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ABSTRACT Texture classification is a classic problem in pattern recognition. It is an effective strategy for
improving texture classification to find the texture features with both powerful discrimination and various
invariant properties. In this paper, we provide a new insight into texture images, that is, texture images can be
treated as quasi-periodic signals. Some new concepts such as Dominant Period Component (DPC), periodic
degree (PD), andMain Frequency (MF) are proposed to characterize the properties of quasi-periodic signals.
DPC controls the oscillation rate of a quasi-periodic signal and plays a key role in controlling the behavior
of the whole signal. So it can serve as a key feature for texture classification. Based on this idea, we propose
a new method to extract texture features. The proposed features have both powerful classification ability and
rotation-illumination- invariance as well as robustness to noise. Experimental results on three texture data
sets demonstrate the validity of this method.

INDEX TERMS Quasi-periodic signal, main-frequency, texture feature, Hilbert marginal spectrum.

I. INTRODUCTION
Texture is a special kind of image. Texture images are
composed of some basic elements that are similar to each
other and interlaced with each other. Texture classification
is a classical problem in pattern recognition. Its applications
include remote sensing image analysis and understanding,
automatic recognition of organs in medical images, content-
based image retrieval to text page segmentation and so on.

Texture classification is a very difficult problem, since
a good texture classification method needs having not
only strong classification ability, but also scale-, rotation-
, illumination- and other invariant properties, as well as
robustness to noise. Therefore, texture classification has
always been a challenging topic in the field of pattern
recognition. Many texture classification methods have been
proposed [1]–[9].

One of the most important strategies of texture classifica-
tion is to find such features that have both powerful discrim-
ination and some invariant properties, such as rotation- [10],
[11], scale- [12]–[14] and illumination-invariance [15], [16],
as well as the robustness to noise [17]. Some new techniques
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such as graph signal processing and machine learning have
also been introduced to produce features with various invari-
ant properties [18], [19].

Inspired by the current works, we try to view the texture
image from a new perspective, that is, treating the texture
images as quasi-periodic signals.

Quasi-periodic signals widely exist in the real world. The
studies on them can be traced back to as early as 1932
[20]. A signal is said to be quasi-periodic when it shows
periodicity to some extent, but does not strictly meet the
definition of periodic signals [21]. Generally, a quasi-periodic
signal can be regarded as a linear superposition of some
periodic components whose periods have no least common
multiples. Extracting harmonic components by using various
filters is the classic processing of analyzing quasi-periodic
signals [22]–[24].

However, as well known, quasi-periodic signals are typi-
cally non-stationary, which implies that the harmonic com-
ponents extracted by using the filters could not be their
intrinsic characterization. The reason is that most of the filters
themself are designed based on the Fourier transform or its
deformations.

We realize that the dominant periodic behavior of a quasi-
periodic signal is actually controlled by the component which
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possesses the largest energy. For the sake of simplicity,
we refer the component as Dominant Period Component
(DPC). However, how do we pick out the DPC from a real
quasi-periodic signal? How to evaluate its capability to con-
trol the whole signal’s periodic behavior? In this manuscript,
a fully data-driven algorithm, namely the Empirical Mode
Decomposition (EMD) [25] is firstly employed to adaptively
decompose a quasi-periodic signal into some Intrinsic Mode
Functions (IMFs). According to the work of Flandrin et al.,
EMD essentially acts as an adaptive filter bank [26]. There-
fore, the IMFs can be regarded as the substitutes of the
harmonic components in the Fourier transform, but are more
natural than them. In the literature [25], the energy distribu-
tion of IMFs on the time-frequency plane is defined as Hilbert
spectrum, from which the so-called marginal spectrum could
also be obtained easily, which is an energy distribution of
a signal along the frequency axis. It will be shown that the
frequency corresponding to DPC of a quasi-periodic signal
may be easily detected from its marginal spectrum. As we
have known, the frequency controls the signal’s oscillation
rate and thus is an important property of a periodic signal.
Similarly, for a quasi-periodic signal, its DPC’s frequency
also should play a key role to control the whole signal’s
periodic behavior. When it is used as a feature to discriminate
different quasi-periodic signals, a good performance will be
worth expecting.

Since the texture images can be regarded as quasi-periodic
signals, the above analysis method is naturally suitable for the
analysis of texture images. This inspires us to think deeply
such a problem that whether can we find effective texture
features based on the quasi-periodic signal analysis of texture
images? Based on the idea, we propose a new texture clas-
sification feature with illumination-rotation-invariant proper-
ties and give the theoretic explanation. Experimental results
demonstrate the validity of the proposed feature.

