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ABSTRACT To support the and development and application of the fifth-generation (5G) communication
and internet of things (IoT) networks, high data-rate wireless transmission is required. To meet the demand
of high data-rate, multiple antennas are equipped at the transmitter and receiver, forming multiple-input
multiple-output (MIMO) systems. A big challenge of MIMO is the detector design in correlated noise
environments, which should achieve a fine performance with moderate computational complexity. To this
end, we employ an iterative framework of a deep convolutional neural network (DCNN) and a linear
detector for MIMO systems over correlated noise environments. In this framework, the linear detector can
be zero-forcing (ZF), minimum mean square error (MMSE), ZF with successive interference cancellation
(ZF-SIC), or MMSE-SIC, which produces an initial estimate of transmitted signals. The DCNN is used to
capture the local correlation among noise, and it can produce a more accurate estimate of transmitted signals.
Simulation results are finally provided to show that the proposed detector can outperform the conventional
linear detectors substantially through capturing the local correlation characteristics among noise.

INDEX TERMS Deep learning, MIMO, correlated noise.

I. INTRODUCTION
With the deployment and development of the fifth-generation
(5G) wireless communication systems [1]–[3], there is a
explosively increasing progress in the data rate for wire-
less transmission [4]–[6]. To meet this requirement, many
new techniques have been proposed to enhance the trans-
mission quality and optimize the system resource manage-
ment. Among these techniques, relaying technique is an
effective one, which can help increase the coverage area
and improve the transmission quality, without requiring addi-
tional transmit power [7]–[9]. There are two fundamental
relying protocols, such as amplify-and-forward (AF) and
decode-and-forward (DF). Besides these two relaying proto-
cols, there are some other relaying protocols in the literature.
The usage of relaying can help increase transmission security
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in the wireless networks, which also receives much attention
from the academia and industry [10]–[12].

Besides the relaying technique, multiple antenna technique
is an effective solution tomeet demand, and it has been proven
that the data rate can be linearly proportional to the number of
antenna in multiple-input multiple-output (MIMO) systems
[13]–[16]. A high challenge in MIMO systems is that how to
effectively detect the transmitted signals at the receiver side
[17]–[19]. In uncorrelated noise environments, the optimal
MIMO detector is the maximum likelihood detector (MLD),
which has the exponentially increasing computational com-
plexity with respect to the number of transmit antenna and
modulation size [20], [21]. To reduce the computational com-
plexity, some linear detectors have been proposed for the
MIMO systems, such as zero-forcing (ZF) and minimum
mean square error (MMSE) detectors. The main drawbacks
of the linear detectors is the noise enhancement, which can
be relieved by the successive interference cancellation (SIC)
technique to some extent.
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The above detectors can work forMIMO systems in uncor-
related noise environments. However, in practice, the noise
in MIMO systems may be correlated, due to many practical
reasons [22]–[24]. For example, the noise may be correlated
in the time domain when it continues on two ore more
time symbols; the noise may be correlated in the frequency
domain when the channel estimation and synchronization
are not ideal in the orthogonal frequency division multi-
plexing (OFDM) systems. In correlated noise environments,
the correlation among different symbols can be exploited
to improve the detection performance. In theory, the opti-
mal detector in correlated noise environments is the maxi-
mum likelihood sequential detector (MLSD). There are two
main limitations of MLSD in practice. The first limitation
is the huge computational complexity, which exponentially
increases with respect to the number of symbols in a transmis-
sion packet, number of transmit antenna, and the modulation
size. Another limitation is that it requires the knowledge
about the distributions of correlated noise among a packet,
which is very difficult or even impossible to estimate in
practice, especially when the correlation is time-varying.

Inspired by the recent progress on the intelligent
data-driven networks applied in wireless communications
[25]–[27], we turn to study the deep learning based detection
for the MIMO systems under correlated noise environments.
Deep learning is a data-driven method which can efficiently
exploit the huge amount of wireless data for communica-
tion systems [28]–[30]. In particular, we apply an iterative
framework of a deep convolutional neural network (DCNN)
and a linear detector, where the DCNN is utilized to capture
the local correlation among noise in different symbols [31].
The linear detector can be ZF, MMSE, Zf-SIC, or MMSE-
SIC, which requires very limited computational complexity
to implement. The linear detector produces an initial estimate
of the transmitted signals, while the DCNN can produce a
more accurate estimate of transmitted signals by exploiting
the local correlation among noise. This iterative process
continues, and it can help improve the detection performance
for the linear detection. Finally, we provide some simulation
results to validate the proposed studies.

