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ABSTRACT In order to track and grasp the operation situations of the gearboxes, the vertical vibration
signals of three different gear fault states, normal, worn and broken teeth, are collected via a gearbox vibration
experiment. An online diagnosis and performance evaluation model with hidden Markov model (HMM) and
fuzzy comprehensive evaluation is proposed. To address the limitation of maximummembership principle in
the case of equal membership or the membership is very close to each other, a closeness evaluation strategy
is proposed by defining the likelihood ratio of HMM as a similarity and selecting an combined membership
function of the semi-trapezoidal and intermediate-ridge distribution. Results show that the online diagnosis
has achieved a good performance with the similarity strategy. Compared with the evaluation strategy of the
maximum membership principle, the proposed gearbox performance model with the closeness evaluation
strategy is more accurately distinguished from the evaluation results of the broken teeth state and the worn
state, especially for the case of the equal membership.

INDEX TERMS Closeness evaluation strategy, fault diagnosis, gearbox, hiddenMarkovmodel, performance
evaluation.

I. INTRODUCTION
Due to a wide range of speed ratio, high reliability, and
accurate transmission ratio, the gearbox is becoming one of
important power transmission components, and has widely
applied in heavy industry, light industry, construction and
daily life [1]. However, the gearboxes are easy to fail due to
frequently operated in harsh conditions such as heavy load
or high speed, affecting the production efficiency and even
endanger personal safety [2]. Therefore, it is necessary to
track and grasp the running state of the gearbox timely and
accurately, so as to ensure the safety and reliability of the
gearbox.

Performance evaluation has been proven to be an effective
technique in tracking and identifying the operational situa-
tion of the mechanical equipment in time[3]. So far, several
artificial intelligent methods, such as logistic regression [4]
support vector data description [5], [6], self-organizing map-
ping [7], neural network [8], Gaussian mixture model [9],
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have been widely employed in performance evaluation for
mechanical equipment.

For bearing performance degradation evaluation, many
efforts are made in improving the accuracy of the evalu-
ation model. Xia et al. [10] evaluated the uncertainty of
vibration by a grey prediction model. Ye et al. [11] pre-
dicted the vibration performance by chaos prediction model.
Ren et al. [12] proposed a performance evaluation method
by manifold space fuzzy k-master curve similarity analysis.
Zhu et al. [13] proposed a performance degradation method
by improved fuzzy entropy. Li et al. [14] applied a general
mathematical morphology particle as a new indicator for
bearing performance degradation evaluation. Liu et al. [15]
proposed an evaluation method by ensemble empirical mode
decomposition. Wang and Tsui [16] established a generalized
dimensionless health indicator to evaluate bearing degrada-
tion. Rai and Upadhyay [17] pro-posed a performance degra-
dation index based on self-organizingmapping to estimate the
remaining service life.

For gearbox performance evaluation, however, there are
a few existing works. Wang et al. [18] realized dynamic
evaluation of gearbox by grey theory and bootstrap theory.
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Wang et al. [19] developed a predictive system to mon-
itor gear performance degradation. Pan et al. [20] pro-
posed a performance degradation assessment method
based on complete ensemble empirical mode decompo-
sition with adaptive noise and kernel principal compo-
nent analysis. It is found that performance evaluation
model based on artificial intelligent method suffers from
the black-box problem, cumbersome data processing and
modeling.

Hidden Markov model (HMM) has been gaining more
attention on performance evaluation due to its model
interpretation ability and high efficiency in processing
the time-varying signals. Most notably, Li et al. [21]
applied HMM in evaluating the reliability of generators.
Jiang et al. [22] applied HMM in bearing performance evalu-
ation. Zhang et al. [23] proposed a performance degradation
index by orthogonal neighborhood retained projection and
two-dimensional HMM. Wang et al. [24] identified the run-
ning state of the spot welding machining process by HMM.
Liu et al. [25] proposed a bearing performance degradation
evaluation method by orthogonal locally retained projection
and continuous HMM. Zhou et al. [26] proposed a fault
diagnosis by a shift-invariant dictionary learning and HMM.
Li et al. [27] proposed an optimal Bayesian control policy
by HMM. Mba et al. [28] proposed a state classification by
stochastic resonance and HMM.

