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ABSTRACT This paper is on a coverage estimation procedure for the deployment of outdoor Internet of
Things (IoT). In the first part of the paper, a data-driven coverage estimation technique is proposed. The
estimation technique combines multiple machine-learning-based regression ideas. The proposed technique
achieves two purposes. The first purpose is to reduce the bias in the estimated received signal strength arising
from estimations performed only on the successfully received packets. The second purpose is to exploit
commonality of physical parameters, e.g. antenna-gain, in measurements that are made across multiple
propagation environments. It also provides the correct link function for performing a nonlinear regression
in our communication systems context. In the second part of the paper, a method to use readily available
geographic information system (GIS) data (for classifying geographic areas into various propagation
environments) followed by an algorithm for estimating received signal strength (which is motivated by the
first part of the paper) is proposed. Together they enable quick and automated estimation of coverage in
outdoor environments. It is anticipated that these will lead to faster and more efficient deployment of outdoor
Internet of Things.

INDEX TERMS Coverage, geographic information system (GIS), heterogeneous propagation environment,

Internet of Things (IoT) deployment.

I. INTRODUCTION

Given the anticipated expansion of the Internet of Things
(IoT), traditional deployment strategies that involve ‘“‘deploy
first and fine-tune later” approaches are not scalable. One
needs automated methods for large scale [oT network deploy-
ment. To enable this, one approach is to move away from
the manpower-intensive measurement surveys of a particu-
lar deployment region, and instead utilize prior knowledge
of the terrain and prior measurements in typical envi-
ronments to arrive at estimations of signal coverage. The
prior knowledge of the terrain can come from geographic
information system (GIS) data. The prior measurements in
typical environments can come from extensive prior exper-
imentation in typical propagation environments. Such an
approach, which is based on GIS data and prior measure-
ments, can lead to quick and automated estimation of cov-
erage at an early stage of network design. The resulting
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estimations of received signal strength indication (RSSI)
before actual deployment will save valuable human resources
and can lead to rapid and more efficient network design
and deployment. This paper demonstrates that quick esti-
mation of coverage, based on GIS data and extensive prior
measurements in typical propagation environments, is indeed
possible.

Some networks designs are based on estimated chan-
nel parameters — path loss exponents, antenna-gain param-
eters for a specific transmitter-receiver antenna pair,
frequency-dependent decay parameters, etc. — coming from
extensive RSSI measurements. However, in typical operating
system implementations, such as Contiki, these RSSI mea-
surements are made available to the upper layers only on
correctly received packets. It is then immediate that the esti-
mation of RSSI on the link is biased because it depends only
on correctly received packets. Some other network designs
are based only on the packet error rate (PER) measurements
without ever relying on the RSSI measurements. There is then
an opportunity to improve coverage estimation by combining
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FIGURE 1. The building blocks of the coverage estimation tool.

the two link quality indicators (RSSI on correctly received
packets and PER).

It is also often the case that the same (or the same type of)
transmitters and receivers are used across measurements. But
these measurements may have been collected across multiple
example propagation environments. There is then an added
opportunity to exploit the knowledge that the antenna-gain
parameters are the same (or similar) across measurements,
even though the propagation environments across the mea-
surements may have been different.

Our first goal in this paper is to propose a scheme that
exploits the two opportunities highlighted above to come
up with a better link quality estimation. We combine the
RSSI measurements of correctly received packets and the
PER due to lost packets to reduce the aforementioned bias
in the estimated RSSI. Our scheme is a nonlinear regression
scheme (akin to logistic regression) and works jointly with a
regression-based estimation framework. The regression part
minimizes the error between the measured RSSI on correctly
received packets and the predicted RSSI. The logistic-like
regression part takes into account the communication theo-
retic model of transmission over a Rayleigh fading channel
or a Rician fading channel.! Together, they exploit the knowl-
edge that the antenna-gain parameters are common across the
measurements in the different propagation environments. The
outcome is a more unbiased estimate of the received signal
strength than the one that relies only on measured RSSI on
the correctly received packets. Maltz et al. [2] considered the
effect of lost packets in inferring network performance but in
a different context of how the lost packets affect detection
of changes in the network topology. Our work is towards
improving the network design by coming up with a better
link quality estimate via a more unbiased estimate of RSSI.
We have consciously stayed away from neural network and
SVM-based approach for channel modeling. The reason is
that our physics-based models have fewer parameters that

IExtension to other fading channels, e.g., Nakagami-m, are straightfor-
ward; we do not pursue them here for the sake of brevity.
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could be well estimated and easily interpreted. The general
purpose neural network and SVM-based approaches do not
afford this interpretability.

Our second goal in this paper is to demonstrate that
quick estimation of coverage, based on available GIS data
and extensive prior measurements in example propagation
environments, is possible. We describe a tool which has
been developed in-house by the authors. The tool takes the
open-source GIS data for the (heterogeneous) deployment
region under consideration as input. The tool can classify the
deployment area into various regions with different propaga-
tion characteristics. The methods of the first part of this paper
are then applied to each of the smaller component regions to
get the local propagation parameters. The tool then stitches
these local estimates together to estimate the overall RSSI
between any candidate transmitter and receiver pair in the
deployment region. Note that we must take into consideration
the heterogeneity in the propagation environment in arriving
at the RSSI estimates. The tool then provides a heat map that
enables easy visualization of the coverage and the coverage
holes. Figure 1 shows the building blocks of our tool. We have
used the Indian Institute of Science (IISc) campus as a vehicle
to describe the key ideas and the algorithms, and also to
highlight the outcomes. See Figures 5-7 at the end for a quick
preview of the outcome.

There are many classical outdoor propagation mod-
els, for example the Longley-Rice model [3]-[5] and the
Edwards-Durkin model [6], [7]. These involve sophisticated
knife-edge diffraction techniques to estimate path loss and
require very detailed topography information. Other mod-
els such as the Okumura model [8], the Hata model [9],
the COST-231 model [10] are homogeneous models that
work for large coverage areas (medium-sized city, metropoli-
tan, suburban). The Walfisch-Bertoni model [11] handles
rooftop-to-street diffraction and scatter and is suited for
metropolitan areas with rows of buildings but requires
detailed building profile data. The wideband-PCS-microcell
model based on the work of Feuerstein et al. [12] categorizes
a link as ‘line-of-sight’ or ‘obstructed’ and then fits a simple
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path loss model for the categorized type. Our method is a
little more fine-grained than the Okumura, Hata, COST-231,
or wideband-PCS-microcell models because it takes into
account component path losses in smaller regions, but is
coarser than the Longley-Rice, the Edwards-Durkin, or the
Walfisch-Bertoni models in that only coarse-grain categoriza-
tion of the deployment region into smaller component regions
is done followed by a simple stitching strategy to arrive at a
final prediction for link quality. See Rappaport [13, Sec. 3.10]
for a detailed discussion of these models.