The main contributions of this manuscript include that
1) Firstly introduce the concepts of Dominant Period Compo-
nent (DPC), periodic degree (PD), andMain Frequency (MF);
2) Properties of MF and PD are concluded; 3) EMD as well
as Hilbert-Huang Transform are introduced to analysis quasi-
periodic signals; 4) Propose a novel texture classification
feature.

The following sections of this manuscript are organized as
follows. In Section 2, the concepts of main frequency and
periodic degree of a quasi-periodic signal are given and some
related properties are discussed. In Section 3, we introduce
a new method of extracting features from a texture image,
and the rotation-illumination-invariant properties as well as
the robustness to noise are discussed. Section 4 presents
some experiments, and the concluding remarks are made in
Section 5.

II. MAIN FREQUENCY OF A QUASI-PERIODIC SIGNAL
Consider the following signal

x(t) = x1(t)+ x2(t) = k cos(3t)+ cos(
√
72t), (1)

FIGURE 1. x(t) = x1(t)+ x2(t) = k cos(3t + φ1)+ cos(
√

72t + φ2) is a
quasi-periodic signal (the solid line). It includes two components x1(t)
(the dot line) and x2(t) (the dot-dash line). (a) ∼ (f ) corresponding to
k = 0.5, 1, 1.5, 2, 2.5, 3, respectively.

which consists of two periodic components, where the con-
stant k serves as the weight of signal x1(t). Obviously, the two
components x1(t) and x2(t) have no common period, hence,
x(t) is a quasi-periodic signal. Fig.1 shows the signal x(t) (the
solid line), and its two components x1(t) (dot line) and x2(t)
(dot-dash line) within the time interval [0, 10]. The curves
of x(t) in Figs. 1 (a) ∼Figs. 1 (f) corresponding to k =
0.5, 1, 1.5, 2, 2.5, 3, respectively. From Fig.1 (a), we can see
that x(t) is not strictly periodic, but it looks like ‘‘periodic’’ to
a large extent, and intuitively, its periodic behavior is mainly
controlled by x2(t). In Fig.1 (b), the periodicity of x(t) is
obviously weaker than that in Fig.1 (a). The reason is that the
two periodic components have almost equal energies. In other
words, in this case, the signal does not have a dominant
component. Figs.1(c) ∼ (f ) show that the periodicities of x(t)
are gradually strengthened when k changes from 1.5 to 3, and
the principal periodic behavior is more and more controlled
by the component x1(t).

From the above example, one has no difficulty noticing
such a fact that the degrees of periodicity are different for
distinct quasi-periodic signals. Some of them have higher
periodic degree, and even look like strict periodic signals,
and some are not. After examining a number of examples,
we realize that the periodic degree of a quasi-periodic signal
depends on its constitution. If there exists a dominant period
component in a quasi-periodic signal, it must show a certain
degree of periodicity. Moreover, the greater the proportion
of energy of the dominant period component to total energy
of the signal is, the higher the degree of periodicity is.
Based on the above observation and analysis, we define peri-
odic degree(PD) and Dominant Period Component (DPC) as
follows:
Definition 1: Suppose that x(t) ∈ RT is a quasi-periodic

signal consisting of N period components, written as x(t) =∑N
i=1 aixi(t), where ai represent the amplitude of ith period

component xi(t) and am = max{ai, i = 1, 2, · · · ,N }.
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The periodic degreeof x(t), denoted by PD(x), is defined as

PD(x) =
am∑
i ai

(2)

If am is the unique maximum of set {ai, i = 1, 2, · · · ,N },
then xm(t) is defined as Dominant Period Component (DPC)
of x(t).

The main period behavior of a quasi-periodic signal is
determined by its DPC, and its degree of periodicity is mea-
sured by PD. For example, let us compare the two quasi-
periodic signals in Fig. 1 (a) and Fig. 1 (c), whose DPCs are
x2(t) and x1(t), respectively. Due to their distinct DPCs, they
exhibit different period behavior. While comparing Fig. 1 (c)
and Fig. 1 (f ), one has no difficulty seeing that because
of having the same DPC, the two quasi-periodic signals
show similar period behavior, but obviously different degrees
of periodicity. According to the definition, their PDs are
1.5/2.5 = 0.6 and 3/4 = 0.75, respectively. The latter’s
PD is higher than that of the former, and intuitively, the latter
looks more ‘‘periodic’’ than the former.

