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ABSTRACT Cloud Computing is becoming more and more popular for solving problems that need high
concurrency and a lot of resources. Many traditional areas of research choose to solve their problems through
the cloud, and workflow scheduling is one of them. Cloud computing brings many benefits, meanwhile, due
to the almost ‘‘infinite’’ amount of resources for users, it also brings new challenges for scheduling and
optimization, in which cost and makespan are the most concerned issues for workflow scheduling. Users
want to obtain a low cost and fast makespan solution. This paper focuses on how to find an optimized
solution to achieve better cost-makespan at the same time under the constraint of deadline. In order to solve
this problem, an immune particle swarm optimization algorithm (IMPSO) is proposed, which effectively
improves the quality and speed of the optimization. The proposed IMPSO overcomes the problem of slow
convergence of PSO, which is easy to fall into local optimization. Experiments show the efficiency and
effectiveness of the proposed approach.

INDEX TERMS Cloud computing, workflow scheduling, immune mechanism, particle swarm algorithm.

I. INTRODUCTION
Workflow is a series of tasks ordered as some form of prioriti-
zation to achieve a specific aim, which is a branch of discrete
event systems (DES). Nowadays, science and business appli-
cations consist of thousands of tasks, even more. As usual,
for convenient research, they are modeled as workflowmodel
via direct acyclic graphs (DAG) or Petri nets [1]–[4]. These
complex workflow applications are deployed in a distributed
computing environment in order to execute them in a reason-
able amount of time [5]. But there is a question of reality
that, building and maintaining an infrastructure, such as high-
performance clusters, grid systems or private clouds, by the
application owners is not only very expensive, but also cannot
deal with dynamic demands flexibly.When demand is greater
than the existing facilities, the infrastructure has to expand,
and if there is a significant reduction in demand for a long
period, a number of resources are wasted. Therefore, cloud
computing; a shared-resource mode that provides services
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as infrastructure, where users can deploy their workflows
dynamically. Moreover, users can pay and use the cloud
resources on demand.

In recent years, cloud computing has developed extremely
rapidly. As a mature business model, cloud computing is
provided by many providers in the worldwide market which
forms a benign competition. Thus, users can enjoy high qual-
ity service at low prices. Normally, cloud providers divide
the world into several regions, and builds datacenters in each
region. Each datacenter provides numerous instance types,
which are distinguished from each other by some parameters,
like CPU, memory, bandwidth, etc. The resources a user can
obtain from the market can be seen as ‘‘infinite’’, due to the
order of magnitude gap between user and instances offered.
It means that it is difficult for a user to judge between using
which type of instances and how many instances can accom-
plish the workflow at a lower price and lower makespan.
Therefore, workflow scheduling in cloud environment is very
significant and meaningful.

Workflow scheduling in cloud environment aims to allo-
cate each task in the workflow to a certain resource for

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 29281

https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-8523-8979
https://orcid.org/0000-0003-2522-891X
https://orcid.org/0000-0002-3171-7667
https://orcid.org/0000-0002-8998-0433


P. Wang et al.: Makespan-Driven Workflow Scheduling in Clouds Using Immune-Based PSO Algorithm

execution in order to meet some performance criterion [5].
Due to numerous instances offered to users, it is almost
impossible to traversal all resources to find the best solution in
polynomial time.Moreover, users often have requirements on
more than one performance criterions. For example, the solu-
tion does not only have to been the lowest cost, but also
the fastest makespan, which makes the scheduling problem
more complicated. Workflow scheduling is a well-known
NP-hard problem, which has caused extensive research, espe-
cially scheduling in clouds. Cloud instance selection is also
another issue, there are also some researches about them, such
as [6]–[8].

Deployingworkflow in clouds is different from doing so on
traditional distributed systems. It means that cost is dynamic,
which is decided by the instances a user gets. Finding a better
instances solution is a deserved research. In order to find
an optimized solution to achieve better cost-makespan at the
same time under the constraint of deadline, we propose an
immune-based particle swarm optimization (IMPSO) algo-
rithm. Making use of the characteristics of immune mecha-
nism as immunological memory, affinity evaluation between
antibody and antigen, antibody concentration, and degree of
excitability and so on. Experimental evaluation proves that
the performance of IMPSO is competitive and the conver-
gence speed is obviously faster than that of the contrast algo-
rithm. For makespan and cost, IMPSO has a certain degree of
improvement.

