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ABSTRACT The objective of this paper is to derive a tight and efficient lower bound for the minimum
sum coloring problem. This NP-hard problem is a variant of the classical graph coloring problem where the
objective is to minimize the sum of the colors. A column generation approach is proposed to solve the linear
relaxation of a set partition-based formulation. Various enhancements are proposed in order to efficiently
obtain attractive columns while avoiding as much as possible the exact solution of the huge number of the
NP-hard pricing problems. Experimental results conducted on 42 hard benchmark instances show an average
reduction of 89.73% of the gap between the best known lower and upper bounds, including 14 new optimality
results.

INDEX TERMS Chromatic sum, graph coloring, column generation, lower bound.

I. INTRODUCTION
In this paper, we consider the Minimum Sum Coloring Prob-
lem (MSCP) which can be formally defined as follows: Let
G = (V ,E) be an undirected graph, where V = {v1, . . . , vn}
is a set of n vertices and E is a set of m edges. Given a set of
K colors {1, . . . ,K }, the MSCP consists in assigning a color
to each vertex such that no adjacent vertices have the same
color, while minimizing the sum of assigned colors. In other
words, we need to find a mapping c : V → {1, . . . ,K } such
that:
• c(vi) 6= c(vj) for all (vi, vj) ∈ E .
• the chromatic sum

∑n
i=1 c(vi) is minimized.

Interestingly, the MSCP has a variety of practical applica-
tions including:
• VLSI design: It consists in minimizing the total wiring
length that is used in connecting nets to terminals and
tracks so that no overlapping nets can be routed within
the same track ( [1], [2] and [3]).

• Resource allocation: The objective is to minimize the
average response time of a system of processors that
compete over resources where no two jobs with conflict-
ing requirements are executed simultaneously [4].

• Job scheduling: Dependent jobs are to be scheduled on
multiple dedicated machines, where each job requires
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the exclusive use of at most k machines. The objective
is to minimize the total completion time [5].

• Clustering: The cluster deletion problem consists in
finding the minimum number of edges that can be
removed from an input graph to obtain a cluster
graph, i.e. where every connected component is a
clique [6].

• Fixed interval scheduling with machine-dependent pro-
cessing costs: A feasible non-preemptive schedule with
minimum total processing costs is to be found in a
parallel machine environment where jobs are processed
during fixed time intervals and incur some machine-
dependent processing costs [7].

The MSCP models many graph coloring generalizations
such as the sum multi-coloring [8], the sum list coloring [9],
and the bandwidth coloring [10]. Actually, the MSCP is a
variant of the classical graph coloring problem. The latter
problem consists in finding the so-called chromatic number
of a graph G, which is the minimum number of colors χ (G)
for which no two adjacent nodes of G have the same color.
It is worth noting that the number of colors needed to get
the smallest chromatic sum is called the strength s(G) of
the graph G which is actually an upper bound on χ (G). For
illustrative purpose, the graph depicted in Figure 2 has a chro-
matic number χ (G) = 2 (Figure 1a.), but requires 3 colors to
achieve the chromatic sum of 11 i.e. s(G) = 3 (Figure 1b).
Note that using only 2 colors leads to a suboptimal sum of 12.
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FIGURE 1. Difference between the classical graph coloring problem and
the MSCP.

Kubicka and Schwenk [11] have shown that the MSCP
is NP-hard in general, but polynomial time solvable for
trees. The dynamic programming algorithm for trees can be
extended to partial k-trees, block graphs and cographs [12].
Moreover, the MSCP can be solved in polynomial time on a
wide subclass of graphs ( [13] and [14]).

Polynomial-time algorithms and k-approximations algo-
rithm have been proposed for some special cases of graphs,
such as interval graphs and bipartite graphs ( [7] and [15]).
Numerous heuristic approaches have been proposed for the
MSCP. Li et al [16] presented two families of greedy algo-
rithms for theMSCP and improved the two previous state-of-
the-art greedy algorithms of Brelaz [17] and Leighton [18].
Later on, an effective heuristic which is based on indepen-
dent set extraction has been proposed by Wu and Hao [19].
This method has shown a potential to perform well on large
graphs with more than 500 vertices improving numerous best
known upper bounds on benchmark instances. During the
last decade, various local search heuristics and metaheuris-
tics have been proposed for the MSCP. These include the
Tabu Search algorithm of Bouziri and Jouini [20], the Multi-
Neighbourhood search of Helmar and Chiarandini [21],
the Breakout Local Search algorithm of Benlic and Hao [22],
the Memetic Algorithms of Moukrim et al. [23] and
Jin et al. [24], the Hybrid Evolutionary Search of Jin and
Hao [25], the D-Wave Quantum Computer-based approach
of Mahasinghe et al. [26], the Parallel Metaheuristics of
Kokosiński and Bała [27], and the bi-objective genetic algo-
rithm of Harrabi and Siala [28].

As far as we know, the only exact approaches that have
been proposed for the MSCP are the quadratic program-
ming model of Wang et al. [29] and the branch-and-bound
algorithm of Lecat et al. [30]. For more references on
MSCP, the reader is referred to the recent review paper of
Jin et al. [31].
The objective of this paper is to derive a tight and effi-

cient lower bound for the MSCP. For this purpose, a set
partition-based formulation is proposed and is shown that it
yields a linear relaxation that outperforms those of the edge-
based and the vertex-based formulations. Note that the set
partitioning formulation has been successfully applied for the
classical graph coloring problem (see for instance Mehrotra
and Trick [32], Hansen et al. [33], Malaguti et al. [34],
Gualandi and Malucelli [35], and Held et al. [36]).

Although its extension to the MSCP looks quite straightfor-
ward, it seems that the graph coloring research community
apprehended its use due to its high computational burden.
Indeed, the set partition-based formulation for the MSCP
involves much more columns than that for the classical graph
coloring problem. More importantly, it requires a signifi-
cantly larger number of pricing problems that need to be
solved. In this paper, an efficient column generation approach
is proposed to solve the linear relaxation of the set partition-
based formulation. Various enhancements are devised in
order to significantly reduce the number of pricing problems
to be solved. These include the following procedures:
• A graph reduction procedure that substantially reduces
the size of the graph by removing a set of unnecessary
vertices along with their incident edges.

