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ABSTRACT Growing evidence shows that microbes in human body and body surface play critical roles
in the development of many human diseases. Predicting the underlying associations between diseases and
microbes is essential for deeply understanding the pathogenesis of diseases. However, biological experiments
to find the relationship between microbes and diseases is usually laborious and time-consuming, which
presents the need for effective computational tools. In this study, we propose a computational model of
node-information-based Link Propagation for Human Microbe-Disease Association prediction (LPHMDA)
to prioritize disease-related microbes. LPHMDA and 3 popular methods including KATZHMDA, PBH-
MDA, and LRLSHMDA were implemented and compared on the Human Microbe-Disease Association
Database (HMDAD) based on cross-validation. As a result, LPHMDA achieved an AUC of 0.9135 in
leave-one-out cross-validation (LOOCV), outperforming those of the 3 compared methods. In addition,
the performances of LPHDMA on the 3-fold CV, 5-fold CV and 10-fold CV were also better than those of
the other 3 canonical methods, further demonstrating its superiority. Finally, we took colorectal carcinoma,
asthma and obesity as case studies. Interestingly, 9, 9 and 8 of the top 10 novel microbes predicted by
LPHMDA to be associated with the 3 diseases respectively could be confirmed by literatures, providing
potential disease-associated microbes for further experimental validation. In summary, LPHMDA is an
effective method for prioritizing disease-associated microbes.

INDEX TERMS Microbe, disease, microbe-disease association, node-information, link propagation.

I. INTRODUCTION
Microbiota is all microbes existing on human body surfaces
and cavity mucous membrane connected with the outside
world [1]. Generally, microbes are divided into the following
categories: bacteria, fungi, archaea, viruses and others [2].
Microbes are widespread in our bodies and body surfaces,
having important effects on human metabolism, behavior,
development, adaptation and even evolution [3], [4]. There
are rich and diverse microbes in the intestinal tract, skin, oral
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cavity and genitourinary tract of the human body. It has been
confirmed that the number ofmicrobes that survive and repro-
duce in body and on the body surfaces is 100 billion, 10 times
the number of human cells [5]. Microbiota and human body
is a mutually beneficial symbiotic relationship [6]. Microbes
involved in human metabolism, such as using polysaccha-
rides and nitrogen compounds in diet [7], participating in drug
metabolism [8] and affecting drug efficacy [9]; participat-
ing in the regulation of the immune system [10], endocrine
system and nervous system. Scientists realized that simply
focusing on the human body and the human genome does not
fully grasp the key issues of human disease and health.
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Clinical studies show that the disorder of the microbial
population is related to multiple system diseases, including
digestive system diseases such as irritable bowel syn-
drome [11], inflammatory bowel disease [12]; immune
system diseases such as allergy [13], asthma [14], multi-
ple sclerosis [15]; metabolism and endocrine system dis-
eases such as obesity, diabetes [16]; neuropsychiatric
disorders such as depression [17], autism [18], and so on.

In view of the important medical value of a disease-related
microorganism, a number of sequence projects, such as the
Human Microbiome project (HMP) [19] were set up to
analyze the relationships between microbes and the human
health. Launched by the National Institutes of Health of
the United States, HMP samples 15 parts of hundreds of
people to analyze the species and structure of the microor-
ganisms on them. It isolated and cultured the microbial
strains, to determine its genome, and attempted to investi-
gate the associations between the microorganisms and the
human diseases. Furthermore, some public databases have
been established to collect and collate relevant information
about disease-related microbes. For example, Ma et al. col-
lected many experimental microbe-disease associations from
the published literature, formed the human microbe-disease
association database (HMDAD) [20]. These data provide a
basis for our systematic analysis of the relationships between
microorganisms and human diseases [21]. However, using
biological experiments to find out the associations between
microbes and diseases is expensive and time-consuming.
Moreover, biological experiments have certain blindness and
limitations, for example, some microbial strains cannot be
cultured. As a result, this part of the known microbial-disease
association data is still very few.

