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ABSTRACT The depth development and widespread application of edge intelligence technology based on
the Internet of Things has led to edge-cloud collaboration and related research. In recent years, with the rapid
development of the Internet of Things and the formation of super-city groups, themanagement characteristics
of enterprises with multiple manufacturing plants served for headquarters have become increasingly obvious.
The problem of order dynamic fluctuations caused by personalized customization requirements has become
more prominent, which makes it impossible to do global long-period prediction or real-time short-period
response relied solely on the cloud or edge. Therefore, this paper proposes a production system scheduling
framework under the edge-cloud collaborative paradigm based on the dynamic fluctuation of orders under
these background, and builds an edge-cloud collaborative scheduling model, which guarantees real-time
distributed scheduling at the edge. It enabled the cloud to periodically predict the total completion time of
production tasks at the headquarters based on the value-added data uploaded by the edge, and to support
more accurate and efficient scheduling at the edge based on the prediction results. Finally, an example
analysis proved the rationality of the scheduling mechanism and the effectiveness of the scheduling model.
The proposed method can provide a certain reference for task scheduling in the edge-cloud collaborative
production paradigm.

INDEX TERMS Production scheduling, edge-cloud collaboration, edge computing, Internet of Things.

I. INTRODUCTION
Since the first industrial revolution, production paradigms
have been emerged and developed with the changes of market
demand and advancing of technology. In recent years, with
the development and deep integration of cloud computing,
Internet of Things (IoT), big data, service-oriented, and other
advanced technologies, cloud manufacturing has emerged
and developed into an emerging networked manufacturing
mode that integrates various manufacturing resources [1].
It is mapped as a cloud service, and provides users with
cloud manufacturing services on demand, which makes up
for the shortcomings of existing manufacturing modes [2].
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However, with the depth development and application of
increasing edge intelligence technologies, some intelligent
features such as interconnected perception of manufacturing
resources, embedded computing, and distributed control in
factories have become more and more significant. Edge-side
manufacturing data is exploding, but cloud data centers are
centralized, and it is difficult to meet the storage and pro-
cessing requirements of a large amount of real-time data from
the manufacturing edge, which leads to network congestion,
high latency, low quality of service, and data privacy and
security, etc. In order to provide better quality of service to
the manufacturing edge, cloud services need to migrate to
the edge. In recent years, the emergence and development
of edge computing technology has made up for the defects
of cloud manufacturing mode in some application scenarios,
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but it is unable to provide enterprises with better value-added
services due to a small range of covered resources and limited
optimization. Therefore, exerting the value of the edge-cloud
collaborative (ECC) and its production paradigm, and provid-
ing enterprises with better value-added services and satisfy
the actual needs of more production scenarios have gradually
become important issues [3].

Although the application of advanced technologies
improves the intelligence of production systems, it also
increased the system complexity. Meanwhile, the application
also makes the dynamic and uncertain characteristics of
production systems more prominent, and makes production
scheduling more difficult. For production scheduling issues,
the research for manufacturing edge is mainly aimed at deter-
ministic environment with infinite schedulable resources.
Since the decision-making system is usually located at the
manufacturing edge, the connection between manufacturing
resources and scheduling system is closer, and scheduling
decision systems can more easily response to emergencies
and uncertain events. However, in the cloud manufacturing
mode, production tasks have characteristics of large-scale
personalized customization [4]. Therefore, influential factors
such as the dynamic arrival time of manufacturing tasks,
changes in the availability of manufacturing resources, and
downtime of manufacturing equipment should be considered.
Compared with edge-side manufacturing scheduling, cloud
manufacturing scheduling need to consider more practi-
cal manufacturing environment. For example, because the
scheduling system is located in the remote cloud data centers,
and connects with edge-side resources by the internet. Thus,
this remote network connection will cause uncertainties and
interferences events more frequently, and increase the diffi-
cult to control the cloud-side scheduling system. The above-
mentioned cloud manufacturing scheduling characteristics
can have a great impact on the operation of production
systems [5]. Therefore, real-time predictions of interference
event and system statue are important issues in the cloud
manufacturing environment [6].