However, for a real quasi-periodic signal, it is usually
hard to pick out the DPC and get the PD. Empirical Mode
Decomposition (EMD) is a fully data-driven algorithm, with
which, an arbitrary discrete signal x(t) ∈ RT can be adap-
tively decomposed into a finite and often small number of
IMFs and a residue, denoted by xi(t)(i = 1, · · · , n) and r(t)
respectively, where T indicates the length of x(t), and n is a
nonnegative integer depending on the signal itself, i.e.,

x(t) =
n∑
i=1

xi(t)+ r(t). (3)

EMD is indeed like sifting: to separate the local modes
of a signal, from the finest scale component to the mean
trend. The first IMF includes the finest scale component,
namely the highest frequency component, and the residue
is the mean trend which is the lowest frequency component
or can also be viewed as the substitute of the DC term in
Fourier expansion. Here we just take an example to show
what will be obtained when EMD acts on a signal, the readers
are referred to [25] for details. The first line of Fig. 2 is the
noised signal x(t) = 2 cos(3t)+cos(

√
72t)+n(t), where n(t)

is an additive Gaussian white noise, Signal-Noise Ratio is set
to 20dB. By using EMD, it is decomposed into 10 IMFs and
a residue, as shown in the rest rows of Fig. 2. We can see that
the first 6 IMFs include the higher frequency components of
the signal. They mainly come from the noise. The two main
components which are 2 cos(3t) and cos(

√
72t) mainly are

contained in the 7th and the 8th IMFs. The residue represents
the lowest frequency trend.

IMFs may be seen as the substitutes of the signal’s har-
monic components, but because of having adaptivity, they
are more natural than the harmonic components. An IMF is
also treated as a monocomponent function, hence the instan-
taneous frequency can be reasonably defined, based on which
the Hilbert spectral analysis is found. For the IMF, xi(t), its

FIGURE 2. An example of EMD. The first line is the noised signal
x(t) = 2 cos(3t)+ cos(

√
72t)+ n(t). The second line is the first IMF, and

the rest lines, from top to bottom, successively are the second until to the
10th IMFs as well as the residue.

Hilbert transform yi(t) is defined by:

yi(t) =
1
π
P
∫
∞

−∞

xi(t ′)
t − t ′

dt ′, (4)

where P indicates the Cauchy principal value. Consequently,
xi(t) and yi(t) can form a complex conjugate pair, so that an
analytic signal zi(t) can be produced:

zi(t) = xi(t)+ jyi(t) = ai(t)ejθi(t), (5)

where

ai(t) =
√
x2i (t)+ y

2
i (t), θi(t) = arctan

yi(t)
xi(t)

(6)

are the instantaneous amplitude and the phase, respectively.
Further, the instantaneous frequency of xi(t) is defined as:

fi(t) =
dθi(t)
dt

. (7)

According to Eqs. (5) and (7), xi(t) can be expressed as the
real part, Re, in the following formula:

xi(t) = Re
[
ai(t) exp

(
j
∫
fi(t)dt

)]
. (8)

Therefore, from Eqs. (3) and (8), x(t) can be represented by

x(t) =
n∑
i=1

Re
[
ai(t) exp

(
j
∫
fi(t)dt

)]
+ r(t). (9)

Eq. (9) enables us to represent the amplitude as a function
of time(space) and instantaneous frequency, which can be
defined mathematically as follows:
Definition 2: Let x(t) be decomposed into finite Intrinsic

Mode Functions (IMFs), xi(t) (i = 1, · · · , n) and a residue
r(t), then,

H (f , t) =

{
0 if Jf ,t is an empty set,∑

i∈Jf ,t ai(t), otherwise,
(10)

where Jf ,t = {i|0 ≤ i ≤ n satisfying fi(t) = f }.
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FIGURE 3. Left panel (a): Hilbert spectrum of the signal x(t) = 2 cos(3t)+ cos(
√

72t)+ n(t); Left panel
(b): The local larger scale version of the low frequency band. Right panel (a): Marginal spectrum; Right
panel (b): The local larger scale version of the low frequency band.

The time-frequency distribution of the amplitude is des-
ignated as the ‘‘Hilbert amplitude spectrum’’ or simply
‘‘Hilbert spectrum’’, denoted by H (f , t). As an example,
we show the Hilbert spectrum of the signal x(t) = 2 cos(3t)+
cos(
√
72t) + n(t) on the left panel of Fig. 3. There are two

evident high energy bands in the the Hilbert spectrum. They
are apparently derived from 2 cos(3t) and cos(

√
72t) these

two main components. In other words, the signal’s main
components have successfully been captured by the Hilbert
spectrum.

