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ABSTRACT Rain streaks can affect visual visibility, and hence disable many visual algorithms. So we
present a double recurrent dense network for removing rain streaks from single image. Assume the rain
image is the superposition of the clean image and the rain streaks, we directly learn the rain streaks from
the rainy image. In contrast to other models, we introduce a double recurrent scheme to promote better
information reuse of rain streaks and relative clean image. For rain streaks, the LSTM cascaded by DenseNet
blocks is used as the basic model. The relative clean image predicted by subtracting the rain streaks from
the rainy image is then input to the basic model in an iterative way. Benefiting from double recurrent
schemes, our model makes full use of rain streaks and image detail information and thoroughly removes
rain streaks. Furthermore, we adopt a mix of L; loss, L, loss and SSIM loss to guarantee good rain removing
performance. We conduct a plenty of experiments on synthetic and real rainy images, even on similar denoise
task, the results not only show our model significantly outperforms the state-of-art methods for removing

rain streaks, but also exhibit our model has a high effectiveness for similar task, i.e. image denoising.

INDEX TERMS Deraining, recurrent neural network, double, dense network.

I. INTRODUCTION
Rain is a natural and common weather phenomenon and will
cause the objects in an image blurred due to the influences of
light refraction and scattering on rain streaks. Especially in
heavy rain condition, the weather is so complex and change-
able that the background is unclear and the noise distribution
such as rain streaks is uneven. Since most of the computer
vision methods are designed based on the assumption of clean
inputs, their performances will be seriously degraded. Thus,
deraining is a necessary step for computer vision applica-
tions. Although the performances of deraining methods have
achieved great improvement in recent years, deraining from
single image under clutter background is still a challenge task.
Up to now, more and more people are engaged in recov-
ering the clean images from the rainy ones. For example,
some traditional optimization methods [1]-[6], [1], [45] have
presented to predict the rain streaks and the background from
the rainy image in a separate way. However, the rainfall makes
the composition of the rain layer complex and diverse, which
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makes the effect of these methods work not well. With the
excellent results of deep learning in the field of computer
vision, image deraining methods based on deep learning
[7]1-110] have received extensive attention. Based on the
inputs, these methods can be divided into two categories:
video-based methods and single-image based methods. Since
video-based methods can leverage the temporary information
in adjacent frames, they are easier than the single-image
based methods. More and more works by using the advan-
tages of deep learning are proposed in recent years to remove
the rain streaks from single image [8], [10], [24], [39]-[42].

The existing problem is that the above-mentioned related
methods have achieved good performance in light rain, but
there is still much room for improvement in heavy rain. The
heavy rain image has a high density and uneven distribution
of rain, which makes the rain removal task very challenging.
Many models for this problem have been proposed including
residual blocks [7], dilated convolution [8], [10], squeeze-
and-excitation [10], and recurrent layers [10], [11], and multi-
stage networks [10]. There are three limitations for these
methods [7]-[11]. Firstly, according to [7], feature reused
can improve network performance. These methods take the
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context information into account but ignore feature reuse;
Secondly, the loss functions of these methods [7], [8], [10] are
based on the L, norm. L, norm suffers from the well-known
shortcoming, that is, L, correlates poorly with image quality
as perceived by observer [13]. A model with L, loss tends
to result in a unnatural reconstruction. Finally, the current
methods treat these rain streaks removal stages independently
and do not consider their correlations.

In order to solve the above problems, we propose a double
recurrent dense network for removing rain streaks from sin-
gle image. The pipeline of our proposed network is shown
in Fig. 2. In view of the optimization problems, we use a
double recurrent scheme, which promotes better information
reuse of rain streaks and relative clean image. Then, the rain
streaks are removed stage by stage. Considering the relevance
of each stage, we take the output of the previous stage with
the original rainy image as the input for the next stage.
Furthermore, we design a mix loss function of L, loss, L;
loss and SSIM loss, which can guarantee good rain removing
performance. A plenty of experiments has demonstrated that
our proposed method outperforms the-state-of-art methods
for deraining task, even for similar task, i.e. image denoising.

In sum, the contributions of this paper are listed as follows:

1) We propose a double recurrent dense network for the
information reuse. The dense blocks connected with
LSTM, named as RLDNet, promote the rain streaks
information flow, while the cascaded RLDNet make
full use of the derained result in previous stages.

2) As far as I know, this is the first study to compare the
performance of various loss functions on the task of
rain removal. We also propose a hybrid loss function,
which proves that the loss function performs better than
the existing loss function.

3) This is a general deep network model. Our network
model is not only far more effective than current
methods in removing light rain and heavy rain, but
experiments shows that it is also superior to the exist-
ing Gaussian denoising network model in removing
Gaussian noise.

Il. RELATED WORK

The existing rain removal algorithms can be roughly divided
into video-based methods and single image-based meth-
ods. The video-based approaches use inter-frame information
between adjacent frames to identify rain areas and remove
rain streaks, so it is relatively easy to remove rain from the
video [18]-[22], [43].

Removing rain streaks from a single image is more
challenging because there is less information available
and no inter frame information between adjacent frames.
Kang et al. [1] attempted to extract rain streaks and back-
ground details from high-frequency layer by sparse coding
based dictionary learning. Luo et al. [4] proposed a frame-
work of rain removal based on discriminative sparse coding.
Li et al. [5] learned background from pre-collected natural
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images and rains from rainy images by utilizing two Gaussian
mixture models (GMMs).