In recent years, researchers have proposed some computa-
tional methods to analyze the relationships between human
microbes and diseases. These methods have become a favor-
able supplement to biological experimental methods. They
have greatly contributed to further uncover the mysterious
veil of the relationships between microorganisms and human
diseases. Chen et al. first presented a computational method
based onKATZmeasure to prioritize non-infectious diseases-
related microbes (KATZHMDA) [22]. This method is the
first computational tool for mining microbe-disease asso-
ciations. It assumes that microbes with similar functions
tend to be associated with similar non-infectious diseases.
As an effective computational model, it has been greatly
improved prediction efficiency compared to traditional bio-
logical experiments. However, the prediction performance
still needs to be improved. Wang et al. [23] proposed
a semi-supervised method (named LRLSHMDA) for dis-
covering Human microbe-Disease Associations, which is
based on the framework of Laplacian Regularized Least
Squares. However, the disadvantage of this method is
that it is not suitable for the prediction of new diseases.
Huang et al. developed an approach of Path-Based Human
Microbe-Disease Association prediction (PBHMDA) [24],
in which a depth-first search algorithm was introduced

to traverse all paths in the heterogeneous network to
discover the most likely disease-related microbes. Peng et al.
proposed a method of Adaptive Boosting for Human
Microbe-Disease Association prediction (ABHMDA) [25],
in which a strong classifier has been utilized to capture the
relation probability of microbe-disease pairs. In addition,
Bao et al. proposed a method called NCPHMDA for inferring
disease-related microbes by utilizing network consistency
projection [26]. Wang et al. developed a novel model named
NBLPIHMDA [27], in which the framework of bidirectional
label propagation was introduced to reveal potential microbe-
disease associations. However, there are some shortcom-
ings in the above methods. For instance, some models can’t
work for new disease without known association information.
In addition, the performance of these models needs further
improvement.

In this work, we propose an approach of node-information
based Link Propagation for Human Microbe-Disease Asso-
ciation prediction (LPHMDA) to prioritize the most possible
disease-related microbes. Node similarity information that
contains Gaussian profile kernel similarity and character-
istics of disease symptom, has been integrated to promote
strong associations between the most likely nodes through
link propagation. Kronecker sum operation of the similar-
ity matrices and the technology of Eigenvalue transforma-
tion have been adopted to simplify the solving process of
the model. We applied LOOCV, k-fold cross validation and
case studies to assess the prediction ability of LPHMDA.
The results in these experimental situations indicate the reli-
able capability of LPHMDA for inferring the most possible
microbe-disease associations. LPHMDA achieves a superior
performance compared with previous approaches.

II. METHOD
A. DATA PREPARATION
In this study, the benchmark dataset can be down-
loaded from Human Microbe-Disease Association Database
(HMDAD) [20], which collecting the experimental verified
associations between microbes and diseases in the pub-
lished literature. After data processing, 450 high-quality
known associations including 292 microbes and 39 diseases
have been obtained. We denoted the adjacency matrix of
microbe-disease associations as P∗, whereas the element P∗ij
is set to 1 if there exists association between disease i and
microbe j, otherwise is set to 0. We define two sets of
microbe nodes and disease nodes byM ≡

{
m1,m2, · · ·m|M |

}
and D ≡

{
d1, d2, · · · d|D|

}
, respectively. |M | and |D| denote

the total number of microbe nodes and disease nodes,
respectively.

B. NODE SIMILARITY INFORMATION MEASUREMENT
Considering the heterogeneous network containing the nodes
microbes and diseases, in order to effectively predict the
association relationships among the two types of nodes,
we firstly measure the similarity information of the nodes in
this section. Here, we calculate Gaussian interaction profile
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FIGURE 1. Flowchart of LPHMDA demonstrating the basic ideas of revealing underlying microbe-disease associations by integrating node
similarity information.

kernel similarity for the two types of nodes based on known
microbe-disease associations. Binary vector Y(mi) denotes the
interaction profiles of microbe mi, and the value (1 or 0) in
Y(mi) records whether microbe mi is related to each disease.
The Gaussian kernel similarity for microbe mi and mj is
defined as follows:

GSm(mi,mj) = exp(−γm
∥∥Y (mi)− Y (mj)∥∥2) (1)

Here, γm is introducing to adjust the kernel bandwidth and
gets from normalizing another bandwidth parameter γ ′m by
the mean number of associations with disease per microbe:

γm = γ
′
m/

(
1
|M |

m∑
i=1

‖Y (mi)‖2
)

(2)

Similarly, the Gaussian kernel similarity for disease GSd
can be defined in a way similar to GSm. Since the Gaus-
sian kernel similarity calculated above is too dependent
on known associations, it is not comprehensive enough to
describe the node similarity information if there is very few
known microbe-disease pairs. Hence, we integrate the infor-
mation of disease and corresponding symptom, which can
be obtained from the symptom-based human disease net-
work (HSDN). Finally, by combining symptom-based disease
similarity matrix SDM and Gaussian kernel similarity GSd ,
the disease similarity matrix Sd is defined as follows:

Sd = (GSd + SDM) /2 (3)

1) LPHMDA
Motivated by the successful application of link propagation
method in Social Networks, drug-target association predic-
tion [28], [29], we explore the link propagation method

by constructing a novel computational model for predict-
ing potential microbe-disease associations. Link propagation
is a semi-supervised method which used similar principle
of label propagation to solve the problem of link predic-
tion in a heterogeneous network. This method assumes
that two pairs of similar nodes pairs have similar con-
nection strength. We transform the problem of discovering
underlying microbe-disease interactions into the task of link
strength prediction between the microbe nodes and the dis-
ease nodes in a network. The flowchart of LPHMDA is shown
in figure 1. Suppose P∗ is an adjacency matrix based on
known microbe-disease correlations supported by biological
experiment report.

Our goal is to obtain a prediction matrix P, in which the
element Pij represents the link strength between disease i and
microbe j. The higher value of link strength, the more likely
disease i is associated with microbe j.

Based on the above assumptions, we can obtain the
objective function of microbe-disease correlation prediction:

min
P

1
2

∥∥P− P∗∥∥2F + σ2 vec(P)TLvec(P) (4)

Here, the first term in the formula represents the constraint on
prediction error, and the second term is used to promote the
strong correlation ofmicrobe-disease to have closer edge con-
nection. Specifically, if the correlation intensity P∗ij between
microbe i and disease j is closer to that P∗lm of microbe l and
diseasem, the predicted intensity of the two pairs of nodes,P∗ij
and P∗lm, should be close to each other. The parameter σ is a
regularization parameter, which is used to achieve the balance
between the first term and the second term. For the purpose of
the above assumption, we define the following the Laplacian
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matrix based on the Kronecker sum:

L ≡ Qd ⊕ Qm − Sd ⊕ Sm (5)

Here, ⊕ represents Kronecker sum. In this study, we use
the normalized version of the above Laplacian matrix.
Sm and Sd represent the microbe similarity matrix and dis-
ease similarity matrix calculated above, respectively. Then,
we get the diagonal matrix Qm = diag(qm1 , q

m
2 , · · · q

m
|M |) and

Qd = diag(qd1 , q
d
2 , · · · q

d
|D|), where q

m
i (1 ≤ i ≤ |M |) repre-

sents the sum of similarity scores between the ith microbe
and all microbes, that is qmi =

∑
j
[Sm]ij. q

d
i (1 ≤ i ≤ |D|)

represents the sum of similarity scores between the jth disease
and all diseases, that is qdi =

∑
j
[Sd ]ij.

In order to obtain the final predicting matrix, formula (1)
can be derived from the variable p, and the analytical solution
of P can be obtained as follows:

vec(P) = (σL + I )−1vec(P∗) (6)

Note that, here we can directly calculate the value of
P in formula (4). However, a large amount of memory
and time overhead is required in the inverse operation of
the matrix, including the Kronecker operation. (For exam-
ple, O(|M |2 |D|2) and O(|M |3 |D|3), respectively). Because
Sm and Sd is a real symmetric matrix, the eigenvalue decom-
position technique is used here to improve the computational
efficiency. For convenience, we first provide the following
lemma. For the real symmetric matrices Sm and Sd , their
eigenvalue decompositions can be represented as Sm =
Rm3mRTm and Sd = Rd3dRTd , respectively. Then, the Kro-
necker sum Sm⊕Sd is equal to the R3RT , where R =Rm⊗Rd
and 3 = 3m ⊕ 3d . The sign ⊗ represents the Kronecker
product.