Further, we integrate H (f , t) along the time axis so that
Hilbert marginal spectrum can be obtained, which is defined
below:
Definition 3: TheHilbert marginal spectrum of x(t) can be

defined by

h(f ) =
∫ T

0
H (f , t)dt. (11)

The marginal spectrum is an energy distribution of a sig-
nal along with frequency axis. In other words, it is a mea-
sure of total energy contribution from each frequency value.
As pointed out by Huang [25], the frequency in Hilbert spec-
trum or marginal spectrum has a totally different meaning
from Fourier spectral analysis. In the Fourier representation,
the existence of energy at a frequency means a component of
sine or cosine wave persisted through the time (space) span
of the data, while the existence of energy at the frequency
means only there is a higher likelihood for such a wave to
have appeared locally. That means even oscillations happen
only in some locations, its frequency components still can be
captured by Hilbert spectrum or marginal spectrum. Though
it is difficult to theoretically prove this kind of energy distri-
bution being superior to Fourier representation, a reasonable
interpretation is that the adaptivity of EMD bate the so-called
inter-harmonic components which are usually produced in
Fourier decomposition. Therefore, a marginal spectrum rep-
resent signals’s frequency structure more pertinent than a
Fourier spectrum does.

The marginal spectrum of the signal mentioned above is
shown on the right panel of Fig. 3. One has no difficulty

seeing two peaks whose corresponding frequencies roughly
equal to the ones of the two main components.

Before further discussion, we firstly give the definition of
the main frequency of a quasi-periodic signal as follows:
Definition 4: Let h(f ) be the marginal spectrum of a quasi-

periodic signal, the fm is defined as the signal’s Main Fre-
quency (MF), if and only if

h(fm) ≥ h(f ),∀f (12)

According to this definition, the MF is actually the fre-
quency corresponding to the DPC. Therefore the PD can be
computed as follows:

PD(x) =
h(fm)∫
f h(f )df

(13)

where
∫
f h(f )df is the signal’s total energy.

It should be pointed out that the whole EMD method was
algorithmically proposed, which makes the strict theoretical
analysis difficult. Hence, the next discussion is based on the
hypothesis that the marginal spectrum of a signal obtained by
[25] is an accurate representation of its energy distribution
alongwith frequency axis, fromwhich some properties ofMF
and PD can be concluded as follows:
Property 5: Both Main Frequency (MF) and periodic

degree (PD) of a quasi-periodic signal are insensitive to
changes of monotonic trend.

Proof: When EMD is applied to a signal with a mono-
tonic trend, the IMFs will keep invariant except for the
residue. According to the reference [25], a residue is similar
to the DC in Fourier transform, and is not included in the
computation of Hilbert spectrum. Consequently, bothMF and
PD of a quasi-periodic signal will also remain invariant when
a monotonic trend is added to it.
Property 6: Main Frequency (MF) of a quasi-periodic sig-

nal are robust to an additive random white noise.
Proof: Theoretically, the energy of an additive random

white noise will be distributed evenly on the entire frequency
axis, then it just leads to a whole upper shift of marginal
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spectrum instead of a change of the frequency at which the
energy reaches the maximum.
Property 7: An additive random white noise will

decreases periodic degree (PD) of a quasi-periodic signal.
Proof: Let Wf be the bandwidth of a quasi-periodic

signal x, Ŵf be that of an additive random white noise, and
Ŵf ≥ Wf . A is the intensity of noise. Then PD of the
noisy quasi-periodic signal, denoted by x ′, can be written as
follows:

Pd (x ′) =
h(fm)+ A∫

f h(f )df + AŴf
. (14)

Since Ŵf ≥ Wf , we have

Pd (x ′) <
h(fm)+ A∫

f h(f )df + AWf
. (15)

According to the integral mean value theorem, ∃ξ satisfy∫
f
h(f )df = h(ξ )Wf . (16)

Review Definition 12, we have h(fm) ≥ h(ξ ), hence

Wf =

∫
f h(f )df

h(ξ )
≥

∫
f h(f )df

h(fm)
. (17)

Substituting Inequality 17 into Inequality 15, we can reach

Pd (x ′) <
h(fm)+ A∫

f h(f )df + AWf

≤
h(fm)+ A∫

f h(f )df + A
∫
h(f )df
h(fm)

=
h(fm)∫
f h(f )df

= Pd (x). (18)

As we know, the frequency controls a periodic signal’s
oscillation rate, and then is an important property of a periodic
signal. For a quasi-periodic signal, its MF as well as PD
also play a key role to control the signal’s behavior, from
the viewpoint of pattern recognition, which means that some
unexpected results may be obtained if they are taken as clas-
sification features. This motivates us to propose the following
method for texture features extracting.