Due to the objective and clear evaluation results, fuzzy
comprehensive evaluation method has been popular in per-
formance evaluation [29]. Fang et al. [30] proposed a fuzzy
comprehensive evaluation method based on supervisory con-
trol and data acquisition. Liu and Ma [31] proposed a fuzzy
comprehensive evaluationmethod to determine the symmetry
degree of three types of mechanical structure symmetries.
Xu et al. [32] studied the application of fuzzy comprehensive
evaluation method in tool cutting performance evaluation.
In summary, we found that fuzzy comprehensive evaluation
with the maximum membership principle is not available in
the case of the equal membership.

For the above reasons, this paper focuses on the gearbox
performance evaluation by a closeness evaluation strategy.
To address the limitation of maximum membership principle
in the case of the equal membership or the membership is
very close to each other, we propose a closeness evaluation
strategy by defining the likelihood ratio of HMM as the
similarity and selecting a combined membership function
of the semi-trapezoidal and intermediate-ridge distribution.
Additionally, we perform a gearbox experiment to collect the
vertical vibration signals of three different gear fault states
for the purpose of verifying the proposed performance eval-
uation model based on a closeness evaluation strategy. For
online diagnosis phase, affinity propagation (AP) clustering
algorithm is employed to parameter initialization for HMM.
By forward-backward, Viterbi, and Baum-Welch algorithms,
we calculate the likelihood ratio of HMM, and define the
likelihood ratio as a similarity for quantifying the degradation
of the gearbox, so as to implement the online diagnosis.

FIGURE 1. The procedure of the proposed gearbox performance
evaluation model.

For performance evaluation phase, we present a fuzzy
comprehensive evaluation model with a closeness evalua-
tion strategy by converting similarity into closeness. By this
closeness evaluation strategy, the limitation of maximum
membership principle on the case of the equal member-
ship is avoided. The structure of the paper is as follows:
Section II describes the proposed fuzzy performance eval-
uation model; Section III introduces the online diagnosis
method by HMM; Section IV discusses the online perfor-
mance evaluation method by fuzzy comprehensive evalua-
tion; Section V discusses the results of online diagnosis and
performance evaluation for gearbox; Conclusions are given
in Section VI.

II. PROPOSED FUZZ PERFORMANCE EVALUATION
MODEL
To make clear the actual operating situation of gear-
boxes, we proposed a fuzzy performance evaluation model
with HMM. The procedure of the proposed gearbox per-
formance evaluation model is shown in Figure 1. There
are three steps for developing gearbox state evaluation:
(1) data acquisition and data processing; (2) online diagnosis;
(3) online performance evaluation.
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A. DATA ACQUISITION AND DATA PROCESSING
In this stage, many issues should be taken into account,
such as sensor selection, sensor quantity, sensor mounting
location, and reliability of measuring data. Owing to carry
the dynamic information on machine state, the vibration sig-
nals are effective in gearbox fault diagnosis [33]. In order
to ensure the reliability of measuring data, the acceleration
sensor was calibrated before use, and the effect of sensor
failure was eliminated. We collected the vertical vibration
signals with normal, worn and fractured gears, and extracted
the vibration frequency band energy of the gear as the obser-
vation value of the model, because the vibration energy
of vertical vibration signal can reflect gearbox operating
conditions.

Restricted to inherent characteristics of the sensors, such
as limited precision and limited range, the raw signal must
be processed by eliminating the outliner and zero-mean nor-
malization before feature extraction. In addition, the external
operating environment factors, such as noise, information
redundancy, have an impact on gearbox diagnostics and per-
formance evaluation results [34]. Therefore, it is necessary to
mine and extract the effective feature parameter from the raw
data. In this paper, the raw signals are divided into a plurality
of short-term signals, and the vibration energy feature is
extracted from each of the short-term signals to form an
observation sequence of the HMM.