The organization of this paper is given as follows. After
the introduction in this section, we will discuss the system
model of MIMO in Sec. II, and then introduce the linear
detectors in Sec. III. After that, we will describe the iterative
framework of DCNN and linear detectors in Sec. IV. Sec. V
will present the simulation results and conclusions are finally
made in Sec. VI.

II. SYSTEM MODEL
In this paper, we consider an M × M MIMO system, where
there are M antennas at the transmitter and receiver. The
MIMO channel follows time-varying Rayleigh fading, and it
remains unchanged within the same transmission packet. For
the n-th symbol (1 ≤ n ≤ N ), the received signal at them1-th

receiver is given by

ym1 (n) =
M∑

m2=1

hm2,m1sm2 (n)+ wm1 (n), (1)

where sm2 (n) is the transmitted signal at the m2-th transmit
atenna, following some specific modulation scheme such as
binary phase shift keying (BPSK) or quadrature phase shift
keying (QPSK), and wm1 (n) ∼ CN (0, σ 2) is the additive
white Gaussian noise (AWGN) at the receiver, where the
details about the noise can be found in the literature [32],
[33]. Notation hm2,m1 ∼ CN (0, 1) represents the channel
coefficient between the m2-th transmit antenna and m1-th
receive antenna. By using the vector andmatrix forms, we can
rewrite (1) as

y(n) = Hs(n)+ w(n). (2)

When the noise w(n) is independent among different sym-
bols, the optimal detector forMIMO systems is the maximum
likelihood detector (MLD), whose computational complexity
exponentially increases with M and the modulation size.
On the contrary, when the noise is correlated among dif-
ferent symbols, the optimal detector for MIMO systems is
the maximum likelihood sequential detector (MLSD), whose
computational complexity exponentially increases withM ,N
and the modulation size. This motivates us to study the linear
detector forMIMO systems, whichwill be detailed in the next
section.

III. LINEAR DETECTORS
In this section, we will describe four linear detectors, i.e., ZF,
MMSE, ZF-SIC and MMSE-SIC, for the MIMO systems.

A. ZF DETECTOR
The ZF detector performs the detection by removing the
spatial correlation among antennas in a forcing way, i.e.,

yZF (n) = (HHH)−1HHy(n), (3)

where the subscript H denotes the operation of con-
jugate transpose. Then, from each element in yZF (n),
the component-wise detection is used. In this way, the ZF
detector is completed. The ZF detection is quite simple to
implement in practice, at the cost of severe noise enhance-
ment in the detection. Specifically, the noise varies fromw(n)
to (HHH)−1HHw(n), and the noise variance matrix changes
from σ 2I to (HHH)−1σ 2. When there exists a very small
eigenvalue in HHH, the noise will be severely enhanced
in the detection, which limits the detection performance
substantially.

B. MMSE DETECTOR
To implement the linear detector and meanwhile suppress
the severe noise enhancement in ZF detector, the MMSE
detection can be used, which is given by

yMMSE (n) = (HHH+ σ 2I)−1HHy(n). (4)
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Then, from each element in yMMSE (n), the component-wise
detection is used. In this way, the MMSE detection is com-
pleted. Note that the noise component in MMSE detector
changes from w(n) to (HHH+σ 2I)−1HHw(n). Accordingly,
the noise covariance matrix enlarges from σ 2I to (HHH +
σ 2I)−1HHH(HHH+σ 2I)−1σ 2. By comparing with the noise
covariance in ZF detector, we can find that the MMSE detec-
tor can outperform the ZF detector through suppressing the
noise enhancement to some extent.

C. ZF-SIC DETECTOR
Another way to suppress the effect of noise enhancement in
ZF detector is to introduce the operation of SIC [34]–[36].
In ZF-SIC, the detection sequence of transmitted signals
is firstly determined according to the diagonal element of
matrix (HHH)−1, given by

(HHH)−1m,m. (5)

According to the minimum value of (HHH)−1m,m, the system
chooses the first transmitted signal to be detected, whose
index is denoted by m1. Then, the m1-th transmitted signal
is firstly estimated from yZF (n), given by ŝm1 (n). After that,
the received signal y(n) is updated as

y1(n) = y(n)− hm1 ŝm1 (n). (6)

Accordingly, the channel matrix is updated from H to H1 by
removing the m1-th column. Then, the ZF detected signal is
updated as

y1,ZF (n) = (HH
1 H1)−1HH

1 y1(n). (7)

From y1,ZF (n), the m2-th transmitted signal with the min-
imum value of (HH

1 H1)−1m,m is detected, and its estimate is
given by sm2 (n). This process continues until the last trans-
mitted signal smM (n) is detected. In this way, the ZF-SIC
procedure is completed.