In recent years, with the rapid development of the IoT
and the formation of super-city groups, the enterprises oper-
ation structures with multiple manufacturing factories and a
headquarters have becomemore andmore common. Accurate
order and resource optimization allocation methods between
headquarters and factories are also needed. Secondly, driv-
ing by global market changes and industrial revolution, the
production paradigm is gradually developing from multiple
varieties and small batches to personalized or large-scale per-
sonalized customization, which makes the problem of order
dynamic fluctuations more prominent. Therefore, in view
of the highly decentralized manufacturing resources and
data explosion in the IoT environment, cloud-side schedul-
ing or manufacturing edge-side scheduling can no longer
effectively support the one headquarters and multi fac-
tory business mode and respond to the problem of orders
dynamic fluctuation caused by personalized customization
demands (research issues). Therefore, the emergence of the

ECC production paradigm enables production systems to
have the advantages of super-computing and prediction capa-
bilities in the cloud, and real-time response, high service
quality, and data security at the manufacturing edge-side [7].
However, compared with cloud manufacturing scheduling
or traditional manufacturing scheduling, ECC production
systems also face some new scheduling problems. There-
fore, in the new ECC production paradigm, how to use
the capabilities of real-time response and accurate forecast-
ing to effectively respond to the above-mentioned research
issues, has become a hot research topic of manufacturing
industry.

In summary, the research object of this paper is the discrete
manufacturing production system based on IoT. To address
the above research issues, an ECC production scheduling
framework and its cooperative scheduling mechanism are
presented. Then, an ECC scheduling model is proposed
which can achieve the real-time distributed scheduling and
cloud-enabled periodically prediction. In the cloud data cen-
ters, value-added data is uploaded by the manufacturing edge,
and used to periodically predict the completion time of pro-
duction tasks. The prediction results can be directly used to
improve the distributed scheduling accuracy and efficiency of
the manufacturing edge. Finally, a case study of an enterprise
under the Super Cities Group around Shanghai, China is used
to verify the feasibility and effectiveness of the proposed
framework.

The remainder of this paper is organized as follows. The
framework and mechanism of ECC production scheduling
are presented after reviewing the literature. Thereafter, an
ECC scheduling model is proposed based on the integra-
tion of prediction model and real-time distributed schedul-
ing model. In the ECC scheduling model, several intelligent
algorithms are employed to verify the schedulingmechanism.
A case study is then discussed to demonstrate ECC produc-
tion scheduling method. In the last section, conclusions are
drawn and the future works are discussed.

II. LITERATURE REVIEW
This paper focuses on the scheduling problem of the
ECC production paradigm. To provide a reasonable research
background and research status, the following literature cat-
egories are summarized.

A. SCHEDULING IN CLOUD MANUFACTURING
PARA-DIGM
In recent years, the widespread application of IoT increased
the transparency and complexity of production systems.
Complex manufacturing environments with increased ran-
domness and uncertainty of production systems make the
production scheduling more difficult. However, research on
service scheduling of cloud manufacturing, especially con-
sidering the dynamic characteristics of cloud manufactur-
ing is still in an early stage. Zhou et al. [4] proposed an
event driven dynamic task scheduling method, which was
designed for dynamic scheduling problems of random arrival
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tasks in the cloud manufacturing environment. Although
their research effectively avoided resource preemption and
improved the time-validity of the server, it ignored the sys-
tem uncertainty caused by failure. Wang et al. [8] proposed
a new hybrid method to effectively solve the multi-agent
rescheduling problem in cloudmanufacturing, but themethod
did not work well in a hybrid flexible environment. Cheng
et al. [9] analyzed the dynamic evolution and statistical char-
acteristics of data in the cloud manufacturing environment,
and predicted supply matching in the future to solved this
problem for service-oriented manufacturing systems. How-
ever, with a large amount of data, dynamic matching of
resource services cannot be completed based on historical
data or statistical results. Zhou and Zhang [10] studied the
resources preemption of dynamic task scheduling in the cloud
manufacturing environment, and proposed a real-time simu-
lation based dynamic scheduling method to solve the changes
and uncertainties of manufacturing systems, but it their work
is deficient in network transmission speed. For achieving
real-time data-driven optimization decisions and reduce devi-
ations, Zhang et al. [11] presented a real-time allocation strat-
egy to solve the dynamic scheduling optimization problem
of flexible job shop, but it is difficult to satisfy the real-time
requirements with the increasing of data volume. Obviously,
the main difficulty of dynamic scheduling research in the
cloud manufacturing environment is that it cannot ensure the
real-time scheduling requirement when facing a large amount
of data.