B. ONLINE DIAGNOSIS
In this section, three gear states with normal, worn, and
broken teeth are taken into account, and the online diagnosis
contains two phases. The first phase is training of HMM
by a Baum-Welch algorithm, and the second phase is clas-
sification by a forward-backward algorithm. Three training
models with normal, worn, and broken teeth, namely λ0, λ1,
and λ2, are established by the historical data collected
from the above three predefined states in this paper, and
the similarity between different fault states and normal
states are described by the probability p (λi|λ0) of being
in the fault state i for the normal state. Here, λi(i ≥ 1)
denotes the training model in different fault states, and
λ0 is the training model in the normal state. Additionally,
the correctness of the model can be verified by compar-
ing the similarity between different fault states and normal
states.

C. ONLINE EVALUATION
The online evaluation of the gearbox is implemented by
fuzzy performance evaluation. By substituting the evalua-
tion indicator converted from the similarity between different
fault states and normal states into the established combined
membership function, the online evaluation is implemented
to evaluate the operating situations of the gearbox under
different states. In addition, the differences in the evaluation
results between the closeness and maximum membership

evaluation strategies under different conditions are compared
as well.

III. ONLINE DIAGNOSIS BY HMM
Due to the effects such as stress and shock, the amplitude
of the vibration signal gradually increases with the perfor-
mance degrading in the operation process over time. The fault
occurs once the performance degrades exceeded a certain
threshold. In this condition, we define a similarity to measure
how similar the current measured value is to the normal or
fault value. With such strategy, the similarity between the
real-time vibration signal and the normal or specific fault
vibration signal can be accurately quantified, so as to obtain
the performance degradation or fault severity of the gearbox
at any service rime. Base on the maximum membership prin-
ciple, the smaller similarity between the current state and the
normal state is, the worse the performance. That is, the system
is more likely to occur fault. For the above reasons, we pro-
posed to define the likelihood ratio of HMM as the similar-
ity P, the likelihood ratio was obtained by forward-backward
algorithm, and. the model λ was adjusted under the
given observation and initial condition by the Baum-Welch
algorithm.

Generally, HMM is defined as λ = (N ,M , π,A,B).
(1) N is the number of states. The individual states are

defined as St ∈ {S1, S2, · · · , SN }.
(2) M is the number of observations. Suppose that the

observations are V1,V2, · · · ,VM , and the observations at
time t is defined as ot .

(3) π = {πi, i = 1, 2, · · · ,N } is the initial state distribu-
tion vector. π1 = 1, πi = 0(2 ≤ i ≤ N ). Here, 0 ≤ πi ≤ 1,
N∑
i=1
πi = 1, 1 ≤ i ≤ N .

(4) A = {aij} is the state transition matrix, A = ai,j =

p(Sj|Si), 1 ≤ i, j ≤ n and
N∑
i=1

aij = 1.

(5) B = {bi(k)}(1 ≤ i ≤ M , 1 ≤ k ≤ N ) is the emissions
probability matrix. bik denotes the occur probability of the
observation vk at state i, i.e. bik = Pr (ot = vk |qt = si ), here,
N∑
i=1

bik = 1, 1 ≤ i ≤ N , 1 ≤ k ≤ N .

The parameter λ of the probability P(O|λ) can be obtained
by using Baum-Welch algorithm. Let ς (i, j) = P(qt =
i, qt+1 = j |O, λ ), and ς (i, j) can be obtained by using
forward-backward algorithm.

ςt (i, j) =
P(qt = Si, qt+1 = Sj,O |λ )

P(O |λ )

=
αt (i)ai,jbj(ot+1)βt+1(j)

P(O |λ )

=
αt (i)ai,jbj(ot+1)βt+1(j)∑N

i=1
∑N

j=1 αt (i)ai,jbj(ot+1)βt+1(j)
(1)

Under the condition that the initial parameter λ is
known and the observed value O is measured, the prob-
ability of being in state Si at time t is defined
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as follows:

τt (i) = P(qt = Si |O, λ ) =
P(qt = Si,O |λ )

P (O|λ)

=
αt (i)βt (i)∑N
j=1 αt (j)βt (j)

=

∑N

j=1
ςt (i, j) (2)

The re-evaluation procedure of the parameter λ is
as follows.
Step 1: Determine the initial N , M and the initial model

λ(π,N ,M ,A,B) according to the actual situation.
Step 2: Calculate the forward variable αt (i) and the back-

ward variable βt+1 (j) according to the forward-backward
algorithm; calculate ς (i, j) and τt (i) by Eq. (1) and Eq. (2).
Step 3: The parameter re-evaluation is developed by the

following formulas.