In detail, Let Sm = Rm
∧

mR
T
m and Sd = Rd

∧
dR

T
d be

the Eigen decompositions of similarity matrices Sm and Sd.
Matrix Rm andRd are composed of the eigenvectors of Sm and
Sd by column. 3m = diag(λm1 , λm2 , · · · , λm|M | ) and 3d =

diag(λd1 , λd2 , · · · , λd|D| ) represent diagonal matrices com-
posed of the eigenvalues of symmetric matrices Sm and Sd,
respectively. Based on the equivalence relation vec (AXB) =
(BT⊗A)vec(X), through the basic mathematical operation,
we can further obtain the solution of the model (4) (or the
equivalent solution to the solution (6) as follows:

vec (P) = R ((σ + 1) I − σ3)−1RT vec
(
P∗
)

= (Rm ⊗ Rd ) ((σ + 1) I − σ (3m ⊕3d ))
−1

×

(
RTm⊗R

T
d

)
vec

(
P∗
)

= (Rm ⊗ Rd ) ((σ + 1) I − σ (3m ⊕3d ))−1

× vec
(
RTd P

∗Rm
)

= (Rm ⊗ Rd ) vec
(
Q�

(
RTd P

∗Rm
))

= vec(Rd
(
Q�

(
RTd P

∗Rm
))

RTm) (7)

Then, we have

P = Rd
(
Q�

(
RTd P

∗Rm
))

RTm (8)

Here, Q is a diagonal matrix, and [Q]ij =
(
1+ σ

(
3−

(
λdi+

λmj
)))−1

◦ Besides, symbol� represents Hadamard product
of matrices. At this time, the inverse operation of the matrix
is converted to the reciprocal of the elements and the product
of the matrix, and the calculation efficiency is accelerated.

III. RESULTS
A. PERFORMANCE EVALUATION
To comprehensively evaluate the performance of LPH-
MDA in discovering underlying microbe-disease interac-
tions, we implement LOOCV based on the gold dataset.
In LOOCV, to be specific, each of 450 known associations
was left out in turn as test samples, and the remaining
449 were used as a training set to predict the score of associ-
ations. The score of 1 to 0 positions was compared with the
predicted scores of all unknown associations. Then, the rank-
ing values was obtained. Finally, we get the ranking list. If the
prediction score is greater than the given threshold, we think
the prediction is correct. A series of points can be obtained
by setting different threshold values, which correspond to dif-
ferent transverse and longitudinal coordinates. We use ROC
curve to evaluate the performance of the predicted results.

ROC curve is a comprehensive index to reflect the contin-
uous variables of sensitivity and specificity. It uses compo-
sition method to reveal the relationship between sensitivity
and specificity. By setting several different threshold values,
a series of sensitivities and specificities are calculated. Then
a curve is drawn with sensitivity as longitudinal coordinate
and (1-specificity) as transverse coordinate. The larger the
area under the curve, the higher the prediction accuracy is.
On the ROC curve, the point closest to the upper left of the
coordinate graph is the critical value with high sensitivity and
specificity.

However, in view of the sparsity of knownmicrobe-disease
interactions, using only AUC value to estimate the predict-
ing performance is arbitrary. Therefore, precision-recall (PR)
curve and area under PR curve (AUPR) was also using as
evaluation criterion to complement the performance estima-
tion. Precision is the relative ratio of the accurately asso-
ciations retrieved to all associations with score higher than
given threshold; the recall is the ratio of the accurately pre-
dicted associations to all the relevant results in the database.
In general, if the ROC curve and the PR curve have similar
changes, meanwhile the AUC and AUPR values more close
to 1, the prediction effect is better.

We compared LPHMDA with three state-of-art methods:
KATZHMDA, PBHMDA, and LRLSHMDA. We executed
a LOOCV for each method and the parameters of KATZH-
MDA, PBHMDA, and LRLSHMDA are chosen according to
the description of their literatures. In our method, there are
two parameters σ and α. Parameter σ is the regularization
parameter and α is an eigenvalue exponent in the model of
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FIGURE 2. ROC curves and average AUC values of LPHMDA and other
methods in LOOCV.

FIGURE 3. Precision-recall curves and AUPR values of LPHMDA,
KATZHMDA, PBHMDA and LRLSHMDA.

LPHMDA. It is worth noting that we choose the parameters
by grid searchmethodwithin the algorithm. For simplicity,the
eigenvalue index α was selected between 0 and 2 with a step
size of 0.1. Through the grid search method, we finally set the
parameters σ = 0.01 and α = 0.4, respectively. The ROC
curve of LPHMDA and other methods in LOOCV are shown
in Figure 2. The average AUC values of LPHMDA, KATZH-
MDA, PBHMDA, and LRLSHMDA are 0.9135, 0.8504,
0.8862 and 0.8945, respectively. LPHMDA achieves the best
result, and its average AUC values are 6.31%, 2.73% and
1.90% higher than other three existing computational meth-
ods. Meanwhile, the PR curve and AUPR values of LPH-
MDA, KATZHMDA, PBHMDA, and LRLSHMDA are also
shown in Figure 3. The performance of LPHMDA in terms
of PR curve is also superior to KATZHMDA, PBHMDA,
and LRLSHMDA, and the average AUPR are 3.15%, 3.31%
and 7.71% respectively, higher than other approaches. Evi-
dently, these results confirmed that LPHMDAperforms better
than that of KATZHMDA, PBHMDA, and LRLSHMDA in
LOOCV.