III. TEXTURE FEATURES BASED ON THE MFS
OF QUASI-PERIODIC SIGNALS
In this section, we will firstly introduce a kind of new texture
feature based on the MFs of quasi-periodic signals, which is
followed by an invariance discussion.

A. TEXTURE FEATURES BASED ON THE MFS
OF QUASI-PERIODIC SIGNALS
As a special kind of image, texture images generally con-
sist of some basic elements which are similar to each other
and interlaced with each other, and exhibit obvious quasi-
periodicity. Texture images are deemed to be typical quasi-
periodic signals [21].

FIGURE 4. A sketch map of FOs. The top left: N equidistant FOs
between 0◦ and 180◦; The right: L equidistant lines along with each FO;
The bottom left: L signals along with a FO.

However, we have to face a problem that the quasi-
periodic signals discussed above are all one-dimensional
signals, while the texture images are two-dimensional. It is
really a tricky issue and at the moment we do not have a
good solution yet. In this paper, we use a somewhat clumsy
method that is sampling a texture image in some directions to
produce one-dimensional signals. Since most texture images
usually show different quasi-periodicity in different direc-
tions, we have to pick out one-dimensional signals in as
many directions as possible to achieve an overall character-
ization of texture images. Obviously, the more the consid-
ered orientations are, the more overall the characterization
the texture has, but the higher the computational complexity
is. Without loss of generality, we set the 0◦ angle at hori-
zontal direction, and select counterclockwise N equidistant
angles between 0◦ and 180◦ as Feature Orientations (FOs) as
follows:

D = {di|di = (i− 1)
180
N
, i = 1, 2, · · · ,N }. (19)

Practically, an appropriate N must be chosen to trade-off the
accuracy and the computational complexity.

The complexity of texture images is also embodied in their
randomness that there may exist differences between lines,
even if they have the same orientation. To accurately extract
the MF of each FO, we pick out L equidistant rows in each
FO to form a quasi-periodic signal set, as shown in Fig. 4.
Let xij be jth signal of ith FO, then the signal set of ith FO
can be denoted as Xi = {xij, j = 1, · · · ,L}. For each xij ∈
Xi, computing its marginal spectrum hij, then the average
marginal spectrum of the ith FO can be obtained

hi(f ) =

∑L
j=1 hij(f )

L
, (20)

based on which, we give the definition of Orientation Main
Frequency (OMF) as follows:
Definition 8: Let hi(f ) be the average marginal spectrum

of a texture image in the ith feature orientation, the Orien-
tation Main Frequency (OMF) of the ith feature orientation,
denoted as omfi, is defined as

omfi = argmax
f
{hi(f )}. (21)

VOLUME 8, 2020 29905



Z. Yang et al.: New Illumination-Rotation-Invariance Texture Feature Based on Quasi-Periodic Signal Analysis

Experiments show that an appropriate L is enough to make
the determined OMF statistically reliable. From each FO, one
can extract a unique OMF. The N OMFs corresponding to N
FOs form a feature vector as follows:

V = (v1, v2, , · · · , vN )

= (omf1, omf2, · · · , omfN ). (22)

On the other hand, for most texture images, the PDs at
different orientations are distinct. To utilize this informa-
tion, we similarly give the definition of Orientation Periodic
Degree (OPD) as follows:
Definition 9: Let hi(f ) and omfi be the average marginal

spectrum and the Orientation Main Frequency (OMF) in the
ith feature orientation, respectively, the Orientation Periodic
Degree (OPD) of the ith feature orientation is defined as

OPDi =
hi(omfi)∫
f hi(f )df

. (23)

Obviously, the orientations with higher PDs will play more
important roles in texture classification than those with lower
PDs. So it is a good idea to let them act as weights in each
FO. To make these PDs a weight vector, we must normalize
them as follows:

ÔPDi =
OPDi∑
i OPDi

. (24)

Then a weight vector is produced as follows:

W = (w1,w2, , · · · ,wN )

= (ÔPD1, ÔPD2, · · · , ÔPDN ) (25)

Combining equation (22) and equation (25), we give the final
feature vector which consists of the weighted OMFs along
with N FOs:

Vw = (w1v1,w2v2, , · · · ,wN vN ) (26)

We select three texture images as examples to viewwhether
do the proposed features characterize the periodicity of
texture images. They are D56, D35 and D37 in Brodatz
album. These three textures have the following characteris-
tics: D56 has obvious directionality, and its period in horizon-
tal direction is obviously larger than that in vertical direction,
while D36 and D37 have no obvious directionality; the period
of D36 is smaller than that of D35. We randomly extract a
sub-block with the size of 256×256 pixels from each texture
image as shown on the top of Fig. 5. For each sub-block, let
N = 32,L = 40, and compute OMFs and ÔPDs as shown
in the middle and bottom of Fig. 5, in which the legends
′
4
′, ′◦′, and ′�′ represent D56, D35 and D36, respectively.