There have been many studies and application cases
of cloud manufacturing scheduling under the influence of
real-time and interference events, but yet there is still lack
of researches about production scheduling prediction on
the cloud-side. In fact, real-time and accurate prediction
of the completion time will be conducive to assign pro-
duction tasks quickly and reasonably in the manufacturing
industry. Therefore, the research on using production data
to make periodic predictions for production scheduling has
become a trend in recent years. Prediction methods of order
completion time can be classified into several categories,
such as simulation, statistical analysis, and neural networks.
Vinod and Sridharan [12] completed discrete-event simula-
tion and comparison analysis based on different scenarios,
which are generated by combining real-time divisionmethods
and scheduling rules in a dynamic make-to-order production
system. Their research results demonstrated that the dynamic
due-date assignment methods provide better performance
in solving such problems. Chen [13] used fuzzy C-means
method to predict the wafer fabrication cycle time. In their
research, a new classification method which embedded the
train results of forecasting mechanism into job classifier were
proposed. Their method improved the accuracy of the job
cycle prediction with long operation time. Chang et al. [14]
analyzed the historical data of the product life cycle to con-
struct a prediction model of back propagation neural net-
work, which could dynamically improve the weight value and
threshold value. In addition, adaptive immune algorithm was

used for the optimizing forecast of makespan for an aviation
company. Wang and Jiang [15] proposed a deep neural net-
work model to realize order completion time prediction based
on order data and work-in-process information collected by
radio frequency identification. Their method could relatively
achieve high accuracy in a short time and quickly respond to
the working load changes of job shop without establishing
an accurate analysis model. In summary, in dynamic manu-
facturing systems with high uncertainty, manufacturing data
hides the operating rules of workshop. Compared to simu-
lation technologies, deep learning models can better reflect
the actual status of the workshop, and get better predictions.
Compared with traditional statistical analysis methods, deep
learning methods can extract high levels features from large-
scale samples, and obtain valuable knowledge. Meanwhile,
deep learning methods also have stronger generalization abil-
ities and can achieve better performance when dealing with
big data.

B. DISTRIBUTED SCHEDULING ON THE EDGE-SIDE
Distributed scheduling is studied based on the distributed
manufacturing background, such as cooperative produc-
tion between different companies or factories. This kind
of scheduling focuses on the assignment of work pieces
between factories and the processing sequence in each fac-
tory to achieve the optimization of scheduling indicators.
Since these optimization problems are NP-hard, intelligent
algorithms are usually employed to solve them. Overtime,
scholars have been using genetic algorithms to solve dis-
tributed scheduling problems. In 2005, Chan et al. [16] used
an improved genetic algorithm to optimize the distributed
multi-factory scheduling problem without considering trans-
portation costs. In their research, a superior gene crossover
method was proposed to improve the algorithm performance
significantly. In 2011, Gao and Chen [17] designed a new
genetic algorithm to solve scheduling problems of distributed
replacement flow shop. The genetic algorithm improved the
crossover and mutation operations, and achieved a better
performance compared with the existed local search algo-
rithms. During the past five years, genetic algorithm-based
methods have become generalized research methods. For
example, to deal with the scheduling under the complex con-
straints in distributed manufacturing environments, in 2017,
Chang and Liu [18] applied Taguchi-enabled hybrid genetic
algorithm to study a coding mechanism for the scheduling of
distributed flexible job shop, which can resolve the invalid
job allocation problem and optimize the makespan. in 2018,
Lu et al. [19] improved the genetic algorithms performance
to solve the scheduling problem of distributed flexible job
shop. For achieving better load balancing of scheduling, they
developed a one-dimensional to three-dimensional decoding
method. Above-mentioned studies illustrate that distributed
scheduling problems can be solved by using suitable genetic
algorithms. However, researches are mainly focus on inde-
pendent scenarios at the manufacturing edge-side and insuf-
ficient constraints are not considered in existed scheduling
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models, which is not comprehensive enough to support the
ECC production scheduling.