• An unattractiveness detection procedure that enables to
preliminary check the nonexistence of an attractive col-
umn for a given color without solving the corresponding
pricing problem.

• An attractiveness checking procedure that takes benefit
from already generated columns for a given color to
derive attractive ones for larger colors without solving
their corresponding pricing problems.

• A heuristic solution that potentially generate attractive
column without resorting to solve the pricing problem
exactly.

Our experimental results provide strong evidence of the
proposed enhancement since only 16.99% of the pricing
problems had to be solved exactly, on average. Moreover,
our proposed lower bound provides results that are larger
than or equal to the best known values of the state-of-the-
art lower bounds for all of the considered 42 benchmark
instances. Indeed, consistent reductions of the gap between
the best known lower and upper bounds have been obtained
(89.73% on average). The optimal solution has been reached
for 33 out of 42 instances, including 14 new optimality
results. The best known lower bounds being substantially
improved for 7 out of the 9 remaining instances.

The remaining of this paper is organized as follows.
Section 2 describes three mathematical formulations of
the MSCP, along with some dominance relationships
between their respective linear relaxations. Section 3 details
the proposed column generation approach for the MSCP
with several enhancements for an efficient convergence.
Section 4 presents the computational results obtained on
various benchmark instances. Section 5 is devoted to the
conclusion and some directions for future research.

II. STATE-OF-THE-ART LOWER BOUNDS
In this section, we describe the existing lower bounds of the
literature that have been proposed for the MSCP.

A. ALGEBRAIC LOWER BOUNDS
Based on minimum bipartite graph computation, Thomassen
et al. [37] have shown that

⌈√
8m

⌉
is a valid lower bound for

the MSCP (recall that m denotes the number of edges in the
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considered graph). To the best of our knowledge, this is the
first lower bound that has been proposed so far for theMSCP.
Later on, Kokosinski and Kwarciany [38] have remarked that
since the minimum number of colors to get the chromatic sum
is s(G), then a lower bound on the minimum sum coloring
with exactly s(G) can be obtained by assigning color i to each
node i = 1, . . . , s(G) and color 1 to each of the remaining
n − s(G) nodes. Therefore,

∑s(G)
i=1 i + (n − s(G)) = n +

s(G)(s(G)−1)/2 is a valid lower bound for the chromatic sum.
Since s(G) is at least equal to the chromatic number χ (G),
then valid lower bound is n+ χ (G)(χ (G)− 1)/2.
In the MSCP community, the bound LBt = max{d

√
8me,

n+χ (G)(χ (G)−1)/2} is referred to as the theoretical lower
bound.

Recently, Lecat et al. [39] used the so-called motif concept
to derive a clever algebraic lower bound for the MSCP. This
concept was originally proposed to compute upper bounds
for the chromatic strength [40]. The obtained lower bound,
denoted hereafter by LBM ∑, exhibited a very good perfor-
mance on various sets of benchmark instances.

B. CLIQUE PARTITION-BASED LOWER BOUNDS
Moukrim et al. [41] observed that the chromatic sum of
any partial graph G′ of G is a lower bound for the chro-
matic sum of G. Therefore, they focused on extracting some
special partial graphs for which the chromatic sum can be
efficiently computed, such as path unions, trees and cliques.
They showed that path unions and trees do not yield promis-
ing lower bounds. Indeed, their experimental results showed
that even an upper bound on the chromatic sum of such
partial graphs gives very weak values. However, they found
interesting to partition the graph G into disjoint cliques

G1,G2, . . . ,Gl so as to maximize 6l
i=1

ni(ni+1)
2 , where ni

denotes the number of nodes in clique Gi (i = 1, . . . , l)
(note that the optimal chromatic sum of a clique Gi is equal
to ni(ni+1)

2 which is obtained by assigning color h to each
node h = 1, 2, . . . , ni). By observing that any coloring of the
complementary graph G′ = (V ,V 2

\E) provides a partion
of G into cliques, it turns out that a lower bound for the
MSCP can be obtained by solving a coloring problem on G′.
Moukrim et al. [41] solved the latter problem by using a
Repeated Modified Degree Saturation algorithm (RMDS).
It consists in repeating n times on the graph G′, each time
starting from a different vertex, a greedy algorithm which
is based on the so-called ‘‘modified degree saturation’’ rule
developed by Li et al. [16].
The idea of clique decomposition has been later revisited

by several authors. Helmar and Chiarandini [21] solved the
coloring problem that is defined on G′ by using the fifth vari-
ant of the Modified Degree Saturation greedy algorithm pro-
posed by Li et al. [16], denoted by MDS(5), together with a
local search algorithm that is based on variable neighborhood
search and iterated local search. Douiri and Elbernoussi [42]
used an ant colony optimization algorithm (ANT ) to solve
the same problem. Wu and Hao [43] proposed a clique

extraction approach (EXCLIQUE) that iteratively identifies
and removes the maximum number of independent cliques
having the largest size. Moukrim et al. [23] devised a
Memetic Algorithm (MA − MSCP) hybridizing a simple
genetic algorithm with local search. The best results obtained
so far have been obtained by the Hybrid Evolutionary Search
Algorithm (HESA) of Jin and Hao [25] which integrates
several special features to ensure a high search efficiency,
including an original recombination mechanism to generate
offspring solutions and an iterated double-phase tabu search
procedure to ensure local optimization. For more information
about tabu search algorithm, the reader is referred to [44].
Recently, Wu et al [45] proposes an extraction and backward
expansion approach (EBES) to compute upper and lower
bounds of the sum coloring problem. Based on the princi-
ple of “reduce-and-solve”, the approach first investigates an
extraction phase that mainly reduces the size of the given
graph by extracting as many collections of color classes
as possible. Then, during the backward extension phase,
the heuristic approach recovers the intermediate graphs by
adding the extracted independent sets. To get tight bounds
for the sum coloring problem, EBES optimizes the coloring
of each intermediate graph.