The middle of Fig. 5 shows that the OMFs along all FOs of
D35 and D36 have hardly regular differences, while those
of D56 monotonously increase from horizontal to vertical
direction and reach the maximum, and then start to decrease
monotonously. We also see that the marks ′�′ are always over
those ′◦′, which means the OMFs along all FOs of D36 are
larger than those of D35. The bottom of Fig. 5 shows that

FIGURE 5. Top: Sub-blocks with the size of 256× 256 from three kinds of
texture images of the Brodatz album labeled by D56, D35 and D36;
Middle: The OMFs of each sub-block along N = 32 FOs; Bottom: The
ÔPDs of each sub-block along each FO.

ÔPDs along distinct FOs of D35 and D36 exhibit scarcely
differences, while the ÔPDs of D56 near the horizontal and
vertical orientations are distinctly larger than those in other
directions. These results are consistent with our visual per-
ception, indicating that the proposed features can effectively
capture the periodicity of texture images.

B. INVARIANT PROPERTIES
This section discusses invariance of the proposed features
with regards to uneven illumination and rotation, as well as
robustness to noise. The proposed features in Section III-A
are based on the assumption that a signal which is extracted
from a texture image along a FO is quasi-periodic. Hence,
those properties discussed in Section II can be used to inves-
tigate invariant properties of the proposed features.

1) ILLUMINATION INVARIANT
A texture image is often contaminated by uneven illumination
in many applications such as computer vision, remote sensing
image analysis, scene analysis and so on. A texture classifica-
tion feature with an invariant illumination is especially useful
in these applications.

Firstly, we conduct an experiment to gain some experience
on illumination invariance of the proposed features. Fig.6 (a)
shows a sub-block with the size of 256× 256 extracted from
D56 of the Brodatz album, on which three kinds of uneven
illuminations are exerted to compose three contaminated
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FIGURE 6. (a): A sub-block with the size of 256× 256 extracted from
D56 of the Brodatz album; (b) ∼ (d ): Three contaminated versions;
(e): The OMFs of three contaminated versions and the original version
along selected FOs; (f ): The ÔPDs of four versions along all FOs.

versions as shown in Fig.6 (b) ∼ Fig.6 (d). Their OMFs
and ÔPDs along the selected FOs are plotted in Fig.6 (e) and
Fig.6 (f ), in which the symbols ′◦′,′�′,′ �′ and ′4′ are used
to mark the four versions shown in Fig.6 (a) ∼ Fig.6 (d),
respectively. One has no difficulty seeing that both OMFs and
ÔPDs of the all four versions along each FO exhibit scarcely
difference, which implies that the proposed features are really
insensitive to uneven illuminations.

What brings such a good performance? Let xij be a signal
extracted from a texture image, and x̂ij be the counterpart from
some contaminated version. We notice that the difference
between xij and x̂ij is just a monotonic trend to which bothMF
and PD of a quasi-periodic signal are insensitive according
to Property 5 in Section II. Hence, the proposed features
naturally have an excellent invariant property to uneven illu-
mination.

2) ROTATION INVARIANT
The proposed features are the weighted OMFs along selected
N FOs. They are obviously sensitive to any texture image’s
rotation. However, we notice that if the rotation angle of the
texture image is just an integral multiple of 180o

N−1 , then the
rotation just leads the feature vector to left (or right) roll
the same time. In other words, in this case, a rotation of a
texture image is equivalent to a left (or right) roll of its feature
vector.

Practically, the rotation angles often are not integral multi-
ples of 180o

N−1 . A deviation from a FO will bring an error of the
weighted OMF along the FO, and the smaller the deviation

FIGURE 7. The sketch map of rotation invariant feature.

TABLE 1. Recognition rates of Dataset-1 (%).

TABLE 2. Error recognition rates of Dataset-1 (%).

is, the smaller the error is. That means for a texture image
and a rotation angle 180o

N−1 i < α < 180o
N−1 (i+ 1), if Vi and Vi+1

are the feature vectors of the rotated versions with the angles
of 180o

N−1 i and
180o
N−1 (i + 1) respectively, then the feature vector

Vα of the rotated version with the angle of α will be near
Vi or Vi+1.