Recently, deep learning has been used in rain removal.
Fu et al. [7], [23] first used deep learning to remove rain
streaks from single image. Yang et al. [8] designed a deep
recurrent dilated network to jointly detect and remove rain
streaks. Li et al. [10] removed the rain streaks via multiple
stages and used recurrent neural network to exchange infor-
mation across stages. Zhang et al. [25] use the generative
adversarial network (GAN) to prevent the degeneration of
background when it is extracted from rain image, and utilized
the perceptual loss to further ensure better visual quality.
Liu et al. [24] proposed a novel symmetry enhanced network
to explicitly remove the tilted rain streaks from rain images.

These methods based on deep learning improve the derain-
ing performances of removing rain streaks from single image.
But there is much room for improvement, especially in heavy
rain condition. By far, no work has been done on studying
double recurrent and hybrid loss functions for single image
deraining. We empirically find that, the double recurrent
scheme and a hybrid loss function can result in better derain-
ing performance.

lll. RAIN MODEL

The widely used rain model is assumed that the rain image
is the superposition of the clean image and the rain streaks.
Most of the deraining methods are based on this rain model:

R=B+S (1)

where S is the rain streaks, B is the clean image and R is the
rain image. As shown in eq. (1), the main task of the rain
removal is to restore the clean image B from the rain image
denoted as:

B=R-S 2)

According to eq. (2), many works built the deraining network
models under the assumption that the rain streaks existed in
high frequency part. They decomposed the rain image into
the base layer and the detail layer, and learned the differences
between the detail layer with the rain streaks and the detail
layer without rain streaks.

Statistically, most of the rain streaks are decomposed into
the detail layer as shown in Fig. 1. It also shows obvious
residuals of the rain streaks in the base layer shown in Fig. 1.
This limits the improvement in deraining performance.

Instead of removing the rain streaks from the detail layer,
we restore the clean image from the rain image. Suppose the
deraining model is denoted by H(#), 6 is input of the model,
the deraining is to directly output the clean image from the
inputs with the rain streaks.

S =HR) (3)

where or indirect output, where B is the prediction of the
deraining model for the clean image B, and S is the prediction
for the rain streaks S.
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Rain streak

Rain image Clean image

FIGURE 1. This is a pair of data images of the composite data set, Rain
image is a combination of Rain streak and clean image.

In fact, we learn the prediction of the rain streaks from the
model and then estimate the clean image by subtracting the
predicted rain streaks from the rain image as described in the
following.

B=R—-H®R) 4)

The rain streak layer can be considered as a combination of
rain streaks in multiple directions and other complex noises.
Furthermore, it is more complicated in real weather condi-
tions, for example, the raindrops have various appearances in
the air. Cameras from different distances will also get irregu-
larly distributed rain stripes. Especially in the case of heavy
rain, the accumulation of rain streaks in the atmosphere will
cause attenuation and scattering of light, further increasing
the diversity of rain streaks in brightness. Although the rain
streak layer has complicated textures, it is obviously shown
in Fig. 1 than the complexity of the clean image is far more
than the rain streak layer. Therefore, learning the rain streaks
is simpler than learning the clean image directly from the rain
image.

IV. THE PROPOSED DERAINING METHOD

Based on the rain model presented above, we present the
deraining model, i.e. RDNet, and extend it to several varieties
for handling the deraining task. In addition, we also directly
apply our proposed model for image denoising task and
validate the model universality for solving similar challenges.
The architecture of our proposed network is shown in Fig. 2.
Itinvolves three steps: (1) the design of RDNet, (2) the design
of RLDNet and (3) the loss function design of our proposed
RLDNet. Based on the thought of the progressive removal
of rain streak, we designed a recurrent dense network model
(RDNet). To further improve RDNet’s ability to remove rain
streak, we integrate the LSTM with the RDNet to make it
suitable for predicting the rain streaks. The integration of
the LSTM and the RDNet benefit from each other and can
obviously improve the performance of our proposed derain-
ing model, we named it RLDNet. The RLDNet provides a
possible way of using information in previous outputs to
guide the later model learning. To guarantee the performance
of the deraining model, we also redesign the loss function by
using a mix of Ly, L1 and Ly, to train the model. The loss
function combing L, L with Lgg;,, ensures the improvement
of our proposed model both in evaluation index and visual
effects. Finally, we will discuss the advantages of our pro-
posed deraining model and extend the RLDNet for the similar
task, i.e. image denoising.
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FIGURE 2. The subnetwork architecture of our proposed model consists
solely of LSTM [16] and a DenseNet [14] block.
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A. THE DESIGN OF RDNET
The RDNet we proposed is shown in Fig. 2. It can be divided
into two steps. First, the de-raining image (X) is extracted
through the network in Fig. 2 (a). Second, the rainy image
(R) and the de-raining image(X) are recurrently input to the
network to remove the rain streak as shown in Fig. 2 (b). Note
that the RDNet network does not include the LSTM model,
the LSTM model should be ignored in Fig. 2. The RDNet is
mainly composed of three parts: (1) the input layer H;,, (2)
the DenseNet layer H;, and (3) the residual output layer H,,;-
The input layer Hj;, is mainly used to perform a convolution
operation to extract 32 rain streak information, and the rain
streak information will be transmitted to DenseNet layer H,.
The DenseNet layer H; is then placed to further encourage
feature reuse for better information flow between layers. It is
the most critical part to extract the rain streaks noise layer.The
structure of DenseNet Block is shown in Fig. 2. It contains
5 layers: layer I, layer II, layer III, layer IV and layer V. Each
layer has 32 filter maps followed by a non-linear ReLU
function. The details of the DenseNet are also listed in Fig. 3.
The output layer H,,, completes a residual operation by
subtracting the rain streaks from the rainy input. The relative
clean image X; can be computed by the following equation.