The reminder of this paper is organized as follows:
Section II reviews the related work. Section III describes the
scheduling model and problem formulation, while Section IV
talks about the optimization approach. Experimental results
are shown in Section V. Finally, Section VI concludes this
work and points to future work.

II. RELATED WORK
Workflow scheduling has been studied for several decades.
Researchers put forward a wide variety of ways to get the
optimized deployment solution. There are some reviews that
systematically describe workflow scheduling problems from
different angles. Rodriguez and Buyya [9] review scientific
workflow scheduling studies on IaaS environment, and classi-
fies cloud resourcemodel according to different cloud charac-
teristics and services. Smanchat and Viriyapant [10] classify
the existing research according to scheduling process, task
and resource which complements the workflow classification
of grid computing. Kaur et al. [11] discuss the heuristic, meta-
heuristic and hybrid methods about workflow scheduling.
Reference [12] focus on using intelligent optimization algo-
rithm to ensure security and obtain a good scheduling scheme
at the same time.

A workflow is a collection of dependent tasks that perform
specific functions. The dependency of a workflow deployed
on a computer is usually represented by the transmission
of data and determines the order in which tasks are exe-
cuted. Tasks in workflow have different requirements for
resources. Some want more memory, and some prefer more

I/O resources. When executing workflow, it is important not
only to meet the completion time of the whole workflow, but
also to meet the resource requirements of each task, which
requires that individuals or organizations need enough budget
and space to build the corresponding infrastructure. In addi-
tion, when the workflow requirements change or need to
execute a new workflow with different requirements, the cor-
responding infrastructure should also be adjusted. However,
not every individual or organization has the ability to build
and adjust infrastructure, so researchers are eager to find new
computing models to serve the workflow. Cloud computing
is the most typical representative.

Compared with traditional techniques, in the cloud envi-
ronment, not only makespan is considered, other objects such
as cost, load balance, safety, energy, reliability are also criti-
cal. Aiming to different objects, a great quantity of methods
are proposed to get a better solution for making one or more
objects best. Makespan and Cost are the most considered
parameter.

The existing studies can be generally divided into three
types: based on Pareto solution, based on weight and based on
given constraints [13]. In practical applications, users often
consider more than one goal. such as cost, completion time,
safety and reliability. there are trade-offs between these objec-
tives, and this is a NP-hard problem that cannot be solved in
polynomial time.

A. MAKESPAN-DRIVEN WORKFLOW SCHEDULING
In recent researches, cost and makespan are still the most
important concerns. Makespan is the time to perform a full
workflow. It is also referred to as a scheduling length. As the
focus of the work flow scheduling problem in the grid cal-
culation and the traditional calculation mode. Many well-
known scheduling algorithms have been applied, such as
Myopic [14], Min-min [15], Max-min [16], GRASP [16]
etc. Many methohds solving workflow scheduling are based
on heuristic, and can be classified as List schedule [17],
clustered heuristic schedule [18] and task replication heuristic
schedule [19]. Among them, the earliest time first (ETF)
algorithm [20] and the heterogeneous earliest completion
time (HEFT) algorithm have become the most commonly
used ideas in makespan modeling. In addition, a heuristic
idea is called critical path (CP) [21], which determines the
longest of all execution paths in workflow (critical path)
and gives the highest priority to them in order to minimize
the completion time of the whole workflow. CP has been
widely used to deal with the scheduling of interdependent
tasks in multiprocessor systems. Using the idea of fill control,
a heuristic of Firefly guidelines based on the travel behavior
of fireflies is established to distribute the load equally, thus
reducing the overall completion time [22]. To schedule big
data workflow, Mohan et.al. [23] define a big data workflow
budget constraint called BARENTS. This constraint supports
the scheduling of high-performance workflows in heteroge-
neous cloud computing environments, which can minimize
workflow completion times under budget constraints.
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The above-described scheduling is mostly static, that is,
considering only the current network state, generating a
good scheduling plan, and the lack of consideration of
resource availability changes. In cloud computing, however,
resources are often dynamic, and the actual execution time
of the workflow is often longer than the time predicted in
static mode. There are some dynamic scheduling solutions,
Jiang et.al. [24] propose a method called dynamic Earliest-
Finish-Time (DEFT) in IaaS cloud to improve both makespan
and robustness. It contains a set of list scheduling loops.
In each cycle, rank unplanned tasks, select an optimal virtual
machine (VM), and estimate the minimum earliest comple-
tion time for each task.