III. MATHEMATICAL PROGRAMMING FORMULATIONS
A. A VERTEX-BASED FORMULATION
Define the neighbourhood of a vertex vi, denoted by δi, as
the set of adjacent vertices to vertex vi (i.e. δi = {vj ∈ V :
(vi, vj) ∈ E}). Let di = |δi| denote the degree of vertex vi.
Let xik = 1 if vertex vi is colored with color k, and xik = 0
otherwise. The sum coloring problem can be modeled using
the following so called vertex-based formulation (Recall that
n is the number of vertices and K is the number of colors):

(PV ) : Minimize
n∑
i=1

K∑
k=1

kxik (1)

subject to:
K∑
k=1

xik = 1 ∀i = 1, . . . , n (2)∑
vj∈δi

xjk ≤ di(1− xik ) ∀i = 1, . . . , n;

∀k = 1, . . . ,K (3)

xik ∈ {0, 1} ∀i = 1, . . . , n;

∀k = 1, . . . ,K (4)

The objective function (1) is to minimize the total sum of
coloring. Constraints (2) ensure that each vertex is colored
only once. Constraints (3) state that for each vertex vi ∈ V ,
no adjacent vertex can have the same color as vi. Finally,
Constraints (4) indicate that the decision variables xik are
binary-valued.

B. AN EDGE-BASED FORMULATION
Following the same notations of the vertex-based model, one
could restate Constraints (3) so as the two extremities of each
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edge cannot receive the same color. This yields the following
edge-based mathematical program:

(PE ) : Minimize
n∑
i=1

K∑
k=1

kxik (5)

subject to:
K∑
k=1

xik = 1 ∀i = 1, . . . , n (6)

xik + xjk ≤ 1 ∀k = 1, . . . ,K ;

∀(vi, vj) ∈ E (7)

xik ∈ {0, 1} ∀i = 1, . . . , n;

∀k = 1, . . . ,K (8)

It is worth noting that the edge-based formulation has
been first proposed by Sen et al. [2] for the sum coloring
problem. It is worth noting that relaxing Constraint (4) by
setting xik ∈ [0, 1] (∀i = 1, . . . , n; ∀k = 1, . . . ,K ) yields
a larger feasible solutions space and its optimal solution will
therefore constitute a valid lower bound for the MSCP. Such
a transformation is referred to as the linear relaxation of the
original integer program. Interestingly, the following result
shows that the linear relaxation of the edge-based model
dominates the one of the vertex-based program.
Proposition 1: Let Z∗E and Z∗V denote the optimal objective

value of the linear relaxation of the edge-based and the vertex-
based formulations, respectively. We have:

Z∗E ≥ Z
∗
V

Proof: It suffices to show that (PE ) is the result of apply-
ing the Reformulation and Linearization Technique (RLT)
on (PV ).

• The Reformulation Phase: It is easy to show that Con-
straints (3) can be re-written as the following nonlinear
constraints:

xik
∑
vj∈δi

xjk = 0 ∀i = 1, . . . , n; ∀k = 1, . . . ,K (9)

Constraints (4) imply that:

xik ≤ 1; ∀i = 1, . . . , n; ∀k = 1, . . . ,K (10)

Consequently, if we multiply Constraints (10) from both
sides by (1− xjk ) ; ∀vj ∈ δi, then we obtain:

(1− xjk ) ∗ xik ≤ 1− xjk
∀i = 1, . . . , n; ∀k = 1, . . . ,K ; ∀vj ∈ δi (11)

⇔ xik − xjk ∗ xik ≤ 1− xjk
∀i = 1, . . . , n; ∀k = 1, . . . ,K ; ∀vj ∈ δi (12)

• The Linearization Phase: Let tkij = xjk ∗ xik . Therefore,
Constraints (12) are equivalent to:

xik − tkij + xjk ≤ 1 ∀(vi, vj) ∈ E; ∀k = 1, . . . ,K

(13)

On the other hand, Constraints (9) are equivalent to:∑
vj∈δi

tkij = 0 ∀i = 1, . . . , n; ∀k = 1, . . . ,K (14)

From (14), we get:

tkij = 0 ∀(vi, vj) ∈ E; ∀k = 1, . . . ,K (15)

Using (15) in (13), we can conclude that:

xik + xjk ≤ 1 ∀(vi, vj) ∈ E; ∀k = 1, . . . ,K (16)

Therefore, applying RLT on (PV ) yields (PE ). According
to Sherali and Adams [46] the convex hull of the obtained
RLT formulation (PE ) is always included in the convex hull
of the original formulation (PV ). That is, the linear relax-
ation of (PE ) dominates that of (PV ). Consequently, we have
Z∗E ≥ Z

∗
V .

C. A SET PARTITIONING FORMULATION
In this section, we propose a set partitioning formulation
which is based on the concept of maximum independent set.
In graph theory, an independent set is a set of vertices that
does not include any adjacent vertices. The main idea of
this formulation is to assign each vertex in the graph to an
independent set. The objective is therefore to minimize the
sum of costs related to all independent sets.