Xi = How (Ha(Hin(X; -1, inputs))) &)

where the inputs are the original rainy image, X;_ and X;
respectively represents the outputs of the RDNet in the £ — 1
and 1" iterations.

B. RLDNET ARCHITECTURE

LSTM is explicitly designed to remember information for a
long period. And it has achieved incredible success in the
tasks related to sequences and lists, such as speech recogni-
tion, image captioning, language translation. But the works
in the fields unrelated to sequences or lists has rarely been
reported. For solving the problems in image processing, iter-
ation is a common method to improve the performances of
the Network models. In the iterative schemes, the information
in previous iterations is also very useful for current iteration.
Hence, the LSTM model can be exploited to pass the useful
information in previous iterations to the current iteration for
better performance of single image deraining.

30617



IEEE Access

Y. Lan et al.: Double RDNet for Single Image Deraining

QO—

Layer Operation Feature map

1 Conv2d(32,32,3,1,1) + Relu() Input: (b, 32, h, w)
Output: (b, 32, h, w)

1T Conv2d(64, 32,3, 1, 1) Relu() Input: (b, 64, h, w)

+
Conv2d(32,32,3,1,1) + Relu() Qutput: (b, 32, h, w)
111 Conv2d(96, 32,3, 1,1) + Relu() Input: (b, 96, h, w)
Conv2d(32,32,3,1,1) + Relu() OQutput: (b, 32, h, w)

v Conv2d(128,32,3, 1, 1)+ Relu() Input: (b, 128, h, w)
Conv2d(32,32,3.1.1) + Relu() Output: (b, 32, h., w)
Vv Conv2d(160,32,3, 1, 1)+ Relu() Input: (b, 160, h, w)
Conv2d(32,32,3,1,1) + Relu() Output: (b, 32, h, w)

FIGURE 3. The Dense network block with layer I, layer II, layer 111, layer IV
and layer V.

Meanwhile, since the rain streaks have complicated tex-
tures caused by light scattering, light attenuation, irregular
rain stripes and so on, it is a great challenge to remove the
rain streaks from single rainy image. Although the integration
of the LSTM model and the DenseNet block benefits from
each other and achieves the-state-of-the-art performance,
the performance of single image deraining still needs further
improvement to satisfy the requirements in real world appli-
cations. So we further integrate the recurrent structure into the
RDNet to remove the rain streaks in multiple stages, named
as RLDNet.

The structure of the RLDNet is shown in Fig. 2(a) and (b).
It adds the LSTM model on the basis of the RDNet. As shown
in Fig. 2(b), it is mainly composed of four parts: (1) the input
layer Hj,, (2) the LSTM layer Hy, (3) the DenseNet layer
H,, and (4) the residual output layer H,,,. The input layer
H;, translates the input rainy image and the output X;_; in
previous stages into 32 feature maps by using 32 filters with
size of 3*3, which are used as the input of the LSTM in later
stages.

The LSTM layer H; works with loops in them, which can
pass the previous information of rain streaks to the next step.
The structure of the LSTM can be found in [16]. It contains
the state of the cell, which is a bit like a convey or belt. It runs
through the entire model. We call it as S;. This enriches the
information needed for extracting rain streaks. The hidden
outputs S; is computed by Eq. (6), The relative clean image
X, can be computed by Eq. (7).

Sy = Hy(Hiu(X;—1, inputs), S;—1) (6)
Xt = Houw(Hg(Hs(Hin(X;—1, inputs), S;—1))) @)
where S;_1 and S; respectively denote the hidden information

of rain streaks calculated by the LSTM model in the t — 1
and 1" iterations.
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FIGURE 4. The framework of RLDNet. t1 represents the first iteration,
f1 represents the output image of the rain streaks removal for the first
iteration, f7 is the output image of the 7th iteration, and their weight
values are shared.

The complete recurrent structure of RLDNet is shown
in Fig. 4, the recurrent structure can be regarded as the
multiple copies of the same LDNet (As shown in the upper
part of Fig. 2, the LSTM model and DenseNet block, named
as LDNet, are connected in series, and there is no recurrence
in the network framework.), each passing the current informa-
tion to its successor. Different from the recurrent structure,
the RLDNet has two information flow channels. The one
introduced by the LSTM model mainly pass the information
related to the rain streaks to its following stage. The other
one introduced by the recurrent structure is responsible for
delivering the outputs after rain removal in previous stage
to the next stage. The information transmitted by the two
channels is just complementary, one for the rain streaks,
the other for the relative clean image. The complementary
information flow further contributes to the improvement of
the performance for single image deraining task.