C. DEVELOPMENT BACKGROUND AND RELATED
RESEARCH STATUS OF ECC
The emergence of ECC production paradigm is mainly based
on the market demands and technology development.

1) Market demands background: super-city groups will
be emerged when cities have matured and developed to a
certain stage. The business mode of one headquarters and
multi factories emerged and matured based on the network
manufacturing technology. To solve a semiconductor produc-
tion scheduling problem, Dong and Ye [20] presented a gray
wolf algorithm to allocate production tasks among multiple
heterogeneous factories reasonably to realize a collaborative
optimization. Chung et al. [21] studied a collaborative strat-
egy for distributed factories and proposed a hybrid genetic
algorithm to determine the production plan of each factory.
Vieira et al. [22] put forward the system integration method
to support the application of distributed scheduling in virtual
enterprises. In distributed manufacturing environment, above
studied scheduling methods are still focuses in the cloud-side
without developed and matured manufacturing edge tech-
niques. The super-city groups business mode increases the
system dynamic fluctuation, which raises a higher require-
ment for the production response period. But the single-side
scheduling cannot cope with such request. Therefore, cooper-
ative scheduling should be studied based on the edge-side and
cloud-side scheduling cases and super-city groups business
mode.

2) Technology development background: previously
mentioned cloud manufacturing paradigm has emerged and
developed with the development and integration of cloud
computing, IoT, and other technologies. Resource sharing
modes of cloud manufacturing make the data processing
more centralized. Although cloud has distributed compu-
tation ability by taking advantage of geographically dis-
persed computing resources, long-distance transmission of
the massive and heterogeneous data can cause a series of
problems, such as resource conflicts, computing delays,
energy consumption increasement, and bandwidth shortage.
Wang et al. [23] comprehensively analyzed the cloud manu-
facturing characteristics, and then pointed out that real-time
processing of large-scale heterogeneous manufacturing data
and efficient data migration between distributed servers will
make cloud manufacturing face serious challenges, such as
network and data security. Mezgár and Rauschecker [24]
pointed out some existed problems of cloud application such
as privacy protection and data storage by comparing with the
cloud computing architecture and cooperation mechanism
of manufacturing enterprises. Therefore, it can be seen that
higher demands of real-time, energy saving, and security for
computing tasks require the assistance of edge computing
to improve the utilization of computing resources. Limited
by the computing and data resources of manufacturing edge,
so it is difficult to cope with the contradiction between the

storage ability and data volume. However, the computing
architecture of ECC integrates cloud-side super-computing
and real-time, energy saving and security of manufacturing
edge-side. ECC architecture can not only has abundant cloud
resources, but also can obtain fast, economical and secure
data processing capabilities. The emergence of ECC stems
from the rapid development of edge technologies. At present,
companies from around the world have focused on edge oper-
ating systems or servers, edge operation architectures, edge
sensors, edge software, and other edge technologies such as
the ‘‘EC-IoT’’ and ‘‘LiteOS’’ systems developed by Huawei,
the IoT Edge Intelligence Server introduced by Advantech,
the Industrial Edge concept proposed by Siemens, a compact
edge sensor developed by ABB, and the ‘‘AWS Greengrass’’
released by Amazon.

Driving by ECC technologies, ECC production paradigm
has become a certain trend, and it has already been applied
in many fields. Moon et al. [25] proposed a collaborative
framework based on correlating of sample data. The frame-
work could select the best edge-side model from candidate
models of cloud-side to predict PM10 and PM2.5 concen-
trations in a future single space. Masip-Bruin et al. [26]
studied the collaborative management problem of edge-cloud
continuity, and proposed a layered model to demonstrate the
application of traffic control monitoring services in smart
cities. Based on the effectively integration of edge com-
puting and cloud computing, Wang et al. [27] proposed a
tensor-enabled edge-cloud computing framework and ser-
vice model to meet user requirements on cyber-physical-
social services. Similarly, the ECC paradigm has gradually
been focused in the manufacturing field. Afrin et al. [28]
designed an ECC based robotic framework to deal with the
limits of emergency management robots for smart factory in
performing delay-sensitive tasks. Minimizing of makespan,
energy consumption, and the total cost of resources
were mainly discussed in their research. Qi and Tao [3]
proposed an intelligent manufacturing hierarchy structure
based on edge computing, fog computing, and cloud com-
puting that could be used in digital twin workshops in
response to the problems of manufacturing systems in cloud
environments. This study opened up broad prospects for intel-
ligent manufacturing. Obviously, cloud scheduling or manu-
facturing edge scheduling can no longer effectively support
the ECC production paradigm. At present, the research on
ECCmainly focuses on environmentmonitoring, smart cities,
and manufacturing, etc. There are few research cases for
the ECC production scheduling. Some of the cases mainly
focus on production optimization issues, and ignore the
scheduling architecture and mechanism of ECC production
paradigm.