D. MMSE-SIC DETECTOR
Similar to ZF-SIC, the SIC can be also incorporated into
MMSE to enhance its detection performance. In MMSE-SIC,
the detection sequence of transmitted signals is firstly deter-
mined according to the diagonal element of matrix (HHH +
σ 2I)−1, given by

(HHH+ σ 2I)−1m,m. (8)

According to theminimum value of (HHH+σ 2I)−1m,m, the sys-
tem chooses the first transmitted signal to be detected, whose
index is denoted by m1. Then, the m1-th transmitted signal is
firstly estimated from yMMSE (n), given by ŝm1 (n). After that,
the received signal y(n) is updated as

y1(n) = y(n)− hm1 ŝm1 (n). (9)

Accordingly, the channel matrix is updated from H to H1 by
removing them1-th column. Then, theMMSE detected signal
is updated as

y1,MMSE (n) = (HH
1 H1 + σ

2I)−1HH
1 y1(n). (10)

From y1,MMSE (n), the m2-th transmitted signal associated
with the minimum value of (HH

1 H1 + σ
2I)−1m,m is detected,

and its estimate is given by sm2 (n). This process continues
until the last transmitted signal smM (n) is detected. In this way,
the MMSE-SIC procedure is completed.

IV. PROPOSED GENERIC DEEP LEARNING BASED
ITERATIVE DETECTION FRAMEWORK
Inspired by the recent advances in deep learning technolo-
gies and in order to improve the performance of the linear
detectors in the presence of correlated noise, we propose a
generic deep learning based iterative detection framework,
which contains a linear detector and a deep convolutional
neural network (DCNN) at the receiver. We will introduce the
system structure as well as the DCNN in the next two sub-
sections. Computational complexity analysis of the proposed
iterative framework is presented at the last subsection.

A. A GENERIC ITERATIVE FRAMEWORK FOR LINEAR
DETECTORS
As shown in Fig. 1, a linear detector and a DCNN are jointly
used. The detector can be any kind of linear detectors, such as
ZF, MMSE, ZF-SIC or MMSE-ISC. The detection workflow
iteratively passes through the linear detector and DCNN in K
iterations and the finally estimated signal is generated at the
last iteration.

FIGURE 1. Structure of the generic deep learning based Iterative
detection framework.

Basically, at each iteration, the linear detector firstly esti-
mates the signal from the received signal and channel matrix,
denoted by ŝ. After that, we can estimate the noise as

ŵ(n) = y(n)−Hŝ(n). (11)

Inspired by the successful application of residual learning for
image denoising [37] and notice that if the detection result ŝ
is not correct, the estimate of noise ŵ is not correct as well.
We employ the DCNN to learn the latent correlation of ŵ
and recover a more accurate estimation of the noise, which
is given by

w̃(n) = F(ŵ(n)), (12)

where F(·) represents an nonlinear transformation function
parameterized by the DCNN. Thus, we can cancel the influ-
ence of correlated noises by

ỹ(n) = y(n)− s̃(n) (13)

= Hŝ(n)+ w(n)− w̃(n) (14)

, Hŝ(n)+ z(n), (15)
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where z(n) = w(n) − w̃(n) represents the effective residual
noise. Note that if the estimation of noise produced by the
DCNN is more accurate compared with the prior linear detec-
tor, the effective SNR is increased for ỹ(n). Hence, we can
feed back the effective signal ỹ(n) to the linear detector to
improve the detection performance at the incoming iterations.

B. DEEP CONVOLUTIONAL NEURAL NETWORK
Fig. 2 shows the DCNN structure of the proposed generic
iterative detection framework. Generally, the DCNN contains
L convulutional layers and each layer contains Fl filters,
where l ∈ [1, 2, . . . ,L]. For each filter denoted by filter(l,j)
(j ∈ [1, 2, . . . ,Fl]) at the l-th layer, it will firstly perform
zero-padding operation for the input data with the purpose
of keeping the same length after convolution operation. After
that, it will perform 1-D convolution on the padded data with
kernel size ofRl to generate a corresponding feature mapwith
rectified linear unit (ReLU) [38] activation function.

FIGURE 2. Structure of deep convolutional neural network.