Let R denote the total number of independent sets in V .
Define Sr ⊆ V as the r th independent set andCkr = k∗|Sr | as
the cost of coloring set Sr with color k . For any given vi ∈ V
and r = 1, . . . ,R, let air = 1 if vi ∈ Sr and 0 otherwise.
Now, we define the decision variable Xkr by Xkr = 1 if
color k is assigned to the vertices of Sr and 0 otherwise. The
minimum sum coloring problem can be then formulated by
the following integer linear programming model:

(PS ) : Minimize
K∑
k=1

R∑
r=1

CkrXkr (17)

Subject to:
K∑
k=1

R∑
r=1

airXkr = 1 ∀i = 1, . . . , n

(18)
R∑
r=1

Xkr ≤ 1 ∀k = 1, . . . ,K (19)

Xkr ∈ {0, 1} ∀k = 1, . . . ,K , ∀r ∈ R

(20)

The objective (17) is to minimize the total cost of inde-
pendent sets. Constraints (18) stipulate that among all sets
including a given vertex vi, only one set Sr will be assigned a
color. Note that assigning a color to a unique independent set
does not require this set to be maximal. Indeed, as the reader
may appreciate from Figure 1b, the independent set S1 = {5}
is not maximal since it is included in the independent set S2 =
{1, 2, 3, 5}. However, the optimal sum coloring is obtained by
assigning a color to S1 which is different from that of {1, 2, 3}.
Constraints (19) ensure that each color k should be assigned
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to at most one set Sr . Finally, Constraints (20) indicate that
the decision variables Xkr are binary-valued.
The following result shows that the linear relaxation of the

set partitioning formulation dominates the one of the edge-
based model.
Proposition 2: Let Z∗S denote the optimal objective value

of the linear relaxation of the set partitioning formulation.
We have:

Z∗S ≥ Z
∗
E

Proof: It suffices to show that the linear relaxation
of (PS ) corresponds to the Dantzig-Wolfe decomposition
of the linear relaxation of (PE ). Denote by Xk the vector
(x1k , x2k , . . . , xnk ) for k = 1, . . . ,K , by Ck the vector of n
elements all equal to k , 1n a vector of n elements all equal
to one, 1m a vector of m elements all equal to one and by
A the edge-vertex incidence matrix of the graph. The linear
relaxation of (PE ) can be written as follows:

(LPE ) : Minimize
K∑
k=1

CT
k Xk (21)

subject to:
K∑
k=1

Xk = 1n (22)

AXk ≤ 1m ∀k = 1, . . . ,K (23)

Xk ∈ [0, 1]n ∀k = 1, . . . ,K (24)

Now, consider the feasible region 5k = {Xk : AXk ≤ 1m,
Xk ∈ [0, 1]n} and denote by {X0

k ,X
1
k , . . . ,X

Rk
k } the set of its

extreme points. Note that any point Xk ∈5k can be expressed
as a convex combination of X0

k ,X
1
k , . . . ,X

Rk
k . That is:

Xk =
Rk∑
j=0

λkj X
j
k (25)

Rk∑
j=0

λkj = 1 (26)

λkj ∈ [0, 1] ∀j ∈ {0, . . . ,Rk} (27)

It is clear that n is an extreme point of5k (say without loss
of generality X0

k = n). Therefore, Equations (25)-(27) may
be written as follows:

Xk =
Rk∑
j=1

λkj X
j
k (28)

Rk∑
j=1

λkj ≤ 1 (29)

λkj ∈ [0, 1] ∀j ∈ {1, . . . ,Rk} (30)

By using Equations (28)-(30) in (21)-(24), we obtain the
following mathematical program which is nothing but the
linear relaxation of (PS ):

Minimize
K∑
k=1

CT
k

Rk∑
j=1

λkj X
j
k (31)

subject to:
K∑
k=1

Rk∑
j=1

λkj X
j
k = 1n (32)

Rk∑
j=1

λkj = 1 (33)

λkj ∈ [0, 1] ∀k = 1, . . . ,K ,

j ∈ {1, . . . ,Rk} (34)

At this point, it should be noticed that a set partitioning
formulation has been proposed for the classical graph color-
ing problem and was efficiently solved using column genera-
tion and Branch-and-Price techniques (Malaguti et al. [34],
Gualandi and Malucelli [35], Held et al. [36]). However,
to the best of our knowledge, these techniques have never
been used for solving the set partitioning model for the min-
imum sum coloring problem. This is most probably due to
the huge number of pricing problems that need to be solved
compared to those generated for the classical graph coloring
problem. Indeed, while solving only one pricing problem at
each iteration is enough for the classical coloring problem,
theMSCP requires solving a separate pricing problem at each
iteration for each color k = 1, . . . ,K in order to guarantee the
convergence of the column generation algorithm. As it will
be shown in the next section, an enhanced column generation
approach is proposed to efficiently deal with the huge number
of pricing problems.

IV. A COLUMN GENERATION APPROACH
The objective of this paper is to derive strong lower bounds
for the minimum sum coloring problem. For that purpose,
we propose a column generation model to solve the lin-
ear relaxation of the set partitioning formulation. Column
generation technique is a powerful approach that has been
successfully used to solve large-sized linear programs. It con-
sists in starting with solving the so called Master Restricted
Problem (MRP), which is a reduced version of the linear
relaxation of the original problem including only L inde-
pendent sets (L << R). Actually, the MRP includes much
less decision variables (or columns) than the original one.
Then, an optimality test is performed in order to check the
existence/nonexistence of some attractive columns i.e. some
variables that would improve the solution if they are added to
theMRP. For that purpose, an optimization problem, referred
to as the pricing problem, is solved with the objective of
finding a column with minimum reduced cost. If such a
column has a negative reduced cost, then it it will be included
in the MRP which will be solved again. Otherwise, we can
conclude that there is no column with negative reduced cost,
which means that the currently found solution is optimal.
Let C denote the set of columns with negative reduced

costs that are obtained after solving the pricing problems.
The proposed column generation procedure is detailed in
Algorithm 1:
The initial set of columns of the MRP is constructed as

follows. Let MISG denote the Maximum Independent Set
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Algorithm 1 General Framework of the Column Generation
Procedure
Input: An undirected graph G = (V ,E).
Output: A lower bound Z∗S .
Step 0: Generate a feasible solution on the graph G. Let
S = {S1, S2, . . . , SL} denote the obtained set of indepen-
dent subsets.
Step 1: Solve the MRP on the set S using a commercial
solver and Set Z∗MRP to its optimal objective value. Set
C = ∅.
Step 2: Solve the pricing problem corresponding to each
color k = 1, . . . ,K. Add all obtained attractive columns
(if any) to C.
Step 3: If C 6= ∅, then set S = S ∪ C and go to Step 1.
Else, Set Z∗S=Z