π̄i = τ1 (i)

āi,j =

∑T−1
t=1 ς (i, j)∑T−1
t=1 τt (i)

b̄j (k) =

∑T
t=1 τt (j) δ (ot , νk)∑T

t=1 τt (j)

(3)

where δ(ot , vk ) is Dirac function.

δ(ot , vk ) =

{
1, ot = vk
0, ot 6= vk

(4)

Step 4: Calculate the probability P(O|λ) by the re-
evaluation parameters λ̄ = (π̄ , Ā, B̄). Repeat steps (2) and (3)
until the absolute value of the difference between two succes-
sive probabilities is less than the given value.

Forward procedure is defined by

αt (i) = P (o1, o2, · · · ot , qt = si|λ0) (5)

where αt (i) is the joint probability of the observation value
sequence o1, o2, . . . , ot from the beginning of acquisition to
the time t and the state Si of the model at time t under the
condition of obtaining the parameter λ0.
αt (i) can be defined as follows:

α1 (i) = πibi (o1) , (1 ≤ i ≤ N ) (6)

αt+1 (j) =
N∑
i=1

αt (i)aijbj (ot+1) ,

(1 ≤ t ≤ T − 1; 1 ≤ j ≤ N ) (7)

P (λ|λ0) =
N∑
i=1

αγ (i) (8)

Backward procedure is similarly defined by

βt (i) = P (ot+1, ot+2, · · · , oT |qt = si, λ0) (9)

where βt (i) is the joint probability of partial observation
value sequence ot+1, ot+2, . . . oT from time t to final time
model under the condition that the model parameters λ0 is
known and the model is in state Si at time t .

TABLE 1. Degree of damage of different failure modes.

βt (i) can be defined as follows:

βt (i) = 1, (1 ≤ i ≤ N ) (10)

βt (i) =
N∑
j=1

aijbj (ot+1)βt+1 (j) ,

(t = T − 1,T − 2, · · · , 1; 1 ≤ i ≤ N ) (11)

The likelihood ratio P (λ|λi) of the observation model λ
under a given model λi can be obtained by forward-backward
algorithm, and the likelihood ratio between the current state
and normal state is as follow:

P (λ|λ0) =
N∑
i=1

αt (i)βt (i) (12)

IV. ONLINE PERFORMANCE EVALUATION BY FUZZY
COMPREHENSIVE EVALUATION
For assessment of the gearbox degradation, we propose a
performance evaluation model with fuzzy performance eval-
uation, and the procedures of the proposed fuzzy performance
evaluation model are as follows.
Step 1: Define the similarity. We defined the fore-

mentioned likelihood ratio of HMM as a similarity for quan-
tifying the degradation of the gearbox.
Step 2: Calculate the criticality. The criticality is quanti-

fied by risk matrix method, and the criticality is in range
of [1], [10]. Table 1 shows the criticality for different gearbox
fault modes. The criticality is calculated as.

E =



3.2 10−5 < P

3.2−0.13× log10
P

10−5
10−15<P≤10−5

4.5−0.13× log10
P

10−15
10−20<P≤10−15

5.8−0.13× log10
P

10−20
10−30<P≤10−20

10 P� 10−30

(13)

where E and P denotes the criticality and similarity, respec-
tively.
Step 3: Calculate the aging degree. This paper introduces

an aging degree to quantify the deterioration between the
measured state and the normal state for gearbox, that is,
the aging degree that in range of [0, 1] is used as an evaluation
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index, and the calculation formula is as follows:

g (x) =


0 x < e
x − e
f − e

e ≤ x ≤ f

1 x > f

(14)

where g(x) is aging degree; x is the measured criticality;
e and f is the lower and upper limit of the criticality
respectively.