As above mentioned, the technology and market demand
can contribute to the evolution of production paradigm.
ECC has been widely researched in different industries, while
ECC scheduling is still in an early stage. Therefore, this
paper is committed to study the ECC production scheduling
mechanism.
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FIGURE 1. Scheduling framework of ECC production paradigm.

III. FRAMEKWOR OF ECC PRODUCTION SCHEDULING
The purpose of this paper is to study the ECC scheduling
mechanism and develop an ECC scheduling framework and
models. Fig. 1 shows the overall ECC scheduling archi-
tecture. The proposed infrastructure integrates the real-time
scheduling and periodic forecasting capability provided
by manufacturing edge-side and cloud-side. Continuous
scheduling optimization and optimal allocation of resources
will be achieved by the edge-cloud collaboration. The pro-
posed architecture and its mechanism will be introduced in
three aspects.

(1) Components: dynamic matching of production tasks
and resources at the manufacturing edge-side and the periodic
prediction in the headquarters cloud-side.

(2) Manufacturing edge-side function: decompose the
cloud-side orders of headquarters to match the production
sub-task with multi factory or plant. Then, sub-tasks assigned
to each plant will be scheduled in the plant to achieve opti-
mization.

The manufacturing edge-side is consisted of manufac-
turing resources layer and tasks execution layer. Each task
can communicate and interact each other autonomously
through task agent and factory agent. Based on information
sharing and a series of collaboration mechanisms, head-
quarters tasks will be assigned to each factory in accor-
dance with constraint conditions, and then sub-task will be
scheduled in each factory to ensure real-time distributed
scheduling.
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FIGURE 2. Conceptual diagram of the ECC production scheduling.

Headquarters cloud-side function: realize the periodic
forecast of overall completion time for the headquarters pro-
duction tasks. Upload and store the value-added data from
the edge-side to support the periodic prediction. Decompose
and sequence headquarters tasks based on periodic prediction
results, and then send the processed tasks to the manufac-
turing edge-side factory to assistant the real-time distributed
scheduling.

(3) Relationship: under the proposed ECC scheduling
framework, each edge-side factory and machine can be seen
as an independent agent. The cloud-side tasks agent and
edge-side resources agent can interconnect and have auton-
omy. In this paper, we assume that each machine agent can
store time-sensitive data, perform preliminary data process-
ing, data screening, and other value-added processing in
the manufacturing edge-side. The value-added data such as
device utilization rate, product qualification rate, machine
failure rate will be transferred to the headquarters cloud to
support the periodic forecast. The forecast results can directly
affect the headquarters order decomposition, and support the
tasks sequencing based on a series of evaluation criteria.
The decomposed sub-tasks will be sent to each factory and
scheduled within factory. That is the closed-loop mechanism
of ECC scheduling.

In summary, the proposed ECC scheduling framework can
cope with the order fluctuations problem caused by the per-
sonalized customization requirements. It can help the enter-
prise with multi-factories to achieve accurate prediction and
real-time scheduling optimization when facing with the order
fluctuations.

IV. MODELLING AND CASE VERIFICATION
The focus of the ECC scheduling is how to integrate the
capabilities of edge-side real-time response and cloud-side
accurate forecasting to effectively respond to the order
fluctuations. That is, the accuracy of cloud-side periodic pre-
diction and its supported real-time scheduling of edge-side
is the key research issues. Therefore, a collaborative pro-
duction scheduling model consisted of the cloud-side pre-
diction model and edge-side scheduling optimization model
is presented based on the neural network and generic algo-
rithm. The proposed collaborative scheduling model is aim
to achieve the overall completion time optimization for head-
quarters order. Based on the above mechanism, a conceptual
diagram of the ECC scheduling is built (as shown in Fig. 2).