∗
MRP and Stop.

problem defined on a graphG = (V ,E). It consists in finding
a subset of vertices V ′ ⊆ V with maximum cardinality such
that no two vertices of V ′ are adjacent. Clearly, all vertices
of V ′ can be colored with the same color. The Maximum
Independent Set problem can be mathematically formulated
as follows:

(MISG) : Maximize
n∑
i=1

yi (35)

Such that:

yi + yj ≤ 1 ∀(vi, vj) ∈ E (36)

yi ∈ {0, 1} ∀vi ∈ V (37)

The initial set of columns of theMRP is constructed using
the following simple constructive heuristic which requires
iteratively solving a maximum independent set problem
(Algorithm 2):

Algorithm 2 Initialization of the Column Generation
Procedure

Input:An undirected graph G = (V ,E) and its corre-
sponding MRP.
Output: A feasible coloring c(vi) for all i ∈ V .
Step 0: Set k=1.
Step 1: Solve MISG and SetV ′ = {vi ∈ V : yi = 1}.
Let c(vi) = k for all vi ∈ V ′ and include the column
corresponding to k in the MRP.
Step 2: Update the graph G by setting V = V\V ′ and
E = E\{(vi, vj) ∈ E : vi ∈ V ′ or vj ∈ V ′}.
Step 3: If V 6= ∅, then set k = k + 1 and go to Step 1.
Else, Stop.

After solving the MRP, one needs to check the optimality
of the obtained solution. For this aim, we solve the pricing
problem in order to detect attractive columns. Since we are
dealing with aminimization problem, only columnswith neg-
ative reduced costs will be added to themaster restricted prob-
lem. We denote by αi the dual variables of the constraint (32)

and βk the dual variables of the constraint (33). A column
Ak associated to color k is attractive if it is feasible and its
reduced cost is negative. Feasibility means that there is no
two adjacent vertices in the subset of vertices selected in this
column i.e. aik + ajk ≤ 1, ∀(vi, vj) ∈ E . The reduced cost
of a column is computed as follows:

n∑
i=1

(k − αi) ∗ aik − βk (38)

Hence, our pricing problem can be expressed as follows:

(Pk ) : Minimize Zk =
n∑
i=1

(k − αi).aik (39)

Such that:

aik + ajk ≤ 1 : ∀(vi, vj) ∈ E (40)

aik ∈ {0, 1} : ∀vi ∈ V ,∀k = 1, . . . ,K (41)

Let Z∗k denote the optimal objective value of (Pk ). Clearly,
if Z∗k < βk , then the optimal values of (aik ) constitute
an attractive column Ak . Note that the pricing problem is
equivalent to a maximum weighted independent set problem
which turns out to be NP-hard [47]. Although it is quite
efficiently solved by commercial solvers, it makes the col-
umn generation procedure time consuming due to the large
number of generated pricing problems. In the following,
various enhancement procedures are proposed to accelerate
the convergence of the proposed approach by avoiding the
exact solution of the generated pricing problems as much as
possible.

A. GRAPH REDUCTION
Interestingly, the size of the graph can be substantially
reduced using the following observation:
Observation 1:At a given iteration, all vertices vi such that

αi ≤ k can be removed from the graph, together with their
incident edges.

Proof: If αi < k, then any feasible solution of (Pk ) such
that aik = 1 is clearly suboptimal. Indeed, modifying such
a solution by setting aik = 0 yields a feasible solution with
better objective value. Therefore, vertex vi will never appear
in the optimal solution of (Pk ). If αi = k , then any optimal
solution of (Pk ) such that aik = 1 will remain optimal if aik
is set equal to zero. Therefore, removing vertex vi from the
graph will not change the optimal objective value of (Pk ).
Moreover, since vertex vi satisfies αi ≤ k ′ for any k ′ > k ,
then removing vertex vi from the graph will not change
the optimal solution of the pricing problems (Pk ′ ) for all
k ′ = k + 1, . . . ,K .
In the sequel, it is assumed without loss of generality that

all vertices of the graph satisfy αi > k.

B. UNATTRACTIVENESS DETECTION
The following result provides a simple test that enables to
preliminary check the nonexistence of an attractive column
for a given color k without solving the pricing problem (Pk ).
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Observation 2: If
∑

vi∈V (k − αi) ≥ βk , then there is no
attractive column for color k .

Proof: Since all vertices vi of the reduced graph satify
αi > k, then

∑
vi∈V (k − αi) ≤

∑
vi∈V (k − αi).aik for any

feasible solution (aik ) of (Pk ). Therefore, if
∑

vi∈V (k −αi) ≥
βk , then the reduced cost of columnAk will be positive for any
solution of (Pk ).Consequently, color k will have no attractive
column.

Interestingly, the following observation shows that the
optimal solution of a given pricing problem (Pk ) can be
useful to detect the nonexistence of an attractive column for
larger values of k without solving the corresponding pricing
problems.
Observation 3: For a given k ′ > k, if Z∗k ≥ βk ′ , then there

is no attractive column for color k ′.
Proof: Clearly, we have Z∗k ≤ Z∗k ′ for all k ′ > k.

Therefore, if Z∗k ≥ βk ′ , then all feasible solutions of (Pk ′ )
will satisfy

∑
vi∈V (k

′
− αi).aik ≥ βk ′ . Consequently, color k ′

will have no attractive column.

C. ATTRACTIVENESS CHECKING
Let Ak denote an attractive column for color k, i.e. a feasi-
ble solution (aik ) of (Pk ) such that

∑
vi∈V (k − αi) < βk .

Algorithm 3 describes a procedure that takes benefit from Ak
in order to derive attractive columns for colors k ′ > k without
solving the pricing problems (Pk ′ ).