Intuitively, the more times it iterates, the better perfor-
mance of the rain streaks removal it achieves. Actually,
the improvement of the performance is negligible when the
number of iterations reaches a certain threshold as shown
in Table 5.

By comparison between RLDNet and RDNet in Table 2,
the average PNSR and SSIM values of RLDNet’s is better
than RDNet’s under the same experiment setting and network
architecture. It is because that RLDNet combines the feature
reuse of dense networks and recurrent network memory units
to improve the performance of single image deraining and the
DenseNet and the LSTM can benefit from each other for the
image deraining task. This view can be further verified by the
following analyzes.

On the one hand, the DenseNet block benefits from the
LSTM model. Although the DenseNet block can pass all the
preceding information to the subsequent layers, the informa-
tion flow only limits in the DenseNet block. In the iterative
scheme, it still lack the useful information delivered from
the previous iterations. With the LSTM model, the DenseNet
block implicitly keeps the useful information for rain streaks
removal in the hidden states. Hence, the LSTM model just
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complements the missing of the useful information coming
from the previous iterations.

On the other hand, the LSTM model benefits from the
DenseNet block. The LSTM model can make full use of
the information in previous iterations, but its capability of
feature extraction is much weaker than the DenseNet block.
Obviously, the capability of feature extraction directly affects
the accuracy of the extraction of rain streaks. So the RLDNet
with the DenseNet block has enough capability to exploit the
necessary information for extracting the rain streaks from the
rainy image.

To sum up, the integration of the LSTM model and the
DenseNet block takes full use of their advantages. It not only
can guarantee the converge in network training process, but
also improve the performance for single image deraining.

C. RGDNET ARCHITECTURE

RGDNet architecture is a variant of the RLDNet. Instead of
using the LSTM model, the RGDNet model combines the
GRU unit with the RDNet. The difference between LSTM
and GRU: First, the GRU parameter is less than LSTM, so it is
easy to converge. When the data set is large, the performance
of LSTM is better than that of GRU. Second, the perfor-
mance of GRU and LSTM is similar on a general data set.
Third, structurally speaking, the GRU has only two gates
(update and reset), the LSTM has three (forget, input, output),
the GRU directly passes its hidden state to the next unit, and
the LSTM uses the storage unit to the hidden state is wrapped

up.

D. LOSS FUNCTION

Suppose we have a training set (B;, R;)i=1.2,... n, Where n is
the number of the training samples, R; is the rainy image and
B; is the corresponding rain-free image for R;. Then, the mean
squared error (MSE), that is L, loss,is widely used to train a
model with the least error between the rainy images and their
ground truths. The L, loss leveraged as follows:

1 s

m—NE@ H(R)) ®)
Generally, the L, norm works well for image processing
problems measured by the peak single to noise ratio (PSNR).
But it correlates poorly with image quality as perceived by a
human observer, that is, the high PSNR values can’t guarantee
a good visual effect. In fact, L, norm tends to generate the
over-smoothed results due to the squared penalty at edges.
The smoothed edges are unacceptable for the tasks related
to image quality, such as image deraining, image denoising,
and image deblurring. Thus, we explore the combinations of
more different loss functions to alleviate the over-smoothed
problem. Following [13], we add two L; norm and structural

similarity index (SSIM) item into our loss function.
The L; norm is significantly different from the L, norm,
it prefers to narrow some weights of the features to zero
rather than penalizing the large errors as Ly norm does.
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So, their convergence curves have much difference. The L;
loss function can be simply expressed as follows:

N

1

M=ﬁ2er®A ©)
i=

SSIM [17] is an index to measure the measures structural

similarity of two images. It is sensitive to the local structure

changes and hence closely related to image quality perceived

by an observer. The loss function of SSIM is:

20BH®R) + C2

2uppar® + Ci .
05013(10 + C

2

SSIM (B, H(R)) = 3
Wphg g + Cy

(10)

where up denotes the pixel mean value of the rain-free image,
WH(R) 1s the pixel mean value of the predicted image, opr(r)
is the covariance of the rain-free image B and the predicted
image H(R). op and oy (g) are the standard deviations of B
and H(R), respectively, opp (r) is the covariance of the image
B and H(R). C;, C; and Cj3 are constants, C; = (K; * L)?,
C; = (K> % L), generally K; = 0.01, K, = 0.03, L =
255. More details can be found in reference [17]. In general,
the larger the SSIM value is, the better the visual effect of
the predicted image is. If the SSIM value is 1, it indicates
that the two images are identical. So, maximizing the SSIM
can be converted to a minimization problem by the following
function:

Lgsim = 1 — SSIM (B, H(R)) (11)

To clearly show the improvement by the combinations of
different loss functions, we adopt three combinations: the
combination of L, and loss function and SSIM loss function,
the combination of L; loss function and SSIM loss function
and the combination of L; plus L, loss function and SSIM
loss function. The three combinations are listed as follows:

Lmix1 = o * Lggim + (1 —a) * Lp
Lyix, = & % Lyggim + (1 — a) * Ly
Lmix3 = * Lggim + (1 —a) * (L1 + L) (12)

Lyix, is mixed with Ly and Ly, Ly, is combined with L
and Lggim, and Ly, is mixed with Ly, Ly and L, where
o = 0.85.