Since the lower and upper limit of the criticality is [1], [10],
the aging degree can be calculated as follows:

g (x) =


0 x < 1
x − 1
9

1 ≤ x ≤ 10

1 x > 10

(15)

Step 4: Determine performance evaluation level set and
membership function. There is no consensus, however,
on how to determine the performance evaluation level set.
This paper divided the performance evaluation level set as
four states: excellent, good, attention, and serious. Addition-
ally, the membership function is the core of fuzzy perfor-
mance evaluation, and the available membership functions
include rectangular and semi-rectangular distributions, trape-
zoidal and semi-trapezoidal distributions, parabolic distribu-
tions, normal distributions, Ridge distribution, and Gaussian
distributions.
Step 5: Calculate the membership. After step (4), the

membership is quantified, and the membership matrix is
G = {gmn}. Here, gmn denotes the membership of a given
evaluation index corresponding to different evaluation levels.
The matrix is derived from the monitoring data of the mem-
bership function and the performance evaluation level
Step 6: Calculate the closeness. There are limitations in

evaluation strategy with the maximum membership princi-
ple, especially for the case of the equal membership or the
membership is very close to each other. In this condition,
the elements are regarded as the equal effect on the system in
the following situations [0.25, 0.25, 0.25, 0.25] or [0.4, 0.1,
0.4, 0.1] by the maximummembership principle. In practical,
however, it is criticized as low-validity by the maximum
membership principle when the membership values are so
close. To address the problem, this paper proposed to use
the closeness to make an evaluation. There are normal and
abnormal evaluation results, and we judge the evaluation
result as normal when D1 > D2, the opposite is judged as
abnormal when D1 ≤ D2. Here, D1 and D2 denotes the
closeness between the object to be evaluated and the normal
state or the abnormal state respectively. The normal closeness
D1 and abnormal closeness D2 are defined as follows:{

D1 = Di1 + Di2
D2 = Di3 + Di4

(16)

where Di1, Di2, Di3, and Di4 is the closeness of the target
evaluation object to excellent, good, attention, and serious

FIGURE 2. Gearbox vibration experimental rig.

state, respectively. Di1, Di2, Di3, and Di4 can be calculated
as follows:

Dij =
D−m

D+m + D
−
m

(j = 1, 2, 3, 4)

D+m =

√√√√ n∑
j=1

(
νij − y

+

j

)2

D−m =

√√√√ n∑
j=1

(
νij − y

−

j

)2
(17)

where νij is the membership for each state; D+m and D−m are
the distances between the objects to be evaluated and their
respective ideal state; y+j and y−j is the positive and negative
ideal values for the i th state respectively. The positive and
negative ideal states Y+ and Y− is Y+ = [y+1 , y

+

2 , · · · , y
+
n ]

and Y− = [y−1 , y
−

2 , · · · , y
−
n ] respectively.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. THE GEARBOX VIBRATION EXPERIMENT
To verify the effectiveness of the proposed gearbox evaluation
model, we performed a gearbox vibration experiment [35].
Figure 2 shows the gearbox vibration experimental rig,
including a driven motor, a gearbox, a brake, a control device,
a driven shaft support, and some corresponding electronic
units. The experimental scenes are shown in Figure 2(a),
layout of vertical vibration monitoring points are shown
in Figure 2(b), and 3 testing gears are shown in Figure 2(c).
It can be seen that from Figure 2, the working principle is as
follows. The motor is employed to drive the gearbox, and a
brake is to control the rotational speed. The vertical vibration
signals were measured by the accelerometers installed on the
shaft, and the collected signals were stored in the industrial
personal computer by a data acquisition card. Three gearbox
fault modes with normal, worn, and broken teeth were sim-
ulated, and 400 raw vibration signal were collected for each
fault mode. As shown in Table 2, the signals of each state
of the gear are divided into 40 groups, and an average value
is extracted for every 10 data. Therefore, there are a total
of 120 data samples. Where, the rotating speed is 1500r/min;
the sampling frequency is 51.2 kHz; the sampling time
is 1.37 min, and the data length is 2700.
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TABLE 2. Description of the experimental data.