Algorithm 3 Attractiveness Checking Procedure
Input: An undirected graph G = (V ,E) and an attractive
column Ak for color k.
Output: A set of attractive columns Ak ′ for all k ′ ≥ k.
Set V ′ = V .
For k ′ = k + 1, . . . ,K
Set V ′ = V ′\{vi ∈ V ′ : αi ≤ k ′}.
If

∑
vi∈V ′ (k

′
−αi) < βk ′ then Ak ′ = Ak∩V ′ is an attractive

column for color k ′.
End (for)

D. HEURISTIC SOLUTION
If the pricing problem of a given color k > 1 is not identified
to be useless to solve (using the unattractiveness detection
procedure), or no attractive column could be derived from
previous obtained columns (using the attractiveness check-
ing procedure), then one has to solve it. In this section,
we propose an ultimate attempt to potentially generate an
attractive column without resorting to solve the pricing prob-
lem exactly. It consists in using the following greedy algo-
rithm to find a (maximum) weighted independent set σ
(Algorithm 4). Let3(vi) denote the set of adjacent vertices of
node vi.

Now if
∑

vi∈σ (k−αi) < βk , then an attractive columnAk is
obtained by setting aik = 1 for vi ∈ σ and aik = 0 otherwise.
Actually, Step 2 of Algorithm 1 is replaced by Algorithm 5
that generates attractive columns after embedding all the

Algorithm 4 Greedy Algorithm for the Pricing Problem
Input:An undirected graphG = (V ,E) and3(vi) = {vj ∈
V : (vi, vj) ∈ E} for all vi ∈ V .
Output: A maximum weighted independent set σ.
Step 1. Let v0 be the node of V with largest αi.
Step 2. Set σ = σ ∪ {v0} and V = V\3(v0).
Step 3. If V = ∅, then STOP. Else, go to Step 1.

Algorithm 5 Enhanced Generation of Attractive Columns
Input: An undirected graph G = (V ,E) and the optimal
solution of its MRP.
Output: An attractive column Ak for each color k =
1, . . . ,K .

Step 0. Set k = 1, C = ∅ and P =
K⋃
k=1

Pk .

Step 1. While (Pk /∈ P and k ≤ K )
k = k + 1

End (while)
If k = K + 1 then Stop.

Step 2. For vi ∈ V
If αi ≤ k, then set V = V\{vi} and E = E\Ei

End (for)
Step 3. If

∑
vi∈V (k − αi) ≥ βk , then set P = P\Pk , k =

k + 1 and go to Step 1.
Step 4. Apply theHeuristic Solution procedure. If an attrac-
tive column Ak is obtained, then set C = C ∪ {Ak}, P =
P\Pk and go to Step 7.
Step 5. Solve (Pk ) using a commercial solver and set P =
P\Pk . If Z∗k < βk then an attractive column Ak is obtained
and set C = C ∪ {Ak}. Else go to Step 8.
Step 6. For k ′ = k + 1, . . . ,K

If Z∗k ≥ βk ′ then set P = P\Pk ′
End (for)

Step 7. Set V ′ = V .
For k ′ = k + 1, . . . ,K

Set V ′ = V ′\{vi ∈ V ′ : αi ≤ k ′}.
If

∑
vi∈V ′ (k

′
−αi) < βk ′ then set C = C ∪ {Ak ∩

V ′}, P = P\Pk ′
End (for)

Step 8. Set k = k + 1 and go to Step 1.

proposed enhancements, where P denotes the set of pricing
problems that need to be solved, and Ei denotes the set of
edges that are incident to vertex vi ∈ V .

The following example illustrates one iteration of the col-
umn generation procedure after embedding the enhancement
procedures.
Example 1: Consider the 6 vertex-9 edge graph that is dis-

played in Figure 2a. Figure 2b depicts the initial solution with
cost equal to 12 (generated byAlgorithm 2). The obtained sets
are S1 = {1, 2, 4}, S2 = {3}, S3 = {5} and S4 = {6}. After
solving the first MRP, we get βk = 0 for all k = 1, ..,K
and

α1 = 3, α2 = 0, α3 = 2, α4 = 0, α5 = 3, α6 = 4
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FIGURE 2. An illustrative example.

k = 1 : According to Observation 1, vertices 2 and 4 will
be removed from the graph. The resulting graph is dis-
played in Figure 2c. Note that no unattractiveness could be
detected according to Observation 2 since

∑
vi∈V (k − αi) =

−8 < β1. Also, the attractiveness checking cannot be applied
since there is no previously found attractive column in this
step. After applying the greedy heuristic to the pricing prob-
lem, we obtain

a11 = 1, a21 = 0, a31 = 0, a41 = 0, a51 = 0, a61 = 1

The obtained column is considered attractive since its
reduced cost is equal to −5.
k = 2 : Since α3 = 2 ≤ k , then vertex 3 will be removed

from the graph according to Observation 1. The resulting
graph is displayed in Figure 2d. Now, after applying attrac-
tiveness checking, we observe that the column generated for
the previous color (k = 1) defined by a11 = 1, a21 = 0,
a31 = 0, a41 = 0, a51 = 0, a61 = 1 remains attractive since∑

vi∈V (k − αi) = −3 < β2.
k = 3 : Now the graph will only include vertex 6 since

vertices 1 and 5 will be removed thanks to Observation 1.
Since 3 − α6 = −1 < β3, then the column defined by
a11 = 0, a21 = 0, a31 = 0, a41 = 0, a51 = 0, a61 = 1 is
attractive according to the attractiveness checking procedure.

k = 4 : Since α6 = 4, then vertex 6 is removed from
the graph which becomes empty. The procedure moves to
the next iteration of the column generation procedure after
appending all the generated attractive columns to the MRP.
Note that the exact solution of the pricing problem has not
been called during the whole iteration.

V. COMPUTATIONAL EXPERIMENTS
All of the proposed procedures have been coded using C++
and compiled with Visual studio 2012. The linear programs
have been solved by Cplex 12.6. Computational experiments

were conducted on an i7 processor with 2.6 Ghz and 16 Gb
of available memory.