Some of the above mentioned models are used in typical
network planning tools. See for example Gotz [14], Teoco
RAN Solutions [15] and Intermap [16]. These works do
provide network planning tools with options for a user to pick
a suitable channel model for the scenario of interest. But the
user has to make a choice, and the choice is restricted to a
single one. In particular, there is no automated tuning of the
parameters to specific locations. In our work, we are able
to do automated scenario tuning because of our automated
partitioning of the region of interest into various subregions of
differing types. Moysen et al. [17] provided a data-driven ML
framework for locationing of base stations for a microcell.
Our goal, also data driven, is however different in that we
want to provide RSSI estimates in a heterogeneous environ-
ment. Chall et al. [18] proposed a large-scale radio propaga-
tion model. But, once again, it is a blanket model for the entire
region, and does not handle heterogeneity. Also, they use only
20 packets per link, which is much lower than our 1200 pack-
ets per link described in our experimental methodology and
data collection section. Hosseinzadeh et al. [19] proposed
a neural network based correction to the COST-231 model.
Similarly, Dobrilovic et al. [20] proposed an optimisation of
the Lee propagation model. However, both are homogeneous
models (city-scale) and do not handle heterogeneity, which
our work does.

There are many indoor models as well. Again, see
Rappaport [13, Sec. 3.11]. For more recent work, see
Agrawal et al. [21] who characterized links in an indoor
factory environment and focused on a single model for the
entire factory. See also Rath et al. [22] for a model that
involves the number of intervening walls. These differ from
the heterogeneous outdoor setting considered in our current
paper. In the same spirit as our work, which is one of net-
work design based on predicted measurements in the outdoor
environment, Bhattacharya and Kumar [23] considered an
indoor homogeneous setting and used a coarse-grained quan-
tization of a link’s quality to come up with relay placements.
While the homogeneity assumption may work for short links
in the indoor environment, our work significantly differs
since it deals with heterogeneity issues coming from outdoor
environments.

The renewed interest in this topic of outdoor channel mod-
elling is for two current and relevant reasons: how to enable
the IoT deployment expansion efficiently and how to use
machine learning ideas in getting better predictions, in our
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case to reduce bias arising from the lost RSSI information on
the lost packets.

Our work opens up many new and interesting possibilities.
As one example, Yang et al. [24] studied optimal downward
titles in downlink cellular networks. The downward tilt could
be added as an extra experimental in our data-driven approach
and could be used to get a better estimate of the coverage.
As another example, Ren et al. [25] maximized coverage
estimation with only a subset of base stations kept active
for energy savings. They assumed circular and homogeneous
coverage for the active transmitters, and our work shows the
direction on how this could be extended to heterogeneous
propagation settings.

We now provide an outline of the rest of the paper.
Section II explains our data-driven approach for joint param-
eter estimation and shows its superiority in terms of bias
reduction over two simpler estimation schemes. One of these
is based only on RSSI-from-correctly-received-packets. The
other is based only on the packet error rate. Section III extends
the approach of Section II to Rician fading channel and
shows the effectiveness of the proposed scheme. Section IV
describes the inner workings of our tool which provides quick
estimations of coverage. This section also shows how to
extract useful terrain information from a GIS database and
how to tessellate the deployment area into various propa-
gation environments. It then provides the RSSI computing
algorithm with examples and demonstrates the tool’s outcome
in the form of a heat map for one example deployment.
Section V provides some concluding remarks.

Il. THE DATA-DRIVEN APPROACH WITH

RAYLEIGH FADING

The proposed data-driven methodology is based on combin-
ing multiple regression methods from the domain of machine
learning (ML). Each data point is associated with several
factors which can potentially affect a composite outcome
(or multi-valued target) that indicates whether the packet
was received and if received, the quality of the reception.
The factors we consider are the following: the transmitter
power, the transmitter height, the receiver height, the carrier
frequency used for transmission and reception, and the prop-
agation environment. In a previous work [26], we (along with
other coauthors) classified our IISc campus into five distinct
propagation environments or regions with different propaga-
tion characteristics. These were open areas (O), buildings (B),
roads (R), moderately wooded areas (M), heavily wooded
areas (H). (See also Figure 2 and Table 3.) We use that
same classification in this paper to arrive at the propagation
environment factor. Each data point is also associated with
a composite outcome or the multi-valued target — a boolean
value that tells whether the packet was received correctly
and, if yes, the real value of the received signal strength
indication (RSSI). (The latter is often quantized, but we
shall treat it as a real-valued quantity.) We will study four
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FIGURE 2. Measurement regions and the associated distances between
transmitters and receivers. The colors correspond to the colors in Figure 3.

(example) regression-based approaches to estimate how these
factors affect the composite outcome. We will also compare
their respective estimation capabilities. As highlighted in the
introduction, network design and deployment strategies often
involve use of either only the packet error rate or only the RSSI
of correctly received packets, but not both. As benchmarks,
the first two regression approaches that we study use only the
RSSI of the correctly received packets and only the packet
error rate, respectively. The third approach and a fourth vari-
ant use both packet error rate and RSSI. The third and the
fourth approaches result in significantly reduced biases.

A. THE REGRESSION METHODOLOGIES

We consider the following well-established model for the
received energy at the receiving antenna [27, p. 83]. Suppose
that the transmitter and the receiver are located in a particular
homogeneous propagation environment indexed by a param-
eter . The quantity r will take one of five values and will
stand for one of the regions specified in Figure 2. The received
energy is modelled as:

PRy = C - Pry- Iy - gy -d™" -f 7, (1)

where PRy denotes the received power, C refers to a constant
that depends on the transmitter and the receiver antenna gain
factors, Pry denotes the transmitted power, Aty and hgy refer
to the transmitter and receiver heights, respectively, y denotes
the exponent that specifies how the received power improves
with receiver antenna height, d refers to the distance between
the transmitter and the receiver, n, which is typically between
2 and 6 denotes the region-dependent path-loss exponent for
the region indexed by r, and f refers to the carrier frequency
of operation. Finally «, is a region-dependent parameter
(between 2 and 3) that tells how fast the received energy
decays with increasing frequency in the region r.