B. EXPERIMENTAL RESULTS AND DISCUSSION
1) PARAMETER INITIALIZATION
As amatter of fact, parameter initialization for HMM is deter-
mined the initial value of the model λ = (N ,M , π,A,B).
Due to the vibration data are continuous signals, however,
the emission probability of HMM is calculated under discrete
observations. Therefore, AP clustering algorithm is employed
for scalar quantization. In this process, the continuous signals
were divided into N -1 portions. AP clustering algorithm is
employed to calculate the parameters N and M . The cluster-
ing number of AP clustering algorithm is taken as the value
of the parameter N , and the clustering result is used as the
parameter M . Due to the initial value of π and A have less
influence on the clustering results of the model, we take a

uniform value for the parameters π and A, i.e. π =
{
1
N

}
N×1

and

A =



0
1

(N − 1)
· · ·

1
(N − 1)

1
(N − 1)

0 · · ·
1

(N − 1)
· · · · · · · · · · · ·

1
(N − 1)

1
(N − 1)

· · · 0


.

The probability density function at the state Sj is as follows:

bj (ot)=
∑Mj

l=1
cjl×bjl (ot)

=

∑Mj

l=1
cjl×

exp
(
−0.5

(
ot−ujl

)T U−1jl

(
ot − ujl

))√
(2π)d×

∣∣Ujl ∣∣
(18)

The following conditions shall be satisfied.∫
+∞

−∞

bj(x)dx = 1, 1 ≤ j ≤ N (19)

Emissions probability matrix B is determined by the
parameters {M , c, u,U ,P}. Since the values of c, u and
U have a great influence on the convergence results, it is
not suitable to take random values, but the initial values of
three parameters can be given according to the results of the
AP clustering process.

(1) Cjl is the l th mixing coefficient in state sj.

Cjl =
λ

ρ
, cjl ≥ 0 (20)

where λ and ρ is the number of observation vectors of xjl and

sj respectively, and
M∑
i=1

Cjl = 1 , 1 ≤ j ≤ N .

(2) ujl is the mean of the l th Gaussian distribution in
state sj.

ujl = ` (21)

where ` is the uniform vector of the observation matrix xjl .
(3) Ujl is the covariance matrix of the l th Gaussian distri-

bution in state sj.

Ujl = θ (22)

where θ is the covariance matrix of the observation vector xjl ;
xjl is the element in the observation matrix.
F is the time probability matrix, that is, the probability of

the duration in a certain state. Especially,

F = {Pi (d)} =
{
ad−1ii (1− aii)

}
, (1 ≤ d ≤ D) (23)

where d is the dimension of the observation value; D repre-
sents the probability that E belongs to a certain state contin-
uously in d frequency bands.

Since the initial value ofF has little influence on themodel,
the value of F is taken uniformly.

F = {1/D}N ·D (24)

2) DETERMINATION OF MEMBERSHIP FUNCTION
The operation state of gearbox is divided into four states:
excellent, good, attention and serious. The deterioration
degree is used to evaluate the operation state of gearbox under
different working conditions. Correspondingly, the member-
ship were set to r = [r1, r2, r3, r4], and it indicates the
membership for each performance evaluation level. As the
membership function of the combination of semi-trapezoid
and middle ridge distribution has the advantages of simple
shape and strong applicability, it is selected as the mem-
bership function of fuzzy comprehensive evaluation, and the
distribution diagram is shown in Figure 3.