Makespan is a basic attribute of workflow. Whether the
optimization goal is cost, resource utilization or energy con-
sumption, it should be optimized under the premise of meet-
ing the completion time.

B. COST-DRIVEN WORKFLOW SCHEDULING
As one of the most concerned objects, researches pay much
attention to optimal cost. In most cost optimization deci-
sions, cost optimization is usually considered with deadline
constraints. Otherwise, in order to make the cost as low as
possible, it is necessary to select the cheapest instance type to
execute the workflow, but this soluton may increase deadline
violation significantly. For solving this, the characteristics of
cloud resources need to be carefully considered.

In order to solve the problem of cost optimization, the char-
acteristics of cloud resources need to be carefully considered.
A classical heuristic solution is a static algorithm IC-PCP
based on partial critical path (PCP) proposed by Abrishami
et al. [25] and IC-PCPD2, scheduling based on workflow par-
tial critical path. This method takes into account the hetero-
geneity of the cloud, that is, the pricing model of on-demand
payment and time interval, and tries to deploy all the tasks on
some critical paths as an example on the premise of ensuring
the deadline. However, these methods do not have the global
optimization technique to approximate the optimal solution.
To some extent, the use of the whole workflow structure and
characteristics is lost by using the method of task classifica-
tion. In order to improve this problem, Rodriguez and Buyya
[26] develop a combined resource allocation and scheduling
strategy for IaaS environment, which considers the dynamic
configuration of unlimited cloud resources and the perfor-
mance change of instances. The meta-heuristic optimization
algorithm PSO is used to solve the problem of minimizing
the cost under the premise of satisfying the deadline of users.
For considering the requirement of completion time for work-
flows, a two-stage algorithm is proposed to optimize the cost
under delay-based constraints [27]. In order to improve the
quality of service (QoS) and effectively reduce the operating
cost of cloud workflow, a scheduling model oriented to QoS
and cost is established [28]. With tenant lease and virtual
machine instance load as constraints, the savings of cloud ser-
vice cost and cloud resource cost are realized by population

FIGURE 1. A sample DAG with 12 tasks.

FIGURE 2. A simple DAG with dummy tasks.

iteration evolution in two links of genetic reorganization and
mutation.

III. SCHEDULING MODEL AND PROBLEM FORMULATION
In this section, we will talk about our model of workflow
scheduling in cloud environment and give the formulation of
the problem we consider.

A. SCHEDULING MODEL
For a convenient description, workflow is often modeled as
directed acyclic graph (DAG). It assumes that the sched-
uler manages workflow execution in a sequential and inde-
pendent manner. In this way, the scheduling algorithm can
optimize the cost of a single a user and a single DAG to
meet the requirements of quality of service (QoS). In general,
a workflow can be represented as a weighted DAG graph
G = (T ,E), where T is a set of n tasks{t1, t2, t3, . . . , tn},
each task is individual and has a certain amount of workload
len(ti). E is a set of precedence dependencies among tasks.
E = {ei,j|i, j = 0, 1, 2, . . . ,N }, a precedence dependencies
ei,j represents precedence constraint between task ti and task
tj. It means that tj can start executing just when ti finishes,
if there are data communication between two tasks, tj must
wait for data transfer to finish. Moreover, ti is called tj’s
parent task or predecessor task, and tj is called ti’s child
task or subsequent task. We use pred(ti) to represent the set
of parent tasks of task ti. For each task, it can have zero,
one or more parent tasks and child tasks. In DAG graph,
we call those tasks without parent task entry task, and those
without child task exit task. There is pred(tentry) = ∅. In order
to facilitate the design of schedulingmethod, two dummy task
tentry and texit with zero execution time and zero data transfer
add to the beginning and the end of workflow, respectively.
Like Fig. 1 and Fig. 2.