Table 1 summarizes the results by six different loss func-
tions in terms of PNSR and SSIM. The results are obtained
by our proposed RLDNet with six iterations on Rain100H
dataset. It can be seen that among the SSIM loss function,
the L; loss function and the L, loss function, the SSIM
loss function perform be stand the L; loss function perform
worst measured by PNSR and SSIM. Perhaps surprisingly,
the L; loss function has a significant improvement over the
L, loss function. Motivated by this observation, we consider
the introduction of the L; loss function to the design of
the loss function for the proposed RLDNet. For the three
combinations, they averagely achieve better PNSR results
than the single loss functions. Concretely, Ly, increases
by 0.24dB compared with L,;,, and increases by 0.2dB
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TABLE 1. The results obtained by using six different loss functions on the
proposed RLDNet.

Loss function PSNR SSIM
Lo 27.69 0.856

L1 28.25 0.871
Lssim 28.59 0.891
Lz, 28.61 0.891
Lmizs 28.65 0.891
Lonizs 28.85 0.891

compared with L,,;y, . Especially, the performance obtains an
obvious improvement by introducing the L; loss function and
L, loss function together. By introducing the SSIM function
in the three combinations, they all achieve high SSIM values.
For our deraining task, we adopt Ly,;y, to conduct the follow-
ing experiments. performs best, and followed by.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed RLDNet,
we compare it with the state-of-the-art deraining methods
on synthetic datasets and real-world datasets. In addition,
we also compare the denoising results of our model with
several state-of-art methods to validate the high performance
of our proposed for handling similar problems. The training
and all the subsequent experiments are conducted on a PC
with Intel Core i3 CPU 8100, 16GB RAM and NVIDIA
Geforce GTX 2070.

A. EXPERIMENT SETTINGS

1) TRAINING SETTINGS

For training, we crop plenty of training image patches (the
size is 100¥100) from the training images. The proposed
network is trained on Pytorch platform. We use a batch size
of 5 and set the stage of RLDNet as t = 7. Leaky ReLU
[31] is adopted to carry out the nonlinear operation and the
ADAM algorithm [32] is taken with a start learning rate
0.0001 to optimize the model parameters. During the training,
the learning rate is divided by 10 at 10000th, 15000th and
20000th iterations. As for the parameters of the state-of-
art methods, we use the default parameters reported in the
references [10].

2) QUALITY MEASURES

To evaluate the performance on synthetic image pairs,
we adopt two widely used metrics, including peak single to
noise ratio (PSNR) [27] and structure similarity index (SSIM)
[17]. Since there are no ground truth for real-world rainy
images, the performance on the real-world dataset can only be
evaluated in terms of visual effect. We compare our proposed
approach with seven state-of-the-art methods, including
image decomposition (ID) [1], discriminative sparse coding
(DSC) [4], A directional global sparse model for single image
rain removal [45], layer priors (LP) [5], DetailsNet [7], joint
rain detection and removal (JORDER) [8], Single Image Rain
Removal via a Simplified Residual Dense Network (SRDN)
[38], Clearing the Skies: A Deep Network Architecture
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for Single-Image Rain Removal [23], Density-aware single
image de-raining using a multi-stream dense network (DID-
MDN) [12], Recurrent Squeeze-and-Excitation Context
Aggregation Net(RESCAN) [10] and S-DSEN [24]. As for
the task of image denoising, we also adopt PNSR and SSIM
to compare the performances of our proposed model with
six representative methods, including image denoising by
sparse 3-d transform-domain collaborative filtering (BM3D)
[33], Weighted nuclear norm minimization with application
to image denoising (WNNM) [36], Image denoising: Can
plain neural networks compete with BM3D (MLP) [37], A
flexible framework for fast and effective image restoration
(TNRD) [29], Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising (DnCNN) [35], Toward a fast
and flexible solution for cnn based image denoising. IEEE
Transactions on Image Processing (FFDNet) [34].

B. DATASET

1) SYNTHETIC DATASET

It is difficult to get a large amount of rainy and rain-free
pairs in the real world. So we use five synthetic datasets to
train our network: Rain1000, Rain800, Rain100H, Rain100L
and Rain12. Rain1000 is a large dataset provided by method
[7], which contains two types of images: 1000 clean images
and 14000 synthetic rainy images. Each clean image is used
to generate 14 rainy images with different orientations and
magnitudes. Meanwhile, the training set of this data set has
900 pairs of images, and its test set has 100 pairs of images.
Zhang et al. [25] synthesize 800 rain images (Rain800) from
randomly selected outdoor images, and split them into a test
set with 100 image pairs and a training set with 700 image
pairs. Yang et al. [8] collects and synthesizes 2 datasets,
Rain100L and Rain100H. Rain100L is the synthesized data
set with only one type of rain streak and Rain100H is syn-
thesized data set with five streak directions. According to
[8], The rain streaks are synthesized in two ways: (1) the
photorealistic rendering techniques proposed by [46]; (2) the
simulated sharp line streaks along a certain direction with a
small variation within an image as shown in Fig. 1. Among
the two datasets, Rainl00H contains the most image pairs
synthesized with the combination of rain streaks in various
directions, which makes it hard to effectively remove all rain
streaks. Hence, it is mainly chosen to validate the perfor-
mance of our model, 1700 synthetic image pairs for training
and 100 pairs for testing. Rain12 [5], which uses the photo-
realistic rendering techniques proposed by Garg and Nayar
[46], includes 12 synthesized rain images with only one type
of rain streak. Among the five datasets, the Rain100H and the
Rain800 are heavy rain, and the Rain1000, the Rain100L and
the Rain12 are light rain.