Observe that some of these parameters, specifically
C and y, depend on the nature and the type of antennas used.
If the same transmitter-receiver pair or devices of the same
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type are used for making the measurements, these parameters
are common across regions and therefore common across data
points. Other parameters are of course region-specific, for
e.g., 1 and k,. Our regression approach, while accounting
for the differences, exploits the commonality of the common
parameters across the data points.

Assuming Ny is the thermal noise power, the signal-
to-noise ratio (SNR) is, see [28, p. 173]:

2 y —r —Kr
SNRZPL‘X: C-Pry-hyy-hg-d™ -f K.
No No

On top this, in this Section, we assume that the uncoded
transmitted symbols undergo Rayleigh fading. Extension to
Rician fading is done in Section III. Extensions to other
fading models, e.g. Nakagami-m, are straightforward with
associated changes to the parameters of the fading model.
We restrict attention to Rayleigh and Rician fading in this
paper mainly to highlight our approach in the simplest of
settings. We may then view the SNR as the average signal-
to-noise ratio, averaged across fading instances.

We now explain our regression methods, all of which have
been tested on the same data set. Our approaches are designed
to work even on data which may have been collected over
different regions, over different periods, and perhaps without
time stamps.

@

1) RSSI FROM ONLY CORRECTLY RECEIVED PACKETS

In the first approach, included mainly for comparison pur-
poses, RSSI measurements of only the correctly received
packets are taken into account. This is often the case in com-
mon implementations of the Zigbee protocol, for e.g., imple-
mentations in the TelosB motes and in the RE-Mote [29].
Suppose that there are M, correctly received packets in
region r, where r = 1, ..., 5 is one of the five regions listed
in Figure 2. Let RSSI(n) be the measured received power
for the nth correctly received packet. Denote by Pry(n) the
true received power when the transmit parameters are Pyy(n),
htx(n), when the receiver height, the receiver distance, and
the frequency of operation are hgry(n), d(n), and f (n), respec-
tively, and the region of operation is r(n). Let us collectively
denote all these factors by z(n), i.e.

2(n) = (Prx(n), hix(n), hgx(n), d(n), f(n), y (). (3)

Using these factors, we obtain Pry(n) from the formula (1).
We then solve the regression problem:

5 M,

minZZ

r=1 n=1

RSSI(1) — Pry()|" @)

where the minimization is over parameters C > 0, y € [1, 2],
nr € [2,6], k, € [2,3], r = 1,...,5. Let us reiterate that
this involves a joint optimization across all collected data.
¢ = 1 yields the absolute error loss between the predicted
and the measured RSSI while ¢ = 2 yields the squared error
loss. (The approach extends to other loss functions such as
| log RSSI(n) — log Pry(n)|.)
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2) USE OF PER ALONE
In the second approach, we take inspiration from the machine
learning technique of logistic regression [30, Ch. 4.4],
although we emphasize that our technique is a more gen-
eral nonlinear regression scheme, to exploit the information
available on whether each individual transmitted packet was
received correctly or not. Note that this approach uses finer
information than just PER since each transmitted packet
could have been transmitted at a different power, from a
different transmitter height, etc.

Under the Rayleigh fading assumption, the probability of
error of an uncoded BPSK transmission with an average
signal-to-noise ratio of SNR is, see [31, eqn. (3.19)],

petgmon = L [ SNR | )
nErrory =5 1+SNR |~ 4SNR’

where the approximation holds when the SNR is high. Let
us denote the signal-to-noise ratio by SNR(z) when the factor
vector is z, and let us define

. l B SNR(z)
p() = 7 1 ,/ TTSNRQ) |- (6)
Then

(22 ) <1 [
1 —pQ) 1 4+ SNR(2)
SNR()
B R v

which is not a linear function of the factors or other trans-
formations. This is where our method differs from the stan-
dard logistic regression. However, notice that, on account
of (5) and (2), as the SNR increases the proposed regression
approaches the classical logistic regression. So we may view
our proposed method as providing the appropriate general-
ization of a “link function” for our communication systems
context in nonlinear regression (see [30, p.258]).

Suppose that the transmission factor is z(n) for the
nth packet. Let y(n) take the value 1 when this nth packet
is in error and let it take the value O otherwise. Assume
independent receptions. This is a good assumption when
there is sufficient time separation between receptions or when
the data is randomly reordered and without time-stamps.
Then {y(n)},>1 is an independent sequence of Bernoulli ran-
dom variables with parameters {p(z(n))},>1. Note that this
sequence is not necessarily identically distributed since the
Bernoullli parameter p(z(n)) may vary with n on account
of the variation in the factor z(n) with n. The likelihood of
the observed sequence of packet errors corresponding to the
sequence of factors {z(n)},>1 is:

N
Pry(D, .y} = [T ey ™ (1 = pla(u) ' =,

n=1
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where N is the total number of transmitted packets, taking
both correctly and incorrectly received packets into account.
The negative log-likelihood is then:

—InPr{y(l), ..., y(N)}
N
= Z (=y(n) In(p(z(n)) — (1 — y(n)) In(1 — p(z(n)))) . (7)

n=1

In the second approach under discussion, the goal is to
maximize the likelihood (or minimize the negative log like-
lihood) over parameters C > 0, y € [1,2], n, € [2,6],
kr€[2,3l,r=1,...,5.

3) USING BOTH RSSI AND PER

In our third approach, we combine the objectives of maxi-
mizing the likelihood and of minimizing the RSSI estimation
error, as follows:

N
min Z < — y(n) In(p(z(n)) — (1 — y(n)) In(1 — p(z(n)))
n=1

+(1 = () - [RSSIm) — Prx(]©) . (®)

Yet again the minimization is over the parameters C > 0,
y € [1,2],n, € [2,6],k € [2,3],r = 1,...,5. We also
consider a fourth approach, a variant, where we further opti-
mize the relative weights assigned to these two objectives.
The objective in equation (8) then gets modified to:

N
min Y (wr-(=y(0) In(p(m)— (1 =00) In(1 = p(z(n))

n=1
+wy - (1= y() - [RSSIm) — Prx(°) . ©)

(We refer the reader to the Rician Section III and Table 2
for the associated results when the weights wi and wy are
optimized.)