In cloud environment model, cloud provider P provides
‘infinite’ instances I = Is with different processing capabili-
ties and different rent costs. Price model uses fixed price like
on-demand instance of Amazon EC2, price(Is) indicates that
the cost of instance t in a time interval. Users are charged
on the basis of the number of time intervals that they used
and any partial utilization is regarded as a full time interval
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(e.g., 0.1 second is rounded to 1 second ). We use capacitys
to represent instance’s processing capability.

When task ti is allocated to instance, the execution time can
be calculated via,

ET (ti, I ) =
len (ti)
capacityI

(1)

And the execution cost of task ti is:

EC(ti, I ) = ET (ti, I )× price(Is) (2)

Moreover, if taks tj is the parent of task ti, there are dataj,i
from parent to child task. We assume that all instances of the
provider offered are in the same region. Thus, the bandwidth
bw of all instances is roughly equal and if tasks in the same
instance, transfer time is free. formula 3 indicates the transfer
time between task tj and task ti.

TT
(
ej,i
)
=


dataj,i

bandwidth
, if i 6= j

0, otherwise
(3)

For task ti, the cost of all data send to it is as formula 4,
in which trans is the unit transmission price.

TC(ti) =
pred(ti)∑
j=1

dataj,i × trans (4)

Total cost of this workflow can be defined as following:

COST =
∑N

i=1
(EC(ti, I )+ TC(ti)) (5)

Let ST (ti) be the start time and FT (ti) be the end time of
task ti, which can be calculated by:

ST (ti) =


0 pred(ti) = ∅
max

tj∈pred(ti)
{ST (tj)

+ET (tj, I )+ TT (ej,i)} pred(ti) 6= ∅

(6)

FT (ti) = ST (ti)+ ET (ti, I ) (7)

For workflow, the finish time of exit task is the makespan
of whole workflow, which is captured formula 8. Besides, all
tasks that make up the maximum end time of the exit task
constitute the critical path (CP).

makespan = FT (texit ) (8)

B. PROBLEM FORMULATION
When scheduling workflow in cloud environment, there
are two issues considered, one is resource provisioning.
It means that the scheduling solution need to decide how
many instances to rent, their types, their startup and finish
time. Another is actual scheduling or task-instance mapping.
These issue focuses on mapping each task onto the most
suitable resource. In general, workflow scheduling usually
considers the combination of these two issues.

A schedule can be denoted as 〈I ,A〉. I = {I1, I2, I3, . . . I|I |}
is a set of used resource and each Is is associated with a
instance type, the lease start time(LST ) and the lease end

time(LFT ). A is the allocation of task to instance, each allo-
cation A =

〈
ti, sj, ST (ti),FT (ti)

〉
represents task ti is allocated

to resource sj, start at ST (ti) and end at FT (ti).
As for the total cost and makespan of a workflow, they can

be calculated by formula 5 and 8.
Let D be the user-defined deadline. The deadline-

constrained cost and makespan optimization problem for
workflow in clouds is formulated as:

min . COST

makespan (9)

s.t. makespan ≤ D

Formula 9 is the main goal of this paper, and we need to
find a solution with better cost and makespan. However, due
to the time requirement of workflow, the makespan cannot be
set to an unlimited existence, so the deadline is set to limit it.

IV. AN IMMUNE-BASED PARTICLE SWARM
OPTIMIZATION IN CLOUD ENVIRONMENT(IMPSO)
In this section, we propose an immune-based particle swarm
optimization algorithm for workflow scheduling in clouds.

A. PARTICLE SWARM ALGORITHM AND IMMUNE
MECHANISM
Particle swarm algorithm (PSO) is an evolutionary computing
technique based on fauna behavior. Since it was developed
in 1995, it has beenwidely studied and used. This algorithm is
a stochastic optimization technique in which particles repre-
sent individuals who can move in the defined problem space
and represent candidate solutions to the optimization prob-
lem. At a given point in time, the motion of particle is defined
by their velocity and represented as a vector. Therefore, it has
amplitude and direction. PSO adopts constant learning factor
and inertia weight. Formula 10 and 11 show the speed and
position of a particle. V k

i and Pki are the speed and position of
a particle i in k time, respectively, both of them are vectors.
Ppbesti and pgbestg are the best position of the i-th particle and
the global, respectively.