Our experiments have been conducted on a set of 42 bench-
mark instances. Some of these instances come from the sec-
ondDIMACS challenge 1 while the others are part of COLOR
2002-2004 competitions.2 We limited the size of the consid-
ered graphs to 225 vertices or 7000 edges. Indeed, the run-
time of the proposed approach on larger graphs significantly
exceeded our time limit of 1800 seconds. The number of
colors K has been set to the state-of-the-art upper bound on
the chromatic strength, namely the bound UBS proposed by
Lecat et al. [48]. The considered instances refer to various
topologies and densities, which can be classified into the
following types:

• Five graphs based on the Mycielski transformation:
myciela with a ∈ {3; 4; 5; 6; 7}.

• Twenty one graphs from the Donald Knuth’s Stan-
ford GraphBase: milesn with n ∈ {250; 500; 750; 1000;
1500}, anna, david, huck, jean, games120, queena.a
with a ∈ {5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15}, and
queen8.12.

• Six graphs based on register allocation: mulsol.i.a with
a ∈ {1; 2; 3; 4; 5} and zeroin.i.3.

• Four graphs that have a hard-to-find four clique embed-
ded: mugn_a with n ∈ {88; 100} and a ∈ {1; 25}.

• Two ‘‘insertion’’ graphs: 2-insert_3 and 3-insert_3.
• Three classical random graphs: DSJC125.a with
a ∈ {1; 5; 9}.

A. RESULTS OF THE STATE-OF-THE-ART LOWER BOUNDS
Table 1 displays the results of each lower bound of the lit-
erature on the considered benchmark instances. In this table,
we provide for each instance:

• |V |: the number of vertices.
• |E|: the number of edges.
• UB∗: the best known upper bound of the literature [31].
• LBt : the value of the theoretical lower bound.
• LBRMDS : the value of the lower bound of
Moukrim et al. [41].

• LBMDS(5)+LS : the value of the lower bound of Helmar
and Chiarandini [21].

• LBANT : the value of the lower bound of Douiri and
Elbernoussi [42].

• LBEXCLIQUE : the value of the lower bound of Wu and
Hao [43].

• LBMA−MSCP: the value of the lower bound of Moukrim
et al. [23].

• LBHESA: the value of the lower bound of Jin and
Hao [25].

• LBM ∑: the value of the lower bound of Lecat et al [39].
• LB∗: the maximum value over all of the lower bounds of
the literature.

1 http://dimacs.rutgers.edu/Challenges/
2 http://mat.gsia.cmu.edu/COLOR02
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TABLE 1. Results of the State-of-the-art lower bounds.

It should be noted that the lower bound of Wu et al [45]
has not been computed on any of the considered benchmark
instances. It is clearly observed from Table 1 that, for all
instances, the best values are obtained by LBHESA and LBM ∑.
Moreover, despite the various methods that have been pro-
posed in the literature, there is still a need to close the gap
for the considered medium-sized benchmark instances. The
scope of this paper is to contribute in closing this gap.

B. EFFECTIVENESS OF THE PROPOSED COLUMN
GENERATION PROCEDURE
Table 2 shows the results of the lower bounds that are pro-
vided by each of the presented mathematical formulations.
For each formulation, we provide:

• – LBh: the obtained lower bound, with h ∈ {E,V , S}.
– Gaph: the obtained relative gap defined by Gaph =

100UB
∗
−LBh
LBh

, with h ∈ {E,V , S}.

– Redh: the obtained gap reduction (if any) with
respect to the best known bounds of the liter-
ature, defined by Redh = 100 LBh−LB

∗

UB∗−LB∗ , with
h ∈ {E,V , S}.

In Table 2, the italic entries denote the improved best
known results and the bold entries denote the optimal values.
Entries that are marked with an asterisk denote new optimal-
ity results.

Table 2 provides strong evidence of the good quality of
the proposed column generation procedure. From this table,
we observe that the set partioning lower bound consistently
outperforms the edge-based and the vertex-based bounds.
Indeed, the average relative gap of LBS is only 0.80%whereas
those of LBE and LBV are equal to 268.99% and 275.40%,
respectively. These empirical results strongly support the the-
oretical dominance between the mathematical formulations.

As a matter of fact, LBS provides lower bounds that
are larger than or equal to the best known values of the
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TABLE 2. Effectiveness of the proposed column generation procedure.

state-of-the-art lower bounds for all of the 42 instances.
Furthermore, thanks to the proposed column generation pro-
cedure, the gap between the best known lower and upper
bounds has been reduced by 89.73%, on average. More inter-
estingly, the set partitioning lower bound is able to reach the
optimal solution for 33 instances out of 42, among which
14 results are new optimality ones (i.e. LB∗ < LBS = UB∗).
The best known lower bounds being substantially improved
for 7 out of the 9 remaining instances. For illustrative purpose,
the gap between the best known upper and lower bounds
has been reduced by 99.24% for one of the largest instances,
namely DSJC125.9.

C. EFFICIENCY OF THE PROPOSED COLUMN
GENERATION PROCEDURE
The aim of this section is two fold. First, we want to mea-
sure how practical is the computation of the set partitioning

lower bound. Second, we want to assess the impact of the
implemented enhancements on the column generation pro-
cedure. Table 3 depicts, for each instance, the number of
solved pricing problems, the required CPU time to compute
LBS (in seconds) and the ratio of the CPU time of the rough
version of the column generation procedure (i.e. where all the
pricing problems are solved exactly) over the CPU time of the
enhanced version.

From Table 3, we can see that the proposed column
generation procedure requires an average computation time
of 247.71 seconds, which is quite reasonable for obtaining
such close gaps for hard benchmark instances. Actually,
the required CPU time was less than one minute for 64%
of the instances (27 out of 42). Moreover, we remark that
the CPU tends to be higher when the number of vertices
is larger. Indeed, Table 3 clearly shows that, for the same
family, the number of solved pricing problems increases with
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TABLE 3. Efficiency of the proposed column generation procedure.

the number of vertices. However, for a constant number of
vertices, the number of solved pricing problems decreases
when the number of edges increases. As it will be detailed
in Table 4, this could be indeed explained by the fact the
‘‘Unattractiveness detection’’ procedure tends to be much
more effective for a fixed number of vertices and an increas-
ing number of edges. This can be clearly seen for instances
miles andDSJC. It is worth noting that solving the edge-based
and vertex-based formulations required an average CPU time
of 0.12 and 0.03 seconds, respectively.