Let us note, in passing, that if all the z(n) were the
same, then the maximum likelihood estimation procedure
chooses the parameters C, y, n,, k, to bring p(z(n)) as close
to zlv ZQ’: 1 ¥(n) as possible in relative entropy distance mea-
sure (also known as the Kullback-Leibler divergence), i.e.
minD(]% 22;1 y(n) || p(z(n))), where the quantity D(p ||
q) is the binary relative entropy. Given the nature of the
dependence of p(z(n)) on the parameters, full flexibility is not
available to make p(z(n)) equal zlv 22]:1 y(n). The minimiza-
tion tries to pick the parameters so that they are as close to
each other as possible. In the general case, z(n) varies from
the sample point to sample point and our approaches account
for this variation appropriately by exploiting the commonality
in the antenna gains and in the device-specific quantities.

B. EXPERIMENTAL METHODOLOGY AND

DATA COLLECTION

We now describe our experimental and data collection
methodologies. We conducted our field experiments in five
example propagation environments. See Figure 2 for a listing
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of the regions. In each region, the transmitters and receivers
were placed at different distances, as indicated in Figure 2.
With a transmitter kept at a height of 1 m, three receivers
placed at heights 1 m, 2 m, and 3 m, at a given loca-
tion, listened simultaneously to the transmissions. A total
of 1200 packets were transmitted from that transmitter height.
Only one transmitter was allowed to transmit in any collection
period to avoid packet collisions. The same procedure was
then repeated for two other transmitter heights, namely 2 m
and 3 m. There are thus nine combinations of transmitter
and receiver heights for a given distance. The entire setup
was then moved to a new transmitter-receiver pair of loca-
tions, and the experiment was repeated. Given that there are
22 distance-region pairs (see Figure 2), the number of data
points is N = 22 x 9 x 1200 = 237, 600.

Each transceiver is a RE-Mote which has the Texas
Instruments CC1200 chip (sub-GHz radio operating on
865-868 MHz ISM band) [32]. The payload in each of
the 1200 packets consisted of 16 Bytes with a header
size of 9 Bytes. The physical layer parameters were as
follows. These configurations are derived from an earlier
work, Rathod et al. [26], and are used for data coherency.
Rathod et al. [26, Table V] also provides information on the
measurement accuracy through lab characterization of the

device.
o Txpower: 14 dBm

o Symbol rate: 4.6 ksps

« Bitrate: 4.6 kbps

e Modulation Scheme: 2-FSK

o Deviation: 17.967224 kHz

o Centre frequency: 868 MHz

« Rxfilter bandwidth: 128.205128 kHz.

C. CROSS-VALIDATION
Cross-validation results are presented in Table 1. The gath-
ered data was divided into ten random subsets for each
environment, nine of which were used for estimating the
parameters and the tenth was used for testing. This is called
ten-fold cross-validation. The results of this procedure are
listed in Table 1. The errors reported are the average of the
measured values minus the predicted values. The values in the
“Error I’ column are observed when using the logistic-like
regression without the RSSI term, i.e. optimization of (7).
Columns “Error II”” and “Error V”’ have error values corre-
sponding to the regression on just the RSSI, i.e. optimization
of (4) with absolute error loss (¢ = 1) and squared error loss
(¢ = 2), respectively. Columns “Error III"” and “Error VI”
show the errors under the combined optimization in (8) with
absolute error loss (¢ = 1) and squared error loss (¢ = 2),
respectively. We also optimized over the wy and w; for the
objective function in (9). These are termed “Error IV”’ and
“Error VII”’. The description of error columns, for ease of
reference, is as follows:

o Error I: Logistic-like optimization of (7)

o Error II: Optimization of only RSSI term with ¢ = 1 (4)

o Error III: Combined optimization with ¢ = 1 (8)
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TABLE 1. Bias comparison. O = open area, B = buildings, R = roads,

M = moderate woods, H = heavy woods. “Error IV” is not reported below
and is for optimized w; and w; in (9). The highlighted columns “Error I1I"”
and “Error VI” indicate the methods with superior performance.

Reg. | Dist. | Meas. | Error I | Error II | Error III | Error V | Error VI
‘ (m) | (dBm) | (dB) (dB) ‘ (dB) (dB) ‘ (dB)
[0} 50 | -594 | 474 4.7 24 5 1.6
(¢} 100 | -63.1 | -53.3 4.5 -1.1 5.1 2.2
O 150 | -69.4 | -52.5 3.7 11 3.6 0.3
O | 200 | -72.9 -53 3.1 1.3 3 0.2
O | 250 | -75.7 | -53.4 4.7 2.1 4.8 1
B 30 | -87.6 | -7.6 43 1.2 4.6 0.3
B 40 | -92.8 -4.7 5.3 2.4 5.1 2.5
B 50 | -92.9 -8.8 4.7 2.3 4.9 -2.3
R | 250 | -794 | -15.6 -6.1 4.2 -5.1 2
R | 500 | -912 | -7.6 33 1.0 3.9 2.3
R 750 | -97.8 -5.1 22 2.0 3 29
R | 1000 | -99.0 | -3.7 3.0 2.8 33 2.8
M 50 | -65.7 | -272 4.8 2.3 4.8 2
M 100 | -69.2 | -26.7 3.8 4.1 45 -4.7
M | 150 | -829 | -19.6 45 1.5 44 0.1
M | 200 | -88.2 215 3.6 2.5 2.4 0.6
M | 250 | -98.3 24 12.9 12.3 10.4 10.3
H 50 | -86.1 2.4 4.9 2.5 5.5 3.1
H 100 | -90.2 | -3.8 4.7 0.7 4.7 -0.2
H 150 | -934 | -34 4.9 14 5 -0.6
H | 200 | -95.1 -5.1 5.0 2.7 5 -0.2
H | 250 | -99.0 0.7 2.3 0.4 1.7 -1.5

e Error IV: Combined optimization with wj, w; and
¢=10)

« Error V: Optimization of only RSSI term with { = 2 (4)

o Error VI: Combined optimization with { = 2 (8)

e Error VII: Combined optimization with wy, wo and

=2

Table 1 does not include columns ‘“Error IV and
“Error VII” because these cases did not show significant
improvement. These cases and their errors are referred to here
for use later in Table 2 where the data for Rician fading is
presented. The regression method that exploit boths sources
of information (PER and RSSI) are far superior to those that
rely on only one of these, except in 2 out of the 22 cases. The
large “Error III”” and “Error VI”” of 12.3 dB and 10.3 dB for
¢ = land ¢ = 2, respectively, in the moderately wooded area
at 250 m is due to a high packet error rate encountered there.
This might have been due to some shadowing although we
noticed no visible blockage at the physical location. This was
consistently seen even in our second round of measurements
made after the submission of our conference paper [1].

