.7052− 2.7520
, 2.7520<x2<4.7052

1, x2≥4.7052

TABLE 3. The dimensions of the LIMs.

FIGURE 5. State responses.

FIGURE 6. Control input.

By using the methods of [22], [10] and Theorem 1, a lower
dimension in the LMIs is achieved, see, Table 3.

That is to say, the computation burden in this paper is
smaller than that of the methods in [22] and [10].

When h = 0.1, there is εmin = 0.0497 under Theorem 1.
The minimum disturbance attenuation is 0.0497, which is
ineffective in the LMI conditions of H∞ control [22]. This
implies that the proposed fuzzy H2/H∞ sampled-data control
method is superior to the existing H∞ control method.
When ε = 1.0, Theorem 1 gives hmax = 0.222. The

maximum sampling interval is 0.222, which is infeasible in
the LMI conditions of H2 control [10]. This implies that
the proposed fuzzy H2 /H∞ sampled-data control method is
superior to the existing H2 control method.
According to the design procedure, we get the optimal

design parameters ε = 0.0603, h = 0.12, λ = 0.2.With S1 =
diag{9 8} × 10−6, S2 = diag{2 6} × 10−4, Q = 1 × 10−6,
Theorem 1 gives state feedback gains

G1 = [30.2128− 17.8191] , G2 = [30.2128− 17.8191]

G3 = [30.2128− 17.8191] .

Simulation results under τ = 5 are shown in
FIGUREs. 5-6. The system stability is confirmed and the
piecewise continuous behavior of the control input is also
portrayed.
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V. CONCLUSION
Fuzzy H2/H∞ sampled-data control for dynamical systems
with delay behavior is addressed by using the input delay
method. Based on Lyapunov theory, a fuzzy sampled-data
controller is proposed, which can guarantee the H∞ per-
formance and H2 performance concurrently. Moreover, a
new H2/H∞ standard is derived. Both stability analysis and
simulation results demonstrate the proposed design and the
superiority have also been verified through comparative anal-
ysis. In the future, this method will be applied to uncertain
dynamical systems and provide theoretical support for further
research. Furthermore, we will pay attention to more devel-
opments on the sampled-data control, the adaptive neural con-
trol, the adaptive fuzzy tracking control, the event-triggered
scheme and the stochastic control in the literatures.
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