2) DENOISING DATASET

To train a denoising model based on RLDNet, we prepare a
dataset with image pairs {C;, B,-}ﬁ\': 1» where C; is generated by
adding AWGN with specific noise levels to the latent clean
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FIGURE 5. Results of various methods on synthetic images.

image B;, that is, C; = B; + n. Following [28], we consider
three noise levels: o = 15, 25 and 50. we follow [29] to use
400 images of size 180x180 for training. For test, we choose
two different test datasets for thorough evaluation, one is
a test dataset containing 68 natural images from Berkeley
segmentation dataset (BSD68) [30] and the other one contains
12 images as Setl2. Note that all the test images are widely
used for the evaluation of Gaussian denoising methods and
they are not included in the training dataset.

3) REAL-WORLD DATASET

Zhang et al. [25] and Yang et al. [8] also provide a real-
world dataset containing 92 images collected from the real-
world. These images are diverse in terms of content as well as
intensity and orientation of rain streaks. We use these images
for objective evaluation.

C. RESULTS ON SYNTHETIC DATASET FOR SINGLE IMAGE
DERAINING

Fig. 5 shows the results of synthetic images with heavy rain.
As can be seen, ID, DSC and LP fail to remove the rain
streaks in heavy rain. DetailsNet, JORDER and JORDER-R
are able to remove most of the heavy rain streaks while
also tend to generate obvious artifacts. Our RLDNet achieves
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comparable visual effects with RESCAN and outperforms the
others. To clearly show the improvement, we also list the
PNSR and SSIM values under each image. Compared with
RESCAN, our RLDNet has the PNSR gains of 1.02dB for the
first heavy image, 4.07dB for the second and the SSIM gains
of 0.09dB for the first, 0.07dB for the second. The large gains
of our model over the others demonstrate the effectiveness
of the proposed RLDNet for removing heavy rain streaks on
synthetic images.

We also adopt PNSR and SSIM to conduct quantita-
tive evaluations on two synthetic datasets: Rain800 and
Rain100H. Except for comparing with several state-of-art
deraining methods, we evaluate the performances of the three
variants of our proposed methods: RDNet, RLDNet and
RGDNet. As shown in Table 2, ID, DSC and LP perform
poorly both in PNSR and SSIM due to the limited capability
of feature exploitation. The following five competing models
built on CNN are all superior to the first three methods
(ID, DSC and LP) without using CNN. Compared with over
the best values among the competing methods, our RDNet
obtains an average PNSR gain of 1.27dB on Rain800 dataset,
an average PNSR gain of 0.3dB on Rainl100H, an average
SSIM gain of 0.01dB on Rain800 dataset, and an average
SSIM gain of 0.02dB on Rainl00H dataset. That’s means
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TABLE 2. Quantitative experiments evaluated on two synthetic datasets
(Heavy rain). Best results are marked in bold.

Dataset Rain800 Rain100H
Measure PSNR SSIM PSNR SSIM
Rainy images 21.26 0.6479 12.23 0.3477
Method[45] 21.73 0.7035 13.50 0.4005
ID[1] 18.88 0.5832 14.02 0.5239
DSC[4] 18.56 0.5996 15.66 0.4225
LP[5] 20.46 0.7297 14.26 0.5444
DetailsNet[7] 21.16 0.7320 22.26 0.6928
JORDER([8] 22.24 0.7763 22.15 0.6736
JORDER-R[8] 22.29 0.7922 23.45 0.7490
RESCANI10] 24.09 0.8410 26.45 0.8458
S-DSEN[24] 23.64 0.8379 27.16 0.8379
RDNet 25.36 0.8504 27.46 0.8686
RGDNet 25.74 0.8530 28.70 0.8900
RLDNet 26.47 0.8468 28.96 0.8922

our RDNet defeats all the competing methods by only comb-
ing the recurrent with the DenseNet block. Furthermore,
by add the information flow of rain streaks in iterations,
the RLDNet and RGDNet both further improve the perfor-
mance of our proposed methods. Especially on Rain100H
dataset, the RLDNet and RGDNet both gain over RDNet
more than 1.5dB.

Through quantitative and qualitative analysis discussed
above, our proposed models including RDNet, RGDNet and
RLDNet effectively remove the rain streaks with various
directions while promising more natural and realistic lumi-
nance. Even in heavy rain, out model still shows a good per-
formance, which significantly improves the subjective effects
and greatly surpasses other methods in terms of clarity and
visibility.