D. REMARKS

Let us first highlight the need for a heterogeneous model.
Suppose we restrict ourselves to a homogeneous model
for the distance 50m. The results in Table 1 indicate
that the mean received RSSIs are: —59.4dBm (open
area), —92.9 dBm (buildings), less than —79.4 dBm (roads),
—65.7dBm (moderately wooded), —86.1dBm (heavily
wooded). From this data, it is strikingly clear that a sin-
gle distance-based prediction will have an error of at least
+16.7dB. Our errors (see Error VI column) range from
—2.3 to +3.1dB for the 50m link distances. No single
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TABLE 2. Bias comparison. O = open area, B = buildings, R = roads, M = moderate woods, H = heavy woods. The highlighted columns provide superior
performance. The root-mean-squared error (RMSE) is also indicated for each method.

Reg. | Dist. | Meas. | Error I | RMSE | Error IT | RMSE | Error III | RMSE | Error IV | RMSE | Error V | RMSE | Error VI | RMSE | Error VII | RMSE
‘ (m) ‘ (dBm) | (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB) ‘ (dB)
O 50 -59.4 6.1 9.3 3.0 8.1 3.0 8.1 4.7 8.4 1.4 8.1 1.3 8.1 39 8.2
(¢} 100 | -63.1 1.3 5.4 -1.0 52 -1.0 5.2 -0.0 53 2.3 53 2.3 5.3 -1.0 53
(¢} 150 | -69.4 2.7 5.6 1.0 45 1.0 4.5 1.5 4.8 -0.2 4.5 -0.2 4.5 0.3 4.6
O 200 | -72.9 2.6 34 1.3 4.0 1.2 4.0 14 3.8 0.2 4.0 0.2 4.0 0.2 39
O 250 | -75.7 3.0 7.5 1.9 6.4 1.8 6.4 1.8 6.7 0.9 6.4 0.9 6.4 0.5 6.6
B 30 -87.6 | 46.7 6.0 0.8 52 0.9 5.2 9.2 54 0.3 52 0.3 5.2 -0.5 53
B 40 -92.8 50.9 6.1 3.1 54 3.2 54 10.8 5.6 2.5 54 2.5 54 1.2 55
B 50 -92.9 | 46.8 6.6 -1.4 52 -1.3 5.2 5.4 5.6 -2.1 52 -2.1 5.2 -3.8 5.4
R 250 | -79.4 -0.2 4.3 -3.1 52 -3.1 5.2 1.2 5.0 2.2 52 -2.0 5.2 -0.5 5.1
R 500 | -91.2 52 4.4 1.0 3.7 1.0 3.7 6.6 3.8 24 3.7 2.2 3.7 39 38
R 750 | -97.8 6.9 2.8 1.7 1.6 1.7 1.6 8.1 2.0 3.4 1.6 3.0 1.6 4.8 1.8
R | 1000 | -99.0 8.9 1.0 2.0 0.8 1.9 0.8 9.2 0.9 3.8 0.8 3.3 0.8 5.2 0.9
M 50 -65.7 1.9 6.3 -0.7 5.6 -0.7 5.6 0.1 5.8 -1.7 5.6 -1.7 5.6 -0.7 5.7
M 100 | -69.2 -14 4.3 -3.5 3.6 -3.5 3.6 -2.8 3.8 -4.6 3.6 -4.6 3.6 3.7 3.7
M 150 | -82.9 4.4 6.9 1.6 6.0 1.6 5.9 2.5 6.2 0.4 5.9 0.4 5.9 1.5 6.0
M | 200 | -88.2 53 2.9 2.0 3.6 2.0 3.6 3.1 34 0.8 3.6 0.7 3.6 1.9 35
M | 250 | -98.3 139 33 11.6 2.2 11.6 2.2 12.4 2.4 10.3 22 10.3 2.2 11.4 2.3
H 50 -86.1 18.9 6.1 2.7 5.8 2.7 5.8 8.8 59 32 5.8 3.2 5.8 55 5.8
H 100 | -90.2 13.3 73 -0.5 6.0 -0.5 6.0 4.5 6.3 0.1 6.0 0.1 6.0 1.6 6.1
H 150 | -934 12.1 6.7 -1.1 5.7 -1.0 5.7 35 6.0 -0.4 57 -0.4 5.7 0.8 59
H 200 | -95.1 9.5 4.6 -3.9 42 -3.9 4.2 0.6 4.3 -33 4.2 -3.3 4.2 23 42
H 250 | -99.0 13.0 2.7 0.9 2.1 0.9 2.0 5.0 2.3 1.6 2.0 1.6 2.1 2.3 2.1

distance-based prediction can provide such a performance
and cover the range from —59.4 dBm to —92.9 dBm.

The results in Table 1 also indicate that the bias is sig-
nificantly reduced by employing all the information avail-
able at our disposal (RSSI and PER). Our data is made of
Boolean-valued and real-valued observations. A combination
of logistic-inspired regression and mean-absolute-error or
mean-squared-error minimization enables a good use of both
forms of information. The loss functions used are only exam-
ples, and one could equally well explore other loss functions.
While we have demonstrated that equal weights for the RSSI
estimation loss and the negative log-likelihood loss already
helps in reducing the bias, we further optimized the weights
assigned as in (9) to these objectives, “Error IV, but did not
see significant improvement over “Error III”” or “Error VI”
and have therefore not reported them in Table 1. See the larger
Table 2 where “Error IV” is reported for the more general
Rician fading. For mean-squared-errors, we refer the reader
once again to Table 2 for Rician fading. Finally, as more data
arrives, the above technique is easily amenable to incremen-
tal updates — one can make an incremental move from the
current set of best parameters to a new set a la stochastic
approximation [33].