V k
i = ωV

i−1
i + c1r1(P

pbest
i − Pk−1i )+ c2r2(Pgbestg − Pk−1i )

(10)

Pki = Pk−1i + V k
i (11)

Biological immune system is a complex system composed
of organs, cells and molecules. It is a functional system in
which the body can specifically recognize ‘‘non-self’’ and
‘‘oneself’’ stimuli, respond accurately to them, and retain
memory responses. In short, when foreign objects enter the
human body in the form of antigens, the immune system
produces antibodies that solve their problems and has the
function of memory and self-regulation.

According to the characteristics of biological immune sys-
tem, artificial immune system is constructed as the same self-
regulatory mechanism. Affinity is used to describe the degree
of similarity between antibody and antigen, or antibody and
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antibody. When solving a multi-objective optimization prob-
lem, the problem to be solved is an antigen and candidate
solutions are antibodies. The affinity between antibody and
antigen reflects the similarity between candidate solution and
optimal solution, that is, the satisfaction of candidate solution
to constraint conditions and objective function. The affin-
ity between antibodies and antibodies reflects the similarity
between different candidate solutions and the diversity of
candidate solutions. Antibodies with similarity in a certain
range can be quantified as the concentration of an anti-
body. By adjusting the antibody concentration, we can avoid
falling into local optimization in the process of optimization.
By screening out antibodies with higher affinity, the process
of optimization can be accelerated. Immune memory is that
the immune system can retain some of the antibodies that
deal with the antigen better as memory cells. When the same
antigen invades again, the corresponding memory cells are
activated and a large number of antibodies are produced.

The optimization process of PSO is divided into five main
stages, first initializing the population and giving each parti-
cle a randomly generated speed and position. Next, the suf-
fciency of each particle is calculated, and the best one is
identified as the global optimal particle. According to the
current position and velocity, the third stage is calculating
next velocity and condition according to formula 10 and 11.
Finally, update the global optimal particle. It is then deter-
mined whether it meets the iterative stop condition. If not
satisfied, continue the iteration. In the process of PSO, if one
particle finds a current optimal position, the other particles
will move closer to it quickly. The aggregation phenomenon
will occur, which will lead to the decrease of population
diversity. If the current optimal position is the local best,
then the particle swarm optimization is difficult to re-search
in the solution space, and the algorithm falls into the local
optimal. The artificial immune mechanism has no unified
process description at present. In this paper, an immune
mechanism is introduced in particle swarm optimization. The
algorithm flow is shown in Fig. 3. In this algorithm, parti-
cles are considered as antibodies. After initializing antibody
population and obtaining the initial global optimal solution,
each antibody will have an affinity and concentration. Then,
an incentive value is obtained to evaluate the excellent degree
of this antibody. Next there are a series of operations such as
antibody clone, cross and mutation, memory cell formation,
replacement of the worst solutions and so on. In the final
stage, update the population and judge whether the algorithm
meets the end condition. If it meets the requirements, output
the results, or the iteration continues.

B. PROPOSED METHOD
The procedure of IMPSO algorithm is shown as algorithm 1.
The detail definitions of some operations are as following.

1) ENCODED MODE
When the workflow scheduling problem in the cloud com-
puting environment is modeled as the solution model of

FIGURE 3. The process of IMPSO.

the IMPSO approach, there are two questions. One is what
defines the coding mode of this problem. The other is how to
evaluate the excellent degree of the particle, that is, the fitness
function.

For this proposed approach, a particle represents a schedul-
ing solution. Therefore, the dimension of a particle is equal
to the number of tasks in the given workflow. Given a work-
flow G = {T ,E}, assume that it contains N tasks, then,
the particles in this algorithm is an N-dimension particle. The
size of the particle will be used in the coordinate system that
determines its position in search space. Due to the infinite
instances in cloud computing, it is impossible to let the coor-
dinates of particles take arbitrary values in the real range,
which is not conducive to fast search. Thus, the range of
particle movements is determined by available instance types.
Assuming there are M kinds of instance types, the maximum
value of particle position is that M. Based on this, the integer
part of the coordinate value in the particle position represents
the selected instance type.