It is interesting to mention that the proposed enhancements
have clearly contributed in reducing the overall computa-
tional effort. Indeed, embedding these enhancements enabled
the column generation procedure to be, on average, 3.31 times
faster than its rough version. It should be mentioned that
the latter version was rarely faster than the enhanced one
(5 cases out of 42). This is mainly due to the fact that

the total computation time for solving the master restricted
problems was longer for the enhanced version. Nevertheless,
the total dedicated time for solving the pricing problems was
much less for all the instances when the enhancements were
implemented.

Pushing our analysis a step further, Table 4 depicts the
impact of the different proposed enhancement procedures
in terms of avoidance of the exact solution of the pricing
problems. In this table, we provide for each instance:
• Unattractiveness detection: the percentage of pricing
problems that are identified not to provide any attrac-
tive column without recourse to their exact resolution
(i.e. thanks to Observations 2 and 3).

• Attractiveness checking: the percentage of times an
attractive column has been generated without solving its
corresponding pricing problem.

• Heuristic solution: the percentage of attractive columns
that have been generated using the proposed heuristic
procedure for the pricing problem (i.e. without resort-
ing to the exact algorithm for the maximum indepen-
dent set).

• Exact solution: the percentage of pricing problems
that needed to be solved exactly by the optimization
solver.

Table 4 provides strong evidence of the worth of imple-
menting the proposed enhancements. Indeed, the need of an
exact procedure for solving the pricing problem occured in
only 16.99% of the cases, on average. This percentage could
be as small as 2% in some instances such as queen15.15
where 96.72% of the pricing problems have been avoided
thanks to the ‘‘Unattractiveness detection’’ and ‘‘Attractive-
ness checking’’ procedures. Themost difficult set of instances
seems to be mulsol where the percentage of exactly solv-
ing the pricing problems was the highest one (61.41% on
average). Moreover, it appears that the ‘‘Unattractiveness
detection’’ procedure has the greatest impact since it served
to identify unworthy pricing problems in 54.26% of the cases,
on average. Interestingly, this percentage could reach high
values such as 87.48% for one of the largest instances, namely
miles1500. Recall that the lower bound of this 128 vertex-
5198 edge instance has been obtained in only 5.73 seconds,
and is proved to be optimal for the first time. The ‘‘attrac-
tiveness checking’’ procedure has the second impacting rank
since it made feasible to detect attractive columns in an
average of 22.30% of the cases without solving the pricing
problem. It is worth noting that, in some cases, the ‘‘attrac-
tive checking’’ procedure was even more impacting than the
‘‘Unattractiveness detection’’ one. These include all instances
of mulsol set and particularly 3-insert_3 instance where
54.56% of the generated attractive columns have been found
using the ‘‘attractiveness checking’’ procedure. It is worth
noting that even our weakest enhancement procedure, namely
the ‘‘heuristic solution’’, was able to avoid the exact solution
of the pricing problem in 41.5% of the cases where it has been
called.
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TABLE 4. Impact of the enhancement procedures.

D. THEORETICAL VERSUS PRACTICAL PERFORMANCE
OF THE PROPOSED PROCEDURE
It is worth noting that, due to the NP-hardness of the problem,
the computational complexity of the proposed approach is
not surprisingly exponential. Indeed, except Algorithm 3 and
Algorithm 4, which run inO(Kn) andO(n) time, respectively,
all the proposed algorithms run in exponential time. More
precisely, the complexity of Algorithm 1 is O(K2n) since
it may require generating all possible attractive columns.
Algorithm 2 runs in O(2n) time since it requires solving the
maximum independent set problem using a 0-1 mathemati-
cal formulation. Similarly, the complexity of Algorithm 5 is
O(2n) since it is bounded by the exact solution of the max-
imum weighted independent set problem. Consequently, the
whole approach requires a theoretical number ofO(K2n) iter-
ations. However, the proposed column generation procedure

includes enough smart components that make it very efficient
in practice. In our experimental study, we found that the
proposed column generation procedure empirically requires
a number of pricing problems which constitutes, on aver-
age, around 0.01% of the expected theoretical number. For
the sake of illustration, consider the instance on which our
column generation procedure required the largest CPU time,
namely instance zeroin.3. The generated number of pricing
problems is 138,660 which represents a fraction of about
10−58 of the corresponding theoretical number. Actually, this
kind of exponential algorithms that have empirical perfor-
mancesmuch better than their theoretical complexities is very
common in the combinatorial optimization community. One
of the most famous examples of such algorithms may be
the simplex method which, despite its exponential theoretical
complexity and the existence of polynomial-time methods
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TABLE 5. List of used symbols.

(such as the interior point method), is still implemented as
the default LP solver by CPLEX - one of the most powerful
optimization software [49].

VI. CONCLUSION
In the present paper, the minimum sum coloring prob-
lem is addressed. This problem commonly arises in many
domains such as scheduling and resource allocation. A new
tight lower bound based on a set partition formulation is
shown to dominate the linear relaxation of both edge-based
and vertex-based formulations. This lower bound is effi-
ciently computed by using a column generation approach
that is empowered by different procedures that substantially
help avoiding the exact solution of the pricing problems.
Experimental results conducted on hard benchmark instances
show significant reductions of the gap between the best
known lower and upper bounds, including 14 new optimality
results out of 42 instances.

The obtained results strongly motivate future research to
focus on designing a Branch-and-Price algorithm for the
exact solution of the minimum sum coloring problem. Also,
designing improved lower bounds for large real-lifeminimum
sum coloring instances could be a challenging future topic.
Another interesting practical application of theminimum sum
coloring problem that is worth of future investigation could be
the optimization of classroom scheduling where the weight of
the color represents the faculty preferences.

APPENDIX
LIST OF USED SYMBOLS
See Table 5.
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