Ill. DATA-DRIVEN APPROACH WITH RICIAN FADING

In the previous section, we studied a regression problem

where the transmission factors for the n* data point are
2(n) = (P1x(n), hix(n), hrx(n), d(n), f (n), y(n)). ~ (10)

The factors in the equation (10) are described in the paragraph

containing (3). Under Rayleigh fading, the probability of
error is as in (6). We now extend this to Rician fading.
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The probability of error for Rician fading is given by a
generalization of (5) derived by Lindsey [34, eqn. (19)]:

1 SNR
PI'{EVI'OI'} = Q(M, W) — 5 1+ m
u? +w?

. eXp <_

1 +2-SNR —2,/SNR(1 + SNR)

2-(1+SNR)

14+2-SNR + 2,/SNR(1 + SNR)

2. (14 SNR) '

5 >~Io(u'W) (11)

where

u =

y
o

the function Q(u, w) is Marcum’s Q-function given by

Ou, w) =/ z-exp [—
B

Ip is the modified Bessel function of the zeroth order, and p
in equation (12) is a parameter > 0 that indicates the ratio
of the energy in the specular component and the scattered
component, i.e., the Rician factor.

Observe that when p = 0, u = w = 0, hence Q(0,0) =1,
Ip(0) = 1, and thus equation (11) reduces to equation (5).

The above motivates the use of an enhanced set of trans-
mission factors, extending (3), as follows:

12)

2 +a?

5 i|-10(oez)dz, (13)

2r(M) = (P1x(n), hix(n), hrx(n), d(n), f (n), y (n), p(n)).  (14)

We can now write an analog of (6). The probabil-
ity of error g(zg) when the transmission factor is zp is
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given by:

1 SNR
= QuGzr), wzr) — 5 (1 + HST(&IZR)

2 2
exp <_M) Jo(u(zgr) - w(zg)),  (15)

q(zr)

2

where u(zg) and w(zg) are defined via equation (12) with p
taken to be the last component of zz and SNR taken to be the
average SNR under the set of transmission factor zg.

The likelihood ratio, the negative log likelihood ratio, and
the combined objective function which is a combination of
negative likelihood and RSSI estimation error are extended in
analogy to equations (4), (7) and (8), respectively.

A. REGRESSION AND CROSS-VALIDATION

We performed the above logistic-like regression with the
same data under the constraint that p(n) > 0 depends only
on the region r(n). This introduces 5 new parameters for
the five regions. The ten-fold cross-validation outcome is
presented in Table 2 below when w; = w,. The approaches
are as outlined in Section II-A except that p(z(n)) in (3) is
replaced with g(zg(n)) given by equation (15). Following the
same convention used in Table 1, the errors are measured
values minus the estimated values. For this parameter esti-
mation, we also give the values of the root mean-squared
errors along with the mean errors. The error values in the
column “Error I’ are observed when using the logistic-like
regression (associated with Rician fading) without the RSSI
term. Columns “Error II” and “Error V” show the error
values observed when only the RSSI error term in equation (4)
is minimized with absolute error loss (¢ = 1) and squared
error loss ({ = 2), respectively. Columns “Error III”” and
“Error VI” has the error values observed when solving the
combined optimization given in equation (8) with absolute
error loss (¢ = 1) and squared error loss ({ = 2), respec-
tively. Additionally, Table 2 also has columns “Error IV”
and “Error VII” showing the errors when wy and w, are
optimized in equation (9).

Table 2 also contains root-mean-squared errors for each of
the methods. The error is defined as the measured RSSI minus
the predicted RSSI on each of the test data points. Since this
is done on a per-packet basis, and the RSSI is a nontrivial ran-
dom variable (e.g., Rayleigh or Rician), the root-mean-square
error reflects the variance (when RSSI is estimated in dBm
scale).

The observations on cross-validation made in Section II-C
under the assumption of Rayleigh fading are valid for Rician
fading as well. Here too, the regression on the combined
optimization “Error VI”’ yields the best results among the
others. Since the regression was performed on the same data,
the large packet error rate in the moderately wooded area
at 250 m causes large estimation errors of around 11 dBm.
The optimal estimated parameters for combined estimation
(equation (9)) with ¢ = 2 (“Error VI”*) are reported in Table 3
below.
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TABLE 3. Optimal estimated parameters for equally weighted negative
log-likelihood and RSSI squared error loss functions (“Error VI”). O = open
area, B = buildings, R = roads, M = moderate woods, H = heavy woods.

Region [ C [~ [ n [ & [ »p
O 2.85 | 2.03 | 0.0057
B 3.30 | 298 | 0.0022
R 995.81 143 | 2.00 | 298 | 0.1572
M 3.45 2.00 0.1787
H 2.84 | 2.84 | 0.2208

From Table 3, it is reassuring that the path loss expo-
nents are reasonable. The best fit p are however somewhat
counter-intuitive in some cases: the best p for the open ground
is nearly Rayleigh whereas the best p for heavy woods is
0.2208 which indicates a significant specular component.

B. ADDITIONAL REMARKS

The logistic-like regression term’s contribution to (9) is much
lower than the RSSI term. To equalize the contributions, while
optimizing wy and wy, we scaled the errors using the approach
given below in equation (16):

RSSI(1) — Pry(n)|* — Errory,
Errorey — [RSSI(7) — Pry(n)] m ey
Erroryax — Errorin
where
Errory e = max ‘RSSI(n) PRx(n))

Errory, = mln ‘RSSI(n) PRx(n))

Though it improved the estimates, it did not give better esti-
mates than the ones obtained with equal weights to both the
terms.

IV. RSSI COMPUTATION IN A HETEROGENEOUS REGION
In the first part of this paper, we discussed how our
data-driven approach estimates the parameters for transmis-
sion and reception within a homogeneous region. In this sec-
ond part of the paper, we develop an RSSI estimation tool that
uses the first part and extends it to heterogeneous propagation
environments. We also indicate how these estimations have
been automated, based on GIS data, in our tool. We then
demonstrate its working on a test region which is the IISc
campus.

Overview: See Figure 1 for an overview of the building
blocks of our tool.

Input: Our tool takes the following as input from the user:

o the geographic information system (GIS) data which
provides high-level information about the area of
deployment;

« user clicks on the map that indicate one or more trans-
mitter locations;

« the frequency of operation;

« the transmission power;

« the receiver noise power (Ng);
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« a spatial resolution parameter that can be set based on
the carrier frequency.
The tool also has as a separate input extensive experi-
mental data from measurements in example propagation
environments.