As well know, the energy spectrum of Fourier transform
has good shift invariant property, hence, if Vwf is the energy
spectrum of Fourier transform of the feature vector Vw, then
Vwf will be insensitive to shifts of Vw, namely Vwf is approx-
imately invariant to a rotation of texture images. Fig. 7 shows
the sketch map of rotation invariant features. Considering the
energy concentration property of the Fourier energy spec-
trum, we just pick out the first K items of Vwf to form the
final feature vector which is approximately rotation invariant
as follows:

Vwf = (vwf 1, vwf 2, · · · , vwfK ). (27)

3) ROBUSTNESS TO NOISE
According to Property 6 in Section II, an additive random
white noise is insensitive to MF. The proposed features con-
sist of weighted MFs of some quasi-periodic signals, hence
they are robust against additive random white noises. But on
the other hand, additive random white noises make the PD
decreasing according to Property 7, the weights in feature
vector will be contaminated and will cause its robustness to
noise to weaken somewhat.
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TABLE 3. Recognition rates of Dataset-2 (%).

TABLE 4. Error recognition rates of Dataset-2 (%).

FIGURE 8. Texture samples from Dataset-1 (from left to right): First row —
D9, D10, D15, D17, D20; Second row — D22, D29, D37, D69, D51; Third
row— D68, D77, D84, D93, D103.

FIGURE 9. Texture samples from Dataset-2 (from left to right): the 1st
row: D1, D4, D5, D6, D8,D9, D10, D11, D15, D16, D17 D18, D19, D20, D21;
the 2nd row: D22, D23, D24, D25, D26, D27, D28, D34, D37, D46, D47, D48,
D49, D50, D51; the 3rd row: D52, D53, D55, D56, D57, D64, D65, D66, D68,
D74, D75, D76, D77, D78, D81; the 4th row: D82, D83, D84, D85, D86, D87,
D92, D93, D94, D98, D101, D103, D105, D110, D111.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Three data sets of texture images will be employed in the
experiments to demonstrate the performance of the proposed
features. Dataset-1 consists of 15 kinds of texture image from
Brodatz album. Theywere also used in the experiments of [1],
[10]. Some samples are shown in Fig. 8.
Dataset-2 consists of 60 texture images, as shown in Fig. 9,

that were experimented in [11]. Dataset-3 contains 30 tex-
tures, as shown in Fig. 10, which were used in [6]–[9].
In the experiments, the texture images are converted into

the gray-scale versions. In the training phase, 5 sub-images

FIGURE 10. Dataset-3: D1, D2, D22, D5, D62, D25, D86, D8, D10, D11, D73,
D18, D20, D23, D31, D35, D29, D46, D63, D64,D71, D74, D79, D85, D88,
D95, D27, D101, D105, and D111 from left to right and top to bottom.

TABLE 5. The average classification rates of different methods for
Dataset-3 (%).

of size 256 × 256 pixels are extracted randomly from each
class of texture images, and denote jth sample of ith class
as T i,j(j = 1, 2, · · · , 5) for simplicity. For each extracted
sub-image, set the 0◦ angle at the horizontal direction,
and select counterclockwise N = 32 equidistant angles
between 0◦ and 180◦ as FOs. From each FO, pick out
L = 40 equidistant rows to form the signal set Xi(i = 1,
2, · · · ,L). Then compute the final feature vector of each
sub-images according to Section III. The minimum distance
classifier is employed to determine an unknown sample’s
classification.

The detailed results on Dataset-1 are illustrated in Table 1.
For the sake of comparison, the results in literature [1], [10]
are reported in the same table. We can see that the results
based on the proposed features are much better than those of
literature [1], [10].

The confusion maps are illustrated in Table 2, in which
the first row contains the actual textures, the next two rows
represent the mismatched classes and their percentages of
the confusion maps respectively. For example, the percent-
ages of D29 mismatching to D9 and D10 are 2.5% and 5%,
respectively.
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TABLE 6. Recognition correct rates for uneven illuminations (%).

FIGURE 11. Three most confusing pairs of textures, where the two texture
images of each column is a pair.

The method of reference [10] only selects the samples of
rotation 20◦, 70◦, 90◦, 120◦ or 150◦ to train, thus, in the test
phase, the test samples must also be rotated at these angles.
Our method only needs the original sample in the training
phase, whereas the test sample can rotate any angle.

When the experiments are conducted on Dataset-2, 47
of 60 classes of textures which are D1, D4, D5, D6, D8,
D10, D11, D15, D16, D17, D18, D19, D20, D21, D22, D24,
D26, D28, D34, D37, D46, D47, D48, D49, D51, D52, D55,
D56, D57, D64, D65, D66, D68, D74, D75, D76, D77, D78,
D82, D83, D85, D87, D92, D94, D98, D101, D103 and
D111 achieve a recognition rate of 100%. The percentage of
correct classification of other classes are shown in Table 3,
in which the percentage of correct classification is denoted
as ‘‘PCC’’ for simplicity. We have observed that the worst is
82.5% and the average rate is 98.29%, which is better than
the best rate 96.7% in [11]. Similarly, Table 4 shows the
confusion map.