Specifically, the first layer is the input layer and the last
layer is the output layer. The rest layers are the hidden layers.
For the first layer, it receives ŵ and produces F1 feature maps
for the second layer. For any hidden layer, it receives Fl−1
feature maps from the prior layer and generates Fl feature
maps for the posterior layer. For the last layer, it has only one
filter, becausewe have tomaintain the same spatial dimension
as the input data. For convenience, we denote the DCNN
structure as

{L;R1,R2, . . . ,RL;F1,F2, . . . ,FL}. (16)

As we have discussed earlier, the training objective
of DCNN is to generate a more accurate estimation of
noise from ŵ as much as possible. This is equivalent to
minimize the effective residual noise z. In pursuing this
objective, we employ the mini-batch stochastic gradient
descending [39] and the L2-norm loss function to train the
learnable variables in the neural networks, so that we can
obtain the loss value for every mini-batch size of N time
slots as

Loss =
1
N

N∑
n=1

||w− w̃||2 (17)

=
1
N

N∑
n=1

||z||2. (18)

C. COMPUTATIONAL COMPLEXITY ANALYSIS
For any detection algorithm, its computational complexity is
always an issue we have to face. In this subsection, we ana-
lyze the required computational complexity caused by K
iterations. The consumption of computation at each iteration
in the proposed generic iterative detection framework is con-
sisting of two parts: the computational complexities of the
linear detector as well as the DCNN.

For linear detectors, we denoted the required computa-
tional complexity as OD, where it is of O(M ) for the linear
detectors. For the DCNN, the computational complexity is
given by [40]:

O
(

L∑
l=1

(Fl−1RlMFl)

)
. (19)

Therefore, the total computational complexity of the pro-
posed framework is given by summing up these two parts for
K iterations:

O
(
(K + 1)OD + K

L∑
l=1

(Fl−1RlMFl)

)
. (20)

From the above expression, we can see that the computa-
tional complexity of the generic iterative detection framework
increases almost linearly with the number of iterations, which
indicates that the extra computational complexity caused
by the iterative framework is computationally tractable and
acceptable.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, we present some simulation results in order
to verify the effectiveness of the proposed generic iterative
detection framework. The binary phase shift keying (BPSK)
modulation is adopted at the transmitter, and both the trans-
mitter and receiver contain M = 4 antennas. In addition,
the channel matrix is time-varying and we apply a typical
model, namely the Jakes model [41], to generate the channel
matrix with the normalized Doppler frequency fd setting
to 0.1.

Specifically, we employ a typical temporal correlation
model to generate the correlated noise [41], which is
described by:

w(n+ 1) =
√
ρw(n)+

√
(1− ρ)u(n+ 1), (21)

where u(n + 1) ∼ CN (0, σ 2I) is an additive noisy term
independent of w(n), and 0 ≤ ρ ≤ 1 is the correlation
coefficient. Specifically, ρ = 0 represents the uncorrelated
scenario, while ρ = 1 represents the completely correlated
scenario, respectively.

Moreover, with respect to the structure of DCNN, we use
four convolutional layers, so that L = 4. The number of
filters and filter sizes at each layer are set to {64, 32, 16, 1}
and {9, 3, 3, 15}, respectively. Therefore, we summarize the
DCNN structure as {4; 9, 3, 3, 15; 64, 32, 16, 1}. The maxi-
mum number of iterations between the linear detector and the
DCNN K is set to 3.
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Regarding the data set, we set the mini-batch size to N =
720 time slots, so that it is only consisting of 720 time
slots of the received signals y, the channel matrix H and
the correlated noises w suffered from the transmission for
every data batch. To train the learnable variables inside the
DCNN filters, we generate 10,000 batches for training set.
To valid the generalization ability during the training process
and test the performance after finishing the training, the valid
set and test set both contain 1,000 batches. The simulation
settings of important parameters are summarized in Table. 1
for convenience.

TABLE 1. summary of simulation settings.

Fig. 3 shows that the effect of correlation coefficient ρ on
the BER performance for the ZF detector and the ZF based
iterative detector (ZF-DCNN) detector, where the signal-to-
noise ratio(SNR) is set to 30 dB. The correlation coefficient ρ
varies from 0 to 0.9, where ρ = 0 and ρ = 0.9 correspond to
uncorrelated scenario and highly correlated scenario, respec-
tively. We can find from Fig. 3 that the BER performance
of ZF-DCNN detector improves with the increasing of cor-
relation level, which indicates that the DCNN can suppress
the influence of correlated noise successfully when the corre-
lation coefficient enlarges. Moreover, the BER performance
of ZF-DCNN detector improves with the number of itera-
tions between the ZF detector and the DCNN. Specifically,
the ZF-DCNN with K = 2 can reduce the detection error of
the conventional ZF detector to about 30% at the correlation
level of ρ = 0.8, which verifies the effectiveness of the
proposed generic iterative framework.