Processing: The GIS data is processed by a map
pre-processor that partitions or segments the deployment
region into appropriate smaller and, most importantly,
approximately homogeneous propagation environments or
regions. The data-driven approach takes the experimental
data and identifies useful antenna-related, frequency-related,
and path-loss-related propagation model parameters. We have
already discussed this aspect in the previous section for a
homogeneous propagation environment. The central RSSI
computing engine then extends the RSSI computation scheme
to a heterogeneous region. Finally, a heat map is generated
and is superimposed on a suitable color-coded map for visu-
alization. In the subsections that follow, we provide details on
each of these aforementioned building blocks.

A. PRE-PROCESSING OF MAP
In one of our earlier works, the IISc campus (Figure 3A)
was broadly classified into five different regions namely,
Open area (O), Buildings (B), Roads (R), Moderate woods
(sparsely thick trees, M) and Heavy woods (denser thin trees,
H); see [26]. To predict signal strength in such a diverse
area (at any given point for a given transmitter location and
power), we will need to segment the entire region into these
component regions. We will also need good measurements
either in each of these areas or in other similar areas. In the
first part of this paper, we discussed the extensive measure-
ments carried out by us and how they were used to generate
good models and propagation parameters. See Table 3.

Figure 3 shows the ‘“Base Image” (A), the extracted
“Color Image” (B) and the generated “Grayscale Image”
(C). The base map of the area of interest can be obtained from
different sources, for example, Google Maps, Bing Maps,
Open Street Map (OSM), etc. We used OSM data because
it was free and widely supported. We then used Quantum
GIS - a free, open-source GIS application which supports
the creation, editing and visualization of geospatial data — to
extract the five regions from the base map. In Figure 3, steps
1-4 indicate the extraction of open areas, buildings, roads
and heavy woods, respectively. We take the remaining areas
to be moderately wooded. We then assign unique colors to
each of these identified regions. Combining all these layers,
we obtain the “Color Image” (B). The white parts in the
image represent the moderately wooded regions. Each color
in this image has three components (Red, Green, and Blue).
For ease of computation, we convert this color image to a
“Grayscale Image” (C), which is the last image in Figure 3.
In this image, each of the five regions is represented by
different shades of gray.

Even though the color image of the sectionalized map is
displayed to the user, Figure 3B, it is the grayscale image that
is used for performing the RSSI calculations. This map is then
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resized to decrease the number of pixels in the image, based
on the carrier frequency of operation, in order to speed up
RSSI computation. Map representations may have different x
and y scales. The actual distance between two points may dif-
fer from the distance between their respective pixel locations
on the map. Our tool rescales the map distance to the actual
distance via a suitable rescaling.

The above is a summary of the subblocks in the map
pre-processing block. As we will soon see, the variation of
RSSI across space is rather significant, and can be attributed
to the heterogeneity of the region through which the signal
propagates. The pre-processing on the base image and its
segmentation into various component regions is a crucial step
for estimating the overall RSSI, as we will see next.

B. ALGORITHM FOR RSSI COMPUTATION
IN A HETEROGENEOUS REGION
Using the data-driven approach described in Section II,
the model parameters C, y, 1,, and k, are first estimated for
each of the five regions, for example via extensive measure-
ments carried out in each model region. Our measurements
were taken in the IISc campus itself. We now come to the
RSSI estimation in the heterogeneous region of deployment.
As indicated earlier, the user can input one or more trans-
mitter locations by clicking on the map interface. The pre-
dicted received power PRy is then computed at each pixel and
for each transmitter, as follows. Some computation savings in
arriving at these predictions will be highlighted.
From (1), the received power PRy is

Prx=C - Pry-hiy - bl -d ™" - f~* (17)

Let the transmitter TX be located at a certain pixel, say pixel 1.
We assume that Tx is located at the centre of this pixel.
To identify the received power at a candidate pixel of interest,
we assume that the receiver is at the centre of this pixel. Let
d be the distance between the transmitter location and this
candidate receiver location.

To predict the received power at this pixel, we apply (17)
with C and y as per the inferred values in Table 3, but
with neff and keg as given in (18) and (19), respectively,
given below. The effective values handle the heterogeneity
in the propagation conditions. The two examples in Figure 4
illustrate how to arrive at these effective values, which we
now describe.

Draw a line between the transmitter and the receiver and
identify all the pixels through which the line passes. Suppose
there are i such pixels. Identify the lengths of the line seg-
ments in each pixel. Let these be [y, k = 1, ..., i. Associate
with each pixel a region r¢, k = 1,...,i. In Figure 4(A),
we have i = 2, and in Figure 4(B), we have i = 4.

We take keff to be the weighted average of the individual
Ky ’s, weighted by the lengths of the line segments:

Zi:l lkkr,

= 18
Z;c:l lk ( )

Keff ==
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FIGURE 3. Map pre-processing stages: A = Base Image, B = Color Image and C = Grayscale Image.

FIGURE 4. Ray tracing (A) transmitter and receiver are in adjacent pixels
and (B) transmitter and receiver are in non-adjacent pixels.

To compute the effective pathloss parameter in Figure 4(A)
with i = 2 segments, we take

mr
4l — ll—nrl _ <11 + l2> 2 ’

I
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with d = I + b, see for e.g. [27, p. 85]. The intuition for
this comes from Huygen’s principle that there is an imaginary
transmitter at the pixel interface that radiates into the second
region at exactly that power which it receives from the first
region. This intuition can be extended. To compute the effec-
tive pathloss parameter in Figure 4(B) with i = 4 segments,
we deduce, this time withd =11 + I + I3 + Iy,

ll+lz>_"’2 (ll+lz+l3)_"'3
I h+b
. (11 +bh+1 +l4>_"’4

d " eff — ll_”n . (

h+b+1i

Generalizing, for a line segment that passes through i
pixels, we take negf to be as calculated from

i J —Mrj
d=mef =17 T SELATS (19)
j=2 ij_:ll li

For each transmitter, we compute the RSSI at each pixel
as above. We then take the maximum value across the
transmitters and associate the pixel to the corresponding
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FIGURE 5. Coverage for five transmitters in a heterogeneous environment (l1Sc), under Rician fading, for transmitter and receiver heights of 1 m
each. Image A indicates the Tx Locations. Image B has pixels with RSSI < —110 dBm shaded black. Image C is the “heat map” indicating regions of good

coverage.