FIGURE 4. AUC values of LPHMDA for 3-fold, 5-fold, 10-fold
cross-validation.

Moreover, the 3-fold, 5-fold and 10-fold cross-validation
(CV) of our method on the benchmark dataset have also
been implemented, respectively. As shown in Figure 4,
in the framework of 3-fold CV, 5-fold CV and 10-fold CV,
the average AUC value of PLHMDA is 0.8852+/−0.0110,
0.8915+/−0.0082, 0.8964+/−0.0057, respectively. This
result shows that the proposed method performs well in
different situations.

B. CASE STUDIES
To further demonstrate the practical effect of LPHMDA for
revealing the potential relationships between microbes and
human digestive system and respiratory diseases from the
perspective of microorganisms, three common human dis-
eases were selected in the case studies, including colorectal
carcinoma, asthma and obesity. The prediction associations
between microbes and each selected diseases are verified by
previously published literatures.

Colorectal_carcinoma including colon cancer and rectal
cancer, it is one of the five malignant tumors. Almost 80%
of colorectal_carcinoma was late at the time of its discov-
ery, and the mortality rate of colorectal_carcinoma is very
high [30]. There are more than 1000 species of bacteria
in the human intestinal tract [31]. When faced with diet,
antibiotics, psychological stress and other stress, intestinal
flora disorders lead to the proliferation of potentially harmful
species, thus promoting the occurrence of diseases. In recent
years, studies have shown that intestinal microorganisms,
as important participants in the intestinal environment, may
be related to the occurrence and development of colorectal
cancer. The specific mechanisms include: increasing intesti-
nal wall permeability, promoting the release of cytokines
and chemokines, affecting intracellular signal transduction
pathways to promote the occurrence and development of
tumors [32]. In addition, a variety of enzymes with metabolic
activity produced by intestinal microorganisms can con-
vert procarcinogens into carcinogens. The top 10 poten-
tial microbes related to Colorectal_carcinoma predicted by
LPHMDA are shown in table 1. As a result, 9 of top 10 have
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TABLE 1. The top10 potential microbes related to Colorectal_carcinoma
identified by LPHMDA.

been validated by previous literature. For instance, through a
microbiome-based meta-analysis for Colorectal_carcinoma,
Shah et al found that Proteobacteria (1st in the rank list)
increased significantly in fecal samples of patients compared
to normal subjects [33]. In addition, it has been verified that,
Faecalibacterium_prausnitzii (2nd in the rank list) is one of
the most abundant species of bacteria in human gut. It can
be used as a biomarker for the diagnosis of colorectal cancer.
In different intestinal diseases, the abundance of Faecalibac-
terium_prausnitzii is reduced [34].

Bronchial asthma (asthma) characterized by chronic air-
way inflammation, has gradually become the main disease
in most industrialized countries. In recent years, the inci-
dence and mortality of asthma have gradually increased in
different countries and regions, and the incidence of bronchial
asthma in urban areas is significantly higher than that in rural
areas [14]. Studies have shown that the lower respiratory
tract is not a completely aseptic environment, in which there
are a large number of microbes [35]. When chronic airway
inflammatory diseases, including asthma, occur, the species
and quantity of bacteria in the lower respiratory tract will
change greatly [36]. To evaluate the prediction ability on
asthma, we conduct a case study of asthma based on our
method. As a result, 9 of top 10 have been validated by
experimental evidences documented in previous literature
(See table 2). For instance, infection with Pseudomonas (1st
in the rank list) can increase the occurrence of asthma [37].
Lactobacillus (2nd in the rank list) has the effect of preventing
and treating asthma [38]. Compared with asthmatic patients,
Firmicutes (3rd in the rank list) [39] and Actinobacteria
(6th in the rank list) are found more frequently in the samples
of non-asthma patients [39].