Fig. 4 demonstrates the BER performance of the ZF detec-
tor and the ZF-DCNN detector where the SNR various from
0 dB to 30 dB. The correlation coefficient ρ is set to 0.5,
which represents a scenario that the noises are moderately
correlated.We can find from Fig. 4 that the BER performance
gap between the ZF detector and ZF-DCNN detector enlarges
along with the SNR. Increasing the iteration between ZF
and DCNN can also help improve the BER performance of
ZF-DCNN in a wide range of SNR. In particular, the SNR
gain of the ZF-DCNN detector over the standard ZF detector
is 5 dB at the BER level of 10−2. This indicates that the

FIGURE 3. BER performance comparison versus correlation coefficient for
the ZF detector and ZF-DCNN detector with SNR = 30dB.

FIGURE 4. BER performance comparison versus SNR for the ZF detector
and ZF-DCNN detector with ρ = 0.5.

proposed iterative framework outperforms the conventional
ZF detector, which further verifies the effectiveness of the
proposed generic iterative framework.

In order to validate the generalization of the proposed
iterative framework, we also perform some simulations with
various linear detectors such as the conventional MMSE,
ZF-SIC and MMSE-SIC detectors. Similar to the Fig. 3,
Figs. 5-7 demonstrate the BER perofrmance of MMSE and
MMSE-DCNN, ZF-SIC and ZF-SIC-DCNN, MMSE-SIC
and MMSE-SIC-DCNN in the presence of various correla-
tion levels, respectively. As observed from these figures, all
the iterative detectors outperform the corresponding conven-
tional linear detectors in a wide range of correlation coeffi-
cient ρ from 0 to 0.9. More specifically, the iterative detectors
with K = 2 can reduce detection error of the corresponding
conventional linear detectors to about 60%, 26% and 30%
at the correlation level of ρ = 0.8 with respect to MMSE,
ZF-SIC and MMSE-SIC, respectively.

Furthermore, as similar with Fig. 4, Figs. 8-10 depict the
BER performance of the standard linear detectors as well as
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FIGURE 5. BER performance comparison versus correlation coefficient for
the MMSE detector and MMSE-DCNN detector with SNR = 30dB.

FIGURE 6. BER performance comparison versus correlation coefficient for
the ZF-SIC detector and ZF-SIC-DCNN detector with SNR = 30dB.

FIGURE 7. BER performance comparison versus correlation coefficient for
the MMSE-SIC detector and MMSE-SIC-DCNN detector with SNR = 20dB.

the corresponding iterative detectors in the case that the SNR
varies from 0 dB to 30 dB and correlation coefficient ρ = 0.5.
We can find from these figures that the BER performance gap
between the iterative detectors and the corresponding con-
ventional linear detectors enlarges along with the increasing

FIGURE 8. BER performance comparison versus SNR for the the MMSE
detector and MMSE-DCNN detector with ρ = 0.5.

FIGURE 9. BER performance comparison versus SNR for the the ZF-SIC
detector and ZF-SIC-DCNN detector with ρ = 0.5.

FIGURE 10. BER performance comparison versus SNR for the the
MMSE-SIC detector and MMSE-SIC-DCNN detector with ρ = 0.5.

SNR. Specifically, the SNRgain of the iterative detectors over
the corresponding standard linear detectors is about 5 dB in a
wide range of SNRs. This further validates the generalization
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of the proposed generic iterative framework in the presence
of correlated noise.

VI. CONCLUSION
In this paper, we employed an iterative framework of DCNN
and linear detectors to improve the detection performance
for MIMO systems under correlated noise environments,
which were effective to support the high data-rate trans-
mission for the wireless communication systems. In this
framework, the linear detector such as ZF, MMSE, ZF-SIC
and MMSE-SIC produced an initial estimate of transmitted
signals, while DCNN output a more accurate estimate of
transmitted signals through exploiting the local correlation
among noise. Simulation results were demonstrated to show
that the proposed detector could outperform the conventional
linear detectors substantially. In future works, we will apply
this work to IoT applications, such as the urban environments
detecting [42]–[46].Moreover, wewill investigate other intel-
ligent algorithms [47]–[51], and apply to the MIMO systems
in order to further enhance the detection performance. In fur-
ther, we will apply the work in this paper into the mobile
edge computing [52], [53], and try to enhance the system
performance.
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