A. HEADQUARTERS CLOUD-SIDE PREDICTION MODEL
The input data of collaborative scheduling model includes
three categories of data. The first is value-added data
(e.g. device utilization rate, product qualification rate,
machine failure rate, etc.), which is produced and sent by
edge-side factory. The second is some known data (e.g. pro-
duction capacity), which can reflect factory characteristics.
The last category is the customer orders. Based on these
data, the periodic forecast for task completion time will be
performed and the results will be used to support a more
accurate manufacturing edge-side scheduling.

Suppose there is an enterprise withB factories, each factory
has S equipments, and there are W orders from different
clients.
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The prediction model is shown in (1).

PFS = [P;E;QT ;MI ]

=


P1,P2, . . . ,PW ;
E1,E2, . . . ,ES;
Qk ;
UMk

 k = 1, 2 . . . , S b = 1, 2, . . . ,B

(1)

where P represents the product type and product quantity
included in the order. E represents the utilization rate of
the equipment, and Ea represents the utilization rate of the
equipment. QT refers to the qualification rate of products
in the most recently completed order, and Qs refers to the
qualification rate of products processed by equipments in
the recently completed order. MI refers to the equipment
operation information, and UMs represents failure rate of
equipment s.

Data fitting is competed to support the prediction based on
the feature data set of task completion time prediction. The
periodic prediction formula is

OCT = f (PFS) (2)

where f represents the correspondence between PFS
and OCT.
After periodic forecast of headquarters cloud-side, the cus-

tomer order is decomposed into multiple sub-tasks by con-
sidering the available resources of each edge-side factory.
Therefore, the order of G customers are decomposed into
multiple sub-tasks, and then produce a task set P =

{T11,T21, . . . ,Tgi}. A task package can contain several tasks
from a certain order or different orders. The task execution
sequence and machining process of each task have timing
and sequence constraints. The specific process is described
as follows. Each factory makes full use of its advantages in
resources to chooses capability-matching tasks to complete
the headquarters cloud-side order. Weighted mean-based
tasks sorting method is presented to determine the tasks
sequencing based on the value of sorting weight TPW (Tgi).
Higher ranking weight of tasks indicate that the customer’s
needs should be prioritized. From there, δ1 + δ2 = 1.

TPW (Tgi) = δ1Egi + δ2CSgi (3)

Egi =
egi − cgi

G∑
g=1

N∑
i=1

(egi − cgi)

(4)

CSgi =
CTgi
ET

(5)

where Egi represents the profit margin of Tgi. egi denotes the
expected revenues of Tgi. cgi represents the expected cost of
Tgi. CSgi represents the credibility of customer g from Tgi.
CTgi indicates the cooperative time of customer g from Tgi,
and ET indicates the establishment time of the group of
companies. The longer the cooperation time, the better the
credibility of customer.

B. EDGE-SIDE SCHEDULING OPTIMIZATION MODEL
Edge-side scheduling optimization is an important part of the
ECC scheduling model. The model is based on the following
conditions and assumptions:

(1) Any sub-task can only be processed in one factory.
(2) Only one piece of equipment can be selected for any

machining process.
(3) Once each of machining process of each work-piece

started, it cannot be interrupted or preempted.
(4) Ignore nonproductive time and cost, such as change-

over, transportation, etc.
To design the scheduling strategy of ECC production

paradigms, the optimization goals and constraints must be
determined. The parameters of the manufacturing edge-side
model are shown in Table 1. For achieving the task-resource
matching of edge-side, the cost minimization is chose as the
goal to complete tasks allocation.

The objective function can be expressed as:

minC = min
G∑
g=1

N∑
i=1

cgi (6)

During the matching process, the following constraints
exist:

cgi =
B∑
b=1

ugibhgiXgib, ∀g, i (7)

N∑
i=1

cgi ≤ Cmax
g , ∀g (8)

B∑
b=1

Xgib = 1, g ∈ [1,G], i = [1,N ] (9)

G∑
g=1

N∑
i=1

Xgib ≤ nb, b ∈ [1,B] (10)

Xgib ≤ lgib, ∀g, i, b (11)

The cost of Tgi is defined in the (7). The manufacturing
cost of Tgi cannot exceed the maximum manufacturing cost
specified by customers is shown in (8). A sub-task can only
select one candidate factory is indicated in (9). (10) and (11)
present the constraints of production capacity. Factory with
sufficient resources to manufacture the product can carry out
production.