As for fitness function, it is used to determine the effec-
tiveness of the candidate solution, it is necessary to reflect
the objectives of the scheduling problem. That is, cost and
time.

2) AFFINITY CALCULATION
The affinity between antibodies and antigens indicates the
ability of antibodies to solve antigens. Because the scheduling
problem we want to solve is a multi-objective function opti-
mization problem, the antigen corresponds to the objective
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Algorithm 1 IMPSO Algorithm
Require: A DAG graph G transformed by a workflow
Ensure: A task-instance mapping solution globalBestSol
1: Initialize schedule components, the best gobal soltuion
globalBestSol

2: for each particle i in population do
3: initialize the speed and position
4: Generate a solution soli for workflow
5: Update globalBestSol
6: end for
7: while it doesn’t meet iteration condition do
8: Calculate the affinity of each particle
9: Sort particles by affinity, and the best one is sent to the

next new population without any operation
10: for each particle in population except the best one do
11: calculate its clone numbers
12: for for each clones of particle i do
13: crossing operation
14: mutation operation
15: end for
16: update this particle
17: reconstruction the solution and calculate the affnity
18: end for
19: choose the best N − 1 particles added to the new

population.
20: choose the best M particles to update memory unit
21: generate d particles randomly to replace the worst d

particles
22: Update population and the bestGlobalSol
23: end while

function and constraint conditions to be optimized. Antibod-
ies are candidate solutions. Therefore, the affinity between
antibodies and antigens is expressed by the following for-
mula:

affinityi = (αCOST + βMakespan)/(disi + 1) (12)

we consider the makespan and cost at the same time in the
definition of affinity. In the optimization,the excellent degree
of particles is judged by affinity. Therefore, the makespan
and cost are measured at the same time. α and β are weight
parameters, which are used for users to determine which
parameter they are more concerned. If α = β = 0.5, it means
that cost is with the same importance to makespan. disi is
the distance from the i-th particle to the current global best
solution, which is calculated by the following formula.

disi =

√√√√ N∑
i=1

(positionij − gbestj)2 (13)

positioni and gbesti are the j-th dimension of particlei and
global particle, respectively. It can be seen from the formula
that the greater the fitness of the particle is and the closer it is
to the optimal position, the greater the affinity of the particle
is, and the smaller the affinity is.

In the process of affinity calculation, in order to speed up
the convergence speed of the algorithm and ensure that the
particles move in a better direction, we send the individuals
with the highest affinity directly to the next generation with-
out subsequent clone mutation operation.

The affinity between particles indicates the similarity
between them, as shown in formula 14. The nom represents
the Euclidean distance between antibody abi and abj. The
smaller the distance between particles, the greater their affin-
ity, indicating that they aremore similar. Formula 14 is used to
judge the similarity between two antibodies, so as to control
the concentration of similar antibodies in the population.
If the similarity in the population is too high, then it is easy to
fall into local optimization in the subsequent optimization.
Therefore, formula 14 is used to calculate the number of
antibodies that are similar to antibody abi.

antibodyi,j = exp(−nom(abi − abj)) (14)

3) ANTIBODY CONCENTRATION AND INCENTIVE FUNCTION
When there are a large number of similar particles in the
population, it is easy to fall into local optimization. It needs
to be suppressed, and the concentration of antibody is defined
by its affinity as shown in formula 15. Particles have a total
of N dimensions.

consistencei =

∑N
j=1 Si,j
N

(15)

In which:

Si,j =

{
1, consistencei.j/max{consistencei,j} ≥ η
0, consistencei.j/max{consistencei,j} < η

(16)

η is antibody similarity coefficient, which is a constant. It can
be seen from formula 12-16. Particles with high affinity with
antigen and low concentration are more popular. Particle
diversity and immature convergence can also be achieved.
Therefore, the excitation function of the antibody is defined:

Incentivei = affinityi × e−consistencei (17)