The membership function ri can be determined by the
aging degree. By Table 1, the membership function cor-
responding to different performance evaluation levels are
determined as g1 = 0.24, g2 = 0.39, g3 = 0.53, and
g4 = 0.64. The membership functions corresponding to each
performance evaluation level are as follows:

r1 (g) =


0 g ≤ 0.24
1 0.24 < g ≤ 0.39
0 g ≥ 0.39

(25)

r2 (g) =


0 g < 0.24
6.8g− 1.63 0.24 < g < 0.39
7.14g− 2.78 0.39 ≤ g < 0.53
0 g ≥ 0.53

(26)
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FIGURE 3. Membership function with the semi-trapezoidal and
intermediate-ridge distribution.

r3 (g) =


0 g ≤ 0.39
3.78− 7.14g 0.39 < g < 0.53
9.37g− 5 0.53 ≤ g < 0.64
0 g ≥ 0.64

(27)

r4 (g) =


0 g ≤ 0.53
6− 9.37g 0.53 < g < 0.64
1 g ≥ 0.64

(28)

C. ONLINE DIAGNOSIS
According to AP algorithm, we obtained the parameters
N = 4, and M = {1, 3, 1}. Here, the attenuation coefficient
is set to 0.5, and the maximum number of iteration steps is set
to 40. The parameter initialization was implemented with the
obtained AP clustering results, and the three training models
λ0, λ1, and λ2 are trained with a likelihood probability thresh-
old of 0.1. Because the logarithmic probability can effectively
prevent the likelihood probability from overflowing, the loga-
rithmic probability of the three models is taken during model
training, and the change curve of the logarithmic probability
with the increase of iteration steps is shown in Figure 4.

By the above three models, the similarity P (λ1 |λ0 )
between theworn state and the normal state, and the similarity
P (λ2 |λ0 ) between the broken teeth state and the normal state
are determined, which are shown in Figure 5.

It can be seen from Figure 5 that the similarity of the
worn state and the broken tooth state to the normal state are
6.86∗10−17 and 5.73∗10−25, respectively. It means the broken
teeth state is a more serious fault than the worn state, due to
the lower similarity with the normal state.

Similarly, the similarities between the state to be recog-
nized and the normal, worn, and broken tooth are obtained by
using the model λ0, λ1 and λ2, which are shown in Figure 6.
It can be seen from Figure 6(a) that the similarities of

the state to be recognized to the normal, the worn and the
broken teeth state are 2.82∗10−3, 5.4∗10−17, and 3.44∗10−25,
respectively. The maximum similarity appears in the normal

FIGURE 4. HMM training curve of three gear states.

FIGURE 5. The similarity of the worn state and the broken teeth state to
the normal state.

state, meaning that the state to be recognized is the normal
state. From Figure 6(b), we see that the similarities of the
state to be recognized to the normal, the worn and the
broken teeth state are 6.86∗10−17, 1.84∗10−3, and 5.95∗10−13,
respectively. The maximum similarity appears in the worn
state, meaning that the state to be recognized is worn state.
It can be seen from Figure 6(c) that the similarities of the state
to be recognized to the normal, the worn and the broken teeth
state are 5.73∗10−25, 8.17∗10−13, and 7.33∗10−3, respec-
tively. The maximum similarity appears in broken teeth state,
meaning that the state to be recognized is broken teeth state.
Table 3 lists the similarity results of each state. In summary,
it can be seen that the similarity results are consistent with the
actual situations, proving that the validity of the established
diagnosis model.

D. ONLINE PERFORMANCE EVALUATION
1) WORN STATE
According to Eq. (13), the similarity is converted as
the criticality, and the criticality is A1=4.5−0.13×log10
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FIGURE 6. The similarity between the state to be recognized and the
normal, worn, and broken teeth.

TABLE 3. The similarities of the state to be recognized to the normal,
worn, and broken teeth.

p
10−15

= 4.65. According to Eq. (15), the aging is obtained
as gworn = 0.41. Substituting the aging degree gworn into each
membership function, and the obtained membership matrix is
rworn = [0, 0.15, 0.85, 0].
According to the principle of maximum membership

degree, the membership degree of gearbox in the state of
attention is the largest. According to the above calculation,
the evaluation result can be attention. But in this paper,
the comprehensive closeness degree is chosen to evaluate the
operation state; the advantages of this method are not obvious
here.