After the completion task-resource matching, production
scheduling is performed within each factory, which is rel-
atively independent. Aiming at minimize the makespan,
the objective function is expressed as:

minFTmax (12)

Scheduling process has the following constraints:

FTmax ≥ FTgi ≥ FTgij, ∀j (13)
S∑

k=1

vgijk = 1, ∀g, i, j (14)
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TABLE 1. Parameters of the manufacturing edge-side model.

G∑
g=1

N∑
i=1

Mgi∑
j=1

ygijkp ≤ 1, ∀k, p (15)

Nk∑
p=1

ygijkp = vgijk , ∀g, i, j (16)

S∑
k=1

Nk =
G∑
g=1

N∑
i=1

Mgi (17)

FTgij = STgij +
S∑

k=1

tgijkvgijk , ∀g, i, j (18)

STaoe ≥ FTgij −
(
1− zgijaoe

)
×R, ∀i, o, g, a, e, j, ∀k ∈ Kgij ∩ Kaoe

(19)

zgijaoe + zaoegij ≥ vgijk+vaoe−1, ∀g, i, j, a, e, j, k (20)

FTgij ≤ STgi(j+1), ∀g, i, ∀j = 1, . . . ,Mgi − 1

(21)

FTgij = STgij +
S∑

k=1

tgijkvgijk , ∀g, i, j (22)

PFkp +
G∑
g=1

N∑
i=1

Mgi∑
j=1

ygijkptgijk

≤ PSk(p+1), ∀k, p=1, . . . ,Nk−1 (23)

The definition of makespan is shown in (13). (14) and (15)
illustrate that each operation of each sub-task can only be
assigned to one machine, and each machine can process only
one operation of the sub-task at the same time. Each oper-
ation in each sub-task can only be assigned to one location
of machine that is indicated in (16). (17) shows that the
total number of processes be processed for all equipments
are equal to the total number of sub-tasks. The operation
cannot be interrupted before completion, which is guaranteed
by (18). The processing sequence for two non-continuous
operations which are processed on the same machine are
defined in (19) and (20). The processing sequence of two
consecutive processes are clarified in (21) and (22). (23)
points out that one equipment can only complete one process
at a time.

C. CASE VALIDATION
The headquarters of a mechanical products manufacturing
enterprise locates in the center of Shanghai, China. The
enterprise establishes some edge-side factories at the border
of the city. The edge-side factories are developed, and the
logistics distance between headquarters and each factory are
less than 2 hours, so the impact of logistics on task allo-
cation is not considered. On the basis of ignoring logistics
costs, orders can be assigned to any factories. Only the data
collaboration between the edge-side and cloud-side models
should be verified, since the cloud and edge test environments
are quite mature under current conditions. The algorithm of
this case study is implemented with Matlab 2018b. For task
matching and factory manufacturing, the genetic algorithms
is employed. The algorithm parameters are set as follows:
the population size is 100, the iteration number is 100, the
crossover rate is 0.7, and the mutational rate is 0.1. For
completion time prediction from cloud, set its hidden layers
as 4.

Existing orders from 10 customers (g1-g10) are issued to
the headquarters. The order contains 10 different types of
mechanical parts (A-J ), each of which has different process
routes. Then production tasks in each order are allocated to
5 factories for production, and each plant has 10 machines
to assist in manufacturing (where parts A-J are represented
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TABLE 2. Partial decomposition results of cloud-side order tasks.

FIGURE 3. Gantt chart for process scheduling.

by i1-i10). The customer releases information of orders in
the cloud and decomposes it according to the sub-task type.
Partial decomposition results are shown in Table 2.