Fig. 11 shows the three most confusing pairs of textures.
Intuitively, they indeed have great similarities.

We also tested the proposed feature on Dataset-3. The
experimental results are shown in Table 5. For the sake of sim-
plicity, we only list the average classification rates. It shows
that the average classification accuracy of our method is as
high as 98.42%, which far exceeds the results of literature
[6]–[8], slightly better than that of literature [9].

To evaluate the performance of the proposed features to
uneven illumination, we test 16 kinds of uneven illuminations
as shown in Fig. 12. They are produced by mathematical

FIGURE 12. Sixteen kinds of uneven illumination (from top to bottom):
First row — 2D linear function; Second row — 2D Gaussian function.

FIGURE 13. Noisy texture samples with different SNR levels (from left to
right): First row— original texture, SNR = 30dB, SNR = 20dB; Second
row— SNR = 15dB,SNR = 10dB,SNR = 5dB.

TABLE 7. Recognition correct rates under different noise levels (%).

functions, which are divided into two groups: (1) 2D linear
function (see First row of Fig. 12), and (2) 2D Gaussian func-
tion (see Second row of Fig. 12). Dataset-1 is employed again.
Forty samples of size 256×256 pixels are extracted from each
class of texture images, twenty of which are added randomly
to the linear uneven illuminations and the other 20 samples
are added randomly to the Gaussian uneven illuminations.
The recognition results are shown in Table 6, in which ‘‘LFs’’
and ‘‘GFs’’ express linear function and Gaussian function,
respectively. It is clear that only a slight drop in percentage of
correct classification occurred when an uneven illumination
is added to a testing sample, which can indicate that the pro-
posed features really have an excellent invariance to uneven
illuminations.

The final experiment is conducted to evaluate the robust-
ness to white noise, where Dataset-1 is used again. One hun-
dred samples of size 256×256 pixels are extracted from each
class of textures, which are divided into 5 groups (20 samples
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for each group). The Gaussian white noise, whose sig-
nal to noise ratios (SNR) are 30dB, 20dB, 15dB, 10dB and
5dB, are added to the samples in the different groups.
Some samples with different SNR noises are shown
in Fig. 13. Encouraging results have been achieved as shown
in Table 7.

V. CONCLUDING REMARKS
This paper presents some new insights into quasi-periodic
signals by introducing novel concepts on DPC (Dominant
Period Component), PD (Periodic Degree), and MF (Main
Frequency). They form the basis of our new method of
extracting the key features from a real-life quasi-periodic
signals i.e. the MF by using the Hilbert-Huang transform.
For a quasi-periodic signal, MF is essentially the frequency
of DPC. It controls the oscillation rate of a quasi-periodic
signal and plays a key role in controlling the behavior of
the entire signal. Hence, a good performance will be worth
expecting if it serves as a classification feature. This is the
main motivation of this paper.

Based on the above idea, a new texture feature which con-
sists of the weighted Orientation Main Frequencies (OMF’s)
has been derived. Experiments confirm these salient proper-
ties of MF have generated a very high classification rates.
Three data sets of texture images have been employed to eval-
uate the performance of the proposed features. Encouraging
experimental results have been achieved.

In addition, the features are also invariant to uneven illumi-
nation, rotation, and are robust against noise. We have proved
both MF and PD of a quasi-periodic signal are insensitive.
Hence, the proposed features essentially have an excellent
invariance to uneven illumination. This has also been veri-
fied by experimental results. Because the final feature vector
consists of the energy spectrum of Fourier transform, the
performance of rotation invariance only depends on the num-
ber of FOs (Feature Orientations). All experimental results
listed above have been achieved under the condition that the
number of FOs is 32. In fact, when the number of FOs is 16
or even smaller, the results are still better. Limited by space,
the details have been left out in this paper. The proposed
features consist of weightedMFs, we have demonstratedMFs
of a quasi-periodic signal are robust to additive random white
noises, but an additive random white noise decreases the PD.
Hence, the proposed features have a better, but not perfect
robustness to additive random white noises.

Finally, we have to point out that the rotation invariance
of the proposed features is imperfect, and the way of obtain-
ing rotation invariance seems somewhat clumsy. In future
research, we will try new sampling ways to make up for this
defect.
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