Algorithm for RSSI Computation

Data: A set of N transmitters
T ={(1,x1), 2, x2), . .., (N, xn)} where each
Cartesian pair (y;, x;), | <i < N represents a
transmitter location in the Euclidean plane.
Result: MatrixRSSly, x .y where Y = number of pixels
in the y-direction X = number of pixels in the
x-direction

Initialization;

for iarrow 1 to N do

Set S = {(yi, xi)};

for jarrowl to max{X, Y} do

Create a set Ry of all the pixels (y, x) such that

x € [Xi—j, Xiyjl and y € [yi—j, yiyjl s

Ry =R \S;

for each pixel p = (py, px) € R> do
MatrixRSSI(u, v, )arrowRSSI((v;, x;),
Py, Px));

end

S =Ry;

ifvp = (py, Px) € R27 RSS’((}’I, xi)v (py, p)()) S

—110 dBm then

‘ break;
end

end

end

maximum-achieving transmitter. A receiver in this pixel will
receive the strongest signal from that associated transmit-
ter. The pixel is then colored according to the predicted
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received power. The actual algorithm proceeds by expanding
around the transmitter in concentric £4.-circles, and then
stops when the RSSI is below a threshold, say —110 dBm,
in an attempt to minimize the computational load. The follow-
ing algorithm summarizes the steps. It assumes the existence
of a subroutine RSSI((y, x), (y/, x")) which returns the RSSI
(as obtained using the method above) when the transmitter is
at the pixel (y, x) and the receiver is at the pixel (y/, x').

C. HEAT MAP

Figures 5, 6, and 7 show the coverages for five transmit-
ters marked 1-5 in Figures 5(A), 6(A), and 7(A), respec-
tively. Figures 5 and 6 correspond to locations inside the
IISc campus and Figure 7 corresponds to locations inside
a different campus, the IIT Bombay campus, to test our
learning’s transferability to another setting. In Figure 5,
transmitters 1-5 are kept, respectively, in an open area, on a
road junction, inside a building, in a moderately wooded
area, and in a heavily wooded area. In Figure 6, the trans-
mitters are at different locations than those in Figure 5,
but the environments are the same. In IIT Bombay too,
the transmitters are at locations of similar environments as
in Figures 5 and 6 with just one exception — transmitter 5 in
Figure 7 is kept afloat over a water body and the propagation
characteristics of the surrounding environment is assumed to
be same as an open area environment. (Transmitter 5 in the
other two figures are placed in heavily wooded areas). The
receiver sensitivity was set to —110 dBm while generating
all three heat maps. Locations with an RSSI of less than
—110 dBm from all the five transmitters were taken to be
out of coverage. The black pixels in Figures 5(B), 6(B),
and 7(B) are the areas whose RSSIs from at least one of
the transmitters is higher than —110 dBm. One can inter-
pret the (B) images above as photographic negative images.
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FIGURE 6. Coverage for five transmitters in a heterogeneous environment (11Sc), under Rician fading, for transmitter and receiver heights of 1 m
each. Image A indicates the Tx Locations. Image B has pixels with RSSI < —110 dBm shaded black. Image C is the “heat map” indicating regions of good

coverage.
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FIGURE 7. Coverage for five transmitters in a heterogeneous environment (IIT Bombay), under Rician fading, for transmitter and receiver heights of 1 m
each. Image A indicates the Tx Locations. Image B has pixels with RSSI < —110 dBm shaded black. Image C is the “heat map” indicating regions of good

coverage.

Heat maps are generated for only these locations, as shown in
Figures 5(C), 6(C), and 7(C). The color-coding is displayed
on the right-hand side of these figures.

As the five transmitters are placed in the five different
propagation environments, their coverage areas, as well as
their coverage patterns, are all significantly different. Being
placed in an open area, transmitter 1’s coverage area is larger
than those of the other transmitters (except in Figure 7(C) as
one would expect). Transmitter 2 shows longer range along
the roads, but the RSSI degrades faster in the other directions.
As transmitter 3 is located inside a building, its coverage
area is the least. Transmitter 4, in Figure 5(C), has a higher
coverage area as compared to transmitter 5 because the area
around transmitter 5 is more thickly wooded than the area
around transmitter 4. The same is the case in Figure 6(C).
In Figure 7(C), however, it is transmitter 5 that has the highest
coverage area, as expected, because it is surrounded by a
large water body which is taken to be similar to an open area
environment.

All the above observations are qualitatively appealing. It is
also evident from the coverage pattern that heterogeneity
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significantly affects signal propagation and in turn the cover-
age area. Our GIS-enabled data-driven RSSI estimation tool
has captured this heterogeneity in a quantitative fashion.
Indeed, the heat map provides a visualization of the quan-
titative estimate of the RSSI, which is the output of our tool.

V. CONCLUSION

We demonstrated that coverage estimation can improve sig-
nificantly by properly utilizing all the available informa-
tion. In particular, we used both the RSSI on the correctly
received packets and additional information on the fraction
of lost packets (PER). We also used several factors that are
associated with each transmission. We proposed a nonlinear
regression scheme, which was inspired by (yet is distinct
from) the logistic regression that is popular in the machine
learning literature, to make joint use of the packet error
rate information as well as the RSSI measurements on the
correctly received packets. The nonlinear regression scheme
used a link function that is most appropriate for our commu-
nication systems context with Rayleigh fading. With Rician
fading, a new link function with more parameters was used.
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Interestingly, as the RSSI increases, our proposed scheme
approaches the classical logistic regression scheme in the
sense that the link function approaches the classical logit
link function. The RSSI estimation on the correctly received
packets involves a loss function. We studied the absolute
error and squared error losses. But our method can be
easily adapted to other loss functions. It can also accom-
modate unequal weights for the packet error rate and the
RSSI-estimation-error loss functions. Our methodology is
also amenable to incremental updating of the parameters.
It will be reassuring to prove that, under the received
power model (1), under the packet error rate model (6), and
under our regression methodologies (8), under an additional
assumption that there is positive variance in the independent
variables, the estimates of the parameters converge to the true
parameter values as the number of samples N — oo.

We then showed how the proposed estimation proce-
dure can be effectively used, along with readily available
open-source GIS data and automated classification of regions
into various propagation environments, to estimate coverage
in a heterogeneous propagation environment. The heat map
that our tool generates enables easy visualization of coverage
as well as coverage holes before actual deployment. This
can lead to better, more efficient, and faster deployment of
outdoor IoT networks.
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