According to (3), the sort weights TPW (Tgi) of the
task has a certain impact on the internal scheduling of the
manufacturing edge. We assume that δ1 = 0.6 and δ2 = 0.4,
and the results in descending order: T34, T64, T68, T14, T88,
T78, T62, T77, T27, T26, T108, T63, T94, T65, T107, T37, T91, T55,
and T51.
In this study, the following information are known: 1) the

unit cost of each sub-task from different customers in dif-
ferent factories. 2) the highest manufacturing cost that each
customer can accept. 3) the restriction of production capac-
ity for the five factories. 4) the production resources of
each factory. Taking the above data as input, assigning each
sub-task to five factories, then the minimum total cost is
51234682.37 Chinese dollar. The allocation results are shown
in Table 3.

From the allocation results, there are 19 sub-tasks for
processing in Factory 1, which are T14, T26, T27, T34, T37,
T51, T55, T62, T63, T64, T65, T68, T77, T78, T88, T91, T94, T107
andT108.

Factory 2, Factory 3, Factory 4, and Factory 5 have 12, 17,
22, and 17 processing tasks, respectively, and the procedures
of each sub-task are different. In Factory 1, for example,
production production scheduling is performed inside the

TABLE 3. The allocation results among sub-task and factory.

factory. The information of available machine of Factory 1 is
shown in Table 4 and the processing time of each process is
shown in Table 5.

According to the proposed scheduling strategy, the schedul-
ing results are shown in Fig. 3. The completion times of the
19 sub-tasks are 406, 467.52, 479.98, 501.34, 518.18, 526.64,
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TABLE 4. The information of available machine in Factory 1.

TABLE 5. The processing time of each operation in Factory 1.

568.19, 587.5, 594.39, 609.31, 634.12, 679.13, 684.2, 685.14,
693.13, 712.46, 753.9, 766.65, and 768.97.

The edge-side real-time production data of Factory 1 is
processed, and the value-added data is sent to headquarters

cloud-side to predict the task completion time periodically by
(1). On the basis of T94, T51 and T62, T91 is predicted on the
20th day, and the predicted completion time is 483.26. Based
on the previously completed production tasks, the completion
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TABLE 6. Comparison of actual completion time and predicted completion time.

FIGURE 4. Tend graph of relative errors.

times of T27, T65, T108, and T64 are predicted on the 22th,
26th, 29th and 32th days with the results of 548.36, 615.29,
674.36 and 749.64. Then comparison results of the actual
completion time and the predicted completion time about
these three tasks are shown in Table 6, and a relative error
trend is shown in Fig. 4. It is obvious that the relative error
between the actual value and predicted value is smaller with
the increasing of data volume, and the prediction results
become more accurate when data mining is performed in the
cloud. At the same time, we randomly generate 1000 samples,
and the calculation results show that the edge-side can still
satisfy the needs of computing when facing with a large
amount of data. Therefore, it is verified that the proposed
ECC scheduling method can well realize data coordination
for the headquarters-factory paradigm, and achieve accurate
scheduling at the edge-side based on the cloud-side periodic
prediction results. With the increasing of data scale, the man-
ufacturing edge-side can still support the current equivalent
level of calculation, so this mechanism is also effective in the
case of a sudden increase in data.

V. CONCLUSION AND FUTURE WORK
In conclusion, cloud-side scheduling or manufacturing edge-
side scheduling can no longer effectively support the
headquarters-factory business mode and response to the order
dynamic fluctuations caused by personalized customiza-
tion demands. Driving by the ECC technologies and its
enabled production paradigm, an ECC scheduling method
and its framework, mechanism, and model are discussed and

developed in this paper. A case study is conducted to demon-
strate the proposed method. The contributions of this paper
are summarized as follows:

1) The concept of ECC scheduling is proposed, which
aims at coping with order dynamic fluctuations.

2) To address the ECC schedulingmethod, the framework,
mechanism, and models are presented, which sup-
port the real-time distributed scheduling and periodic
prediction to achieve optimal allocation of cloud-side
headquarters orders and edge-side factory resources.

At present, the ECC production scheduling is still in an
early stage. This paper proposes an ECC scheduling method
and verifies its rationality. However, there are still some
unconsidered factors, such as uncertainties of real-time work-
flows and others. Therefore, some further research will be
carried out in the future. The development of edge technol-
ogy, ECC scheduling mechanisms and methods will promote
the ECC scheduling research. In addition, some diversified
verification methods and technologies (e.g. virtual simulation
and the digital twin, etc.) will be used to improve the accuracy
of real-time scheduling decisions.
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