Obesity is a chronic metabolic disease that is caused
by multiple factors. Epidemiological data show that over
500 million overweight people in the world, even a lot of chil-
dren are obese. Obesity is the main factor of various chronic
diseases and has a serious effect on human health. The cause
of obesity is the result of a variety of factors such as genetic,
environment and so on. More and more evidences show that,
intestinal microbes are involved in body weight regulation,

TABLE 2. The top10 potential microbes related to Asthma identified by
LPHMDA.

TABLE 3. The top10 potential microbes related to Obesity identified by
LPHMDA.

energy metabolism and inflammation, and play an important
role in the occurrence of obesity. Natural delivery, breast-
feeding, and avoidance of early-life antibiotic exposure is
beneficial to the maintenance of the balance of the intesti-
nal microbes and may reduce the risk of obesity. Probiotics
may alter the composition of the intestinal microbes, thereby
affecting food consumption and body weight.

In order to explore the relationships between obesity and
microbes, we conduct a case study of obesity based on our
method. As a result, 8 of top 10 are confirmed by previous lit-
erature. For instance, some experiment results demonstrated
that Proteobacteria (1st in the rank list) [40], Clostridia (2nd
in the rank list) [41] and Prevotella (3rd in the rank list) [42]
may be implicated in obesity. Furthermore, Lactabacillas (4th
in the rank list) affects the body weight and body fat in obese
people [43]. Overall, the results of case studies further verify
the prediction effect on the relationships between microbes
and specific diseases.

IV. DISCUSSION
A large number of microbes exist in the mouth, intestines,
skin and urogenital tract of the human body. Microorgan-
ism and human body are a mutually beneficial symbiotic
relationship. Microbes have important effects on human
metabolism, behavior, development, adaptation and even
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evolution. Increasing evidences show that microbes playing a
critical role in the development of human diseases. Disorders
of microbiota can lead to a variety of diseases, including
digestive diseases, immune system diseases, metabolic and
endocrine system diseases and so on. Studying on the poten-
tial relationships between human diseases and microbes is
a very meaningful and challenging work for deepening the
disease research from a microbiological point of view. In this
study, we propose a novel approach LPHMDA to discover
the underlying microbe-disease associations. In LOOCV,
the average AUC value of LPHMDA was 0.9135, which
is better than that of KATZHMDA (0.8504), PBHMDA
(0.8862) and LRLSHMDA (0.8945). The results of 3-fold
CV, 5-fold CV, 10-fold CV and case studies further demon-
strate the strong prediction power of LPHMDA for revealing
microbe-disease associations.

Link propagation is a semi-supervised method which is
used in the field of social networks and achieves good per-
formance. It assumes that two pairs of similar nodes pairs
have similar connection strength. The problem of discover-
ing underlying microbe-disease interactions can be transform
into the task of link strength prediction between the microbe
nodes and the disease nodes in a network. Compared with
other methods, link propagation algorithm is suitable to solve
this kind of association prediction problem. We have made
some improvements to the traditional model to make it more
efficient to predict microbe-diseases association. Some of
the main factors for the reliable performance of LPHMDA
can be summarized as follows. Firstly, we consider node
similarity information in the framework of link propagation
through combining Gaussian interaction profile kernel sim-
ilarity and disease symptom information, which can pro-
mote the strong correlation of microbe-disease to have closer
edge connection. Secondly, the Kronecker sum operation
of the similarity matrix and the technology of Eigenvalue
conversion improve the computational efficiency during the
process of solving model. It reduces the large amount of
memory and time overhead required in the inverse operation
of the matrices. It could be further expand its application in
large-scale microbe-disease association networks. Of course,
LPHMDA also has some limitations. Firstly, despite the
improving prediction performance of LPHMDA compared
to previous approaches, it is expected that the prediction
ability will be further improved if a more comprehensive
similarity calculation method is taken into account. Many
research teams put forward some efficient models that we
can introduce them to this new field of research. For example,
some excellent models for predicting disease-associated non-
coding RNA [44]–[56], drug-target associations [57], [58],
and some advanced and practical machine learning methods
in bioinformatics [59]–[63]. Secondly, the selection of param-
eters can be further optimized. Third, the interactions among
microbes and diseases could be formulated as a networkmod-
els and network methods could be adjusted to solve this prob-
lem [64]. In addition, the evolutionary historymicrobesmight
be useful in predicting its association with diseases [65], [66].

Finally, the development of disease is a complex process
involving many factors. We can consider the relationships
between diseases and other molecules [67]–[72], make a
comprehensive analysis of the diseases in the future.
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