We set the gearbox in the ideal state of excellent, good,

attention and serious as


Y+1 = [1 0 0 0]
Y+2 = [0 1 0 0]
Y+3 = [0 0 1 0]
Y+4 = [0 0 0 1].

According to Eq. (17), the distances from the worn state
to four ideal states

⌊
D+m1,D

+

m2,D
+

m3,D
+

m4

⌋
and the closeness

can be obtained as shown in Table 4.
According to Eq. (16), we obtained the normal and

abnormal closeness, with the values of D1 = 1.024 and
D2 = 1.362, respectively. With such an evaluation strategy,
it can be determined that the gearbox operating state is abnor-
mal due to D1 < D2 Additionally, the evaluation result is
attention as for Di3 > Di4, i.e. the state to be evaluated is

TABLE 4. Distance and closeness between the evaluated state (worn) and
four ideal states.

TABLE 5. Distance and closeness between the evaluated state (broken
teeth) and four ideal states.

closer to attention. In this case, the evaluation result is same
as the result by the maximum membership principle.

2) BROKEN TEETH STATE
Similarly, according to Eq. (13), (15), and (25) to (28),
we obtained the membership matrix of the broken teeth with
the value of rbroken = [0, 0, 0.53, 0.47]. It is worth noting that
if we only rely on the principle of maximum membership,
it is difficult to make a reasonable judgment on the operation
status of the gearbox for each membership under the condi-
tion of broken teeth, because the membership under attention
and serious is not much different, and any single judgment
of any membership level will discard the information of
another membership level. This is also the reason why the
comprehensive approach degree is adopted in this paper.

According to Eq. (17), the distances from the broken teeth
state to four ideal states, and the closeness is obtained, which
are shown in Table 5.

According to Eq. (16), we obtained the normal and abnor-
mal closeness, with the values of D1=0.76 and D2=1.35,
respectively. With such an evaluation strategy, it can be
determined that the gearbox operating state is abnormal due
to D1 < D2. Additionally, the evaluation result is serious as
forDi3 > Di4, i.e. the state to be evaluated is closer to serious.
Table 6 lists the evaluation results of the gearbox under

different evaluation strategies. It can be seen fromTable 6 that
the evaluation strategy with the closeness can clearly distin-
guish the evaluation results of the broken tooth state and the
wear state, avoiding the inapplicability of maximum mem-
bership principle in the case of the equal membership.

It is found that the broken teeth state is a more severe
fault than the worn state base on the results in Figure 5,
or comparing with the memberships of two fault modes.
The evaluation strategy with the closeness is also clearly
distinguished the evaluation results of the broken teeth state
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TABLE 6. Comparison of evaluation results under different evaluation
strategies.

from the worn state. However, the evaluation results with
maximum membership principle are all attention state, indi-
cating that the evaluation strategy with maximum member-
ship principle brings some misleading to the actual operation
and maintenance due to causing the above-mentioned judg-
ment ambiguity by discarding information. Therefore, we can
conclude that the proposed performance evaluationmodel has
achieved good performance.

VI. CONCLUSION
This paper proposed a gearbox online diagnosis and
performance evaluation approach, and performed a gearbox
vibration experiment to verify the effectiveness of the pro-
posed model at the PHM Laboratory in Jiangxi University
of Science and Technology. The conclusions obtained are as
follows:

1) HMM is applied to the evaluation of the operation state
of the gearbox. After obtaining the observation value
and initial parameters, Baum-Welch algorithm is used
to adjust the parameters of the normal, worn and broken
models. By defining the likelihood ratio of HMM as
a similarity, the online diagnosis has achieved a good
performance, indicating that the similarity strategy is
effectively in gearbox fault diagnosis.

2) The forward-backward algorithm is used to quantify
the similarity between states. By a closeness eval-
uation strategy, the evaluation results of the broken
teeth state from the worn state is distinguished clearly.
It is concluded that the closeness evaluation strategy
is avoid the inapplicability of maximum membership
principle in the case of the equal membership, and
has achieved a good performance. Moreover, the com-
prehensive closeness evaluation strategy can identify
different operation states more sensitively.
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