4) ANTIBODY CLONING, CROSSING AND MUTATION
OPERATIONS
According to the incentive, a separate proportional cloning
operation is performed on each individual in the population,
and the number of particlei cloned is

numi =
affinityi
N∑
j=1

affinityj

× N (18)

The greater the affinity of the individual, the more sub
individuals will be cloned. This can protect good genes and
speed up the convergence of the algorithm. In order to prevent
falling into local optimization, we use the intermediate cross-
ing and variation method based on real number to expand
the population and increase the diversity of each individual
except the male parent.
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Intersection mode is middle crossing, and the child indi-
vidual is produced according to the following formula 19.

child = parent1 + γ × (parent2 − parent1) (19)

γ is a proportional factor generated by a uniformly dis-
tributed random number on [0, 1]. The value of each dimen-
sion of the child is calculated according to formula 19, each
dimension has a new α value. Besides, if the memory unit is
not empty, the parent particles are selected from it, otherwise,
from the whole parent particle.

After the crossing operation of all particles, the roulette
selection method is used to determine whether each particle
needs to mutate, in which the particles with low intensive are
more likely to be selected.

5) UPDATE POPULATION
After all the operations, all particles are sorted according to
the incentive, and the former N-1 particles are selected as
the next generation population. It can be seen that the new
population is composed of individuals with high incentive,
which are obtained from their parent group. Some best parti-
cles are selected by a certain proportion to renew the memory
unit. Furthermore, in order to screen out the worst particles,
some new random generated particles will replace them. Then
update the speed and position of all particles, and obtain a new
global optimal solution. At this point, the iteration ends.

V. EVALUATION
In this section, we introduce the experimental environment
and the setting we used and then compare the proposed
methods with other approaches.

A. EXPERIMENT SETTINGS
We use some different scientific workflows for performance
evaluation: GENOME, CYBERSHAKE and SIPHT. All of
them have different focus on the requirements of the resource
type. Cybershake [29] is a tool used by the Southern Cal-
ifornian Center (SCEC) to characterize the seismic haz-
ard with the probabilistic seismic hazard analysis method.
It is a data-intensive workflow that requires a large amount
of memory and CPU. As shown in Fig. 4a. Epigenomics
(genome) is a workflow application for bioinformatics to
automate the sequencing of various genomes and is essen-
tially a data processing pipeline. It is a CPU-intensive appli-
cation, as depicted in Fig. 4b. SIPHT [30] is a workflow used
by Harvard’s bioinformatics project to automatically search
databases for small untranslated RNA (sRNAs). That regu-
late bacterial secretion and toxicity It is a computationally
intensive application, as shown in Fig. 4c. More details about
these or more workflows can be found in [31]. Rafael Ferreira
da Silva et al. [32] developed aworkflowgenerator to produce
synthetic workflow. Using this generator, we can get any size
of scientific workflow in DAX (Directed Acyclic Graph in
XML) format. Moreover, as a mature generator, its authors
have created many sizes of different workflows for scientific

FIGURE 4. Structure of 3 kind of scientific workflows [31].

FIGURE 5. Changed λ for influcing makespan of workflows.

TABLE 1. Capabilities and costs of available instance types in [5].

research to use. The workflows documents used as input in
this paper are all provided by the [32].

Since it is difficult to perform repeatable experiments on
real datacenters, we use simulation cloud environment imi-
tated by [5]. we use actual Amazon cloud computing instance
type parameters, as shown in Table 1. Refer to the parameters
of Amazon EC2. The average bandwidth between instances is
set to 20 MBps. The time interval to charge is set to one hour.
In our experiment, we use the attribute ECU to represent the
speed of instance. For simplicity and convenience, we take
the speed of type 1 as the basic, and the speed of other types
is relative speed. The unit of cost is dollar per hour.

Our experiment is performed on a PC with Core (TM) i5
3.40FHz, 16GRAM, Windows 10, Java 2 Standard Edition
V1.8.0.
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FIGURE 6. Cost for workflows with different approaches.