As shown in Table 3, our proposed method can also
achieve good results in removing light rain. Especially on
the Rain1000 dataset, the average PSNR is 3.52dB higher
than the SRDN. The Rain1000 dataset contains 14 different
rainfall with different rain streak directions, which poses
a huge challenge to the robustness of the model, which
also shows that our proposed method is more robust than
existing methods [5], [7], [8], [38], [23], [45]. Compared to
Rain12 and Rain100L, they only have one type of rain pattern.
The method [8], [38] has good rain removal performance,
but our method performs better in single image rain removal.
As shown in Fig. 11 and Fig. 12, in contrast to above six
methods, our proposed RLDNet is more capable of removing
rain streaks while preserving image details.

D. RESULTS ON REAL-WORLD DATASET FOR SINGLE
IMAGE DERAINING

Since the real-world rainy image may contains the rain streaks
with different scales, the degradations of the real-world rainy
image are complex. In this section, we test the superiority of
our RLDNet, which is trained on the synthetic rainy images
but still performs well on the real-world rainy images.

Fig. 6 list three examples for demonstrating the perfor-
mances of different methods on the real-world rainy image.
As observed, our RLDNet obtains consistently promis-
ing deraining performances on the real-world images with
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TABLE 3. Quantitative experiments evaluated on three synthetic datasets
(Light rain). Best results are marked in bold.

Rain1000
Measure PSNR SSIM
Rainy images 21.34 0.7046
LP[5] 23.75 0.7844
Method[23] 21.97 0.8333
Method[45] 24.84 0.7935
DetailsNet[7] 27.31 0.8703
JORDER-R[8] 26.59 0.8605
SRDN[38] 27.72 0.8819
RLDNet 31.24 0.9226

Rain100L
Measure PSNR SSIM
Rainy images 25.52 0.8255
Method[45] 27.14 0.8503
LP[5] 28.36 0.8712
Method[23] 28.17 0.9134
DetailsNet [7] 31.39 0.9161
JORDER-R [8] 35.21 0.9696
DID-MDN [12] 30.22 0.8259
SRDN[38] 37.28 0.9704
RLDNet 37.82 0.9788

Rain12

Measure PSNR SSIM
Rainy images 28.82 0.8371
Method[45] 31.93 0.9083
LP[5] 30.70 0.8928
Method[23] 29.42 0.9033
DetailsNet [7] 30.68 0.8947
JORDER-R [8] 34.49 0.9447
DID-MDN [12] 28.90 0.8750
SRDN [38] 34.41 0.9470
RLDNet 35.67 0.9558

different scales of rain streaks. It shows better visual effects
than all the competitors on the three examples, especially in
preserving the local structures and edges of the images.

E. RESULTS ON IMAGE DENOISING

To further demonstrate the capability of our proposed method
for handling similar problems, we compare the proposed
RLDNet with several state-of-the-art denoising methods,
including two non-local similarity based methods (i.e.,
BM3D [33] and WNNM [36]), two discriminative training
based methods (i.e., MLP [37] and TNRD [29]). Note that
TNRD is highly efficient by GPU implementation while
offering good image quality. Two methods are based on deep
learning (i.e., DnCNN [35] and FFDNet [34]), and DnCNN
[35] is one of the most representative deep learning network
models for image denoising with Gaussian noise.

The average PSNR results of different methods on the
BSD68 and Set12 dataset are shown in Table 4. Our method is
best for qualitative assessment of PSNR at three noise levels.
Specifically, our model gains an improvement of 0.02dB
by comparison of DnCNN [35] both on the Setl2 and
BSD68 datasets with o = 15. Note that our model is trained
for only 45 epochs. When the noise level is 0 = 25 and the
trained epochs are 80, the PSNR values obtained by the RLD-
Net are increased by 0.07dB and 0.06dB on the Setl2 and
BSD68, respectively. When the noise level is 0 = 50 and
the trained epochs are still 80, the PSNR gains increase by
0.15dB and 0.09dB on the Set12 and BSDG68, respectively.
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DetailsNet[7] JORDER-R[8] RESCAN[10] (Our)RLDNet

FIGURE 6. Visual quality comparison on the real-world rainy image.

TNRD / 26.59dB DnCNN / 26.90dB FFDNet / 26.93dB RLDNet /26.97dB

FIGURE 7. Denoising results by different methods on one image from BSD68 with noise level 50.

As discussed above, the PNSR gains by the proposed RLD- trained for 180 epochs. If we continue to train our model,
Net are become bigger with the increase of the noise levels. the performance becomes better. More exploring experiments
Note that the PNSR results obtained by DnCNN are all are left for further study.
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R/11.90dB t=1/23.53dB

FIGURE 8. RLDNet removes rain streaks by stages.

t=3/27.17dB

t=5/29.99dB t=7 / 30.89dB

TABLE 4. Average PSNR values obtained by different methods under noise level 15, 25 and 50 on Set12 and BSD68. The best results are highlighted in red.

Dataset o BM3D[33] WNNM[36] MLP[37] TNRDI[29] DnCNN|35] FFDNet[34] Our(RLDNet)
15 32.37 32.70 - 32.50 32.86 32.75 32.88
Setl2 25 29.97 30.28 30.02 30.05 30.44 30.43 30.51
50 26.72 27.05 26.78 26.82 27.18 27.32 27.33
15 31.08 31.37 - 31.42 31.73 31.63 31.75
BSD68 25 28.57 28.83 28.96 28.92 29.23 29.19 29.29
50 25.60 28.87 26.03 25.97 26.23 26.29 26.32

085
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065

1 ¢ 5 & 5 & 1 & 1 2 5 & s & 1 &
Stage t Stage t

FIGURE 9. Average PSNR and SSIM values of RLDNet, RGDNet and RDNet
atstaget=1,2,3,4,5,6,78.