B. EXPERIMENTAL RESULTS
We compare our approach with PSO [26] and IC-PCP [25],
which are one of the most cited works. These methods use
time as a constraint to optimize the cost as much as possible.
All methods have run 800 times. Because of the problem as
two-objective optimization, and the characteristics of the pro-
posed algorithm, the solutions obtained by each run may be
different. Thus, In order to show the results more intuitively,
we take averages of every 50 times in the 800 runs, and get
16 values drawed as figures.

According to analysis in [26], the learning factor and iner-
tia factor of speed update in PSO are set to: ω = 0.5, c1 =
2, c2 = 2. The size of population and iterations are set to
100. Combined with the research on immune mechanism and
the results of experiments, the parameters related to immune
mechanism are set as follows: the memory unit capacity is
set to half of the population, and the number of randomly
generated new particles are set to 1/10 of the population. The
clone size was controlled at about twice the population.

In addition, in order to evaluate the performance of the
proposed algorithm in the heterogeneous environment such

FIGURE 7. Makespan for workflows with different approaches.

as cloud computing, we design two cases, both of which use
a single example and use HEFT algorithm to determine the
scheduling order to schedule. The first is that all tasks choose
the cheapest instance type and run on the same instance. This
scheme is the cheapest and the longest. The other is to select
the fastest instance type for all tasks, which is often the most
expensive. And each task has an instance. They’re called the
slowest scheduling and the fastest scheduling, respectively.
These two scheduling methods are used to determine the
upper and lower limits of the deadline. Besides, we chose a
workflow of 50 for the experiment.

For evaluating our approaches that can meet the deadline
constraint, we define a λ to control the loose degree of dead-
lines. We use the makespan Dfast of the fastest scheduling as
the base deadline. And the range of deadlines is defined as:

D = Dfast + λ× (Dslow − Dfast ) (20)
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FIGURE 8. Box graph of convergent algebra distribution.

in which Dslow is the makespan of the slowest scheduling.
We set the λ from 0.001 to 0.05, as 0.001 added. as depicted
in Fig. 5. We can see that, for all workflow, IMPSO has
better results than PSO. When λ is less than 0.002, IMPSO
is possible to miss the solution in a round of optimization,
while λ is less than 0.006 for PSO. For ICPCP, it is not stable.
It performs worst in CYBERSHAKE, and when λ increases
from 0.006 to 0.034, it can’t find a solution that satisfies
the deadline. For workflow SIPHT, the all three methods can
obtain solution in each stage of deadline.

As regards to cost, the results show that the proposed
IMPSO is better than the other two mothods for all the
three workflows, which can be seen from Fig. 6. For all the
800 runs, we take an average for eachmethod to compare. For
workflow GENOME, the average costs of PSO and IC-PCP
increased by 6.9% and 7.8%, respectively, compared with the
proposed IMPSO. Similarly, the values are 1.8% for SIPHT,
2.4% and 2% for CYBERSHAKE.

For makespan, the results for different workflows are
shown in Fig. 7. It can be seen that IMPSO is better than
PSO in general, and most of the results are better than those
of IC-PCP. In ICPCP, makespan is considered as constraint,

and it optimize cost only. Thus, the makespan results of each
run of IC-PCP algorithm are basically the same. The average
value is taken to compare. For workflow SIPHT, the aver-
age makespans of PSO and IC-PCP increased by 21.8%
and 47.8%, respectively, compared with IMPSO. Similarly,
the values are 9.4% and 20.6% for CYBERSHAKE. For
GENOME, IMPSO is slightly better the other two methods

Regarding convergence speed, IMPSO has great advan-
tages over PSO. We run them 800 times respectively, and
draw their convergence algebra in boxing graph as Fig. 8.
As shown in the figure, IMPSO has faster convergence speed
no matter which workflow is scheduled.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an immune-based particle swarm
optimization (IMPSO) algorithm used to schedule work-
flow in cloud environment. The objective is to minimize the
execution cost and makespan under user-defined deadline
constraint. Experimental evaluation shows that the proposed
IMPSO is competitive with other solutions, which can obtain
a better makespan with a lower cost increasingly. The results
also show that this algorithm can obtain the best solution at a
faster convergence period.

In future work, we are interested in clustering the work-
flow tasks before allocating them to cloud resources, which
may introduce further challenges because of the dependency
between tasks and trade-off between clusters.
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