Fig. 7. shows the denoising visual results obtained by
different denoising methods at a noise level of 0 = 50.
Obviously, RLDNet produce the best PNSR value among the
competing denoising methods. As observed in Fig. 7, BM3D
[33], WNNM [36], MLP [37] and TNRD [29] generate obvi-
ous visual artifacts on the sky area. Although DnCNN and
FFDNet achieve the visual results almost comparable to our
proposed model. By analyzing the visual quality in zoom
area, we still can see that the local structures and the edges
obtained by our proposed model are more natural and smooth,
in agreement with the visual results perceived by a human
observer.

VI. ANALYSIS ON OUR PROPOSED MODEL

According to the experimental analysis of the network model
in [10], it has been proved that the model with iterations can
improve the deraining performance from single image stage
by stage. In the following, we also validate this improvement
again by experiments. As can be seen in Figure 8, the RLDNet
shows a poor visual effect of rain streaks removal whent = 1
(that is LDNet). The visual effect obviously gets better when
t = 3, but there exists clear residues of the rain streaks in the
image. The visual results obtained undert = Sandt = 7
are quite similar except for the details in local structures and
edges, which can be seen clearly by zoom. The PNSR values
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RGDNet / 30.40dB

RLDNet /30.87dB

FIGURE 10. The visual results obtained by RDNet, RLDNet and RGDNet.

are also compared under different number of iterations. They
are 23.53dB fort =1, 27.17dB for t = 3, 29.99dB fort = 5,
and 30.89dB for t = 7. The margin betweent = 1 and t = 7
is 7.36dB. This fully illustrates the contributions introduced
by recurrent to the performance improvement of our proposed
model.

As shown in Table 2 and Table 5, the PNSR and SSIM
values of our proposed RLDNet are better than the results
of RESCAN. Note that our model only iterates 3 times
to generate the results on the Rainl00H. when our model
cycles 4 times, the performance is better than S-DSEN. The
backbone of S-DSEN also adopts the feature reuse scheme,
and exceeds the other competing methods for rain removal.
By combining the advantages of S-DSEN and RESCAN,
we design the backbone of our proposed model: RLDNet with
5-layer dense blocks shown in Fig. 3. Both on Rain800 and
Rain100H datasets, the performances of RLDNet are higher
than RESCAN and S-DSEN demonstrated in Table 2. As can
be seen in Table 5, the results of RDNet on Rain800 dataset
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FIGURE 11. Deraining results of different methods on Rain1000. (a) Rainy images (b) Result by the method [5] (c) Result by the method [23] (d) Result by
the method [7] (e) Result by the method [12] (f) Result by the method [45] (g) Result by the method [38] (h) Result by our proposed RLDNet (i) Rainy

images.

FIGURE 12. Deraining results of different methods on Rain12. (a) Rainy images (b) Result by the method [5] (c) Result by the method [23] (d) Result by
the method [7] (e) Result by the method [8] (f) Result by the method [12] (g) Result by the method [45] (h) Result by the method [38] (i) Result by our
proposed RLDNet (j) Rainy images.

are superior to the results achieved by RESCAN and S-DSEN
in terms of both PSNR and SSIM when stage t = 2. When
staget = 5, the results of our proposed RLDNet on Rain100H
dataset is higher than RESCAN and S-DSEN.

In order to improve the performance of the RDNet network,
we also add state units to RDNet according to the state unit
of RNN. We added the LSTM module to the RDNet to form
RLDNet. GRU is a variant of LSTM that exploits a single
update gate by combining the forgotten gate and the input

VOLUME 8, 2020

gate. Meanwhile the cell state and the hidden state are also
grouped together. With some other changes, the final model
is simpler and more popular than the standard LSTM. We add
the GRU network module to the RDNet to form RGDNet.
We verified the rain-removal effects of RLDNet and RGDNet
on the Rain100H and Rain800, as shown in Table 5. When the
stage t = 7, RLDNet and RGDNet respectively achieved the
best results of the model, but RLDNet performed better than
RGDNet. On the Rain100H test set, the average PSNR was
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TABLE 5. The results of RLDNet, RGDNet and RDNet on Rain800 and Rain100H datasets.

RDNet
Stage(t) 1 2 3 4 5 6 7 8
Rainl00H PSNR 18.59 2322 25.92 26.86 27.21 27.38 27.45 27.46
SSIM 0.625 0.765 0.831 0.858 0.866 0.869 0.869 0.869
Raing00 PSNR 23.17 24.23 24.88 25.21 25.34 25.36 25.32 25.25
SSIM 0.745 0.799 0.828 0.842 0.847 0.850 0.850 0.850
RGDNet
Stage(t) 1 2 3 4 5 6 7 8
Rainl00H PSNR 22.53 25.17 26.83 2791 28.42 28.63 28.70 28.68
SSIM 0.705 0.796 0.840 0.872 0.885 0.889 0.890 0.890
Rain800 PSNR 2343 24.26 24.86 25.29 25.59 25.74 25.67 25.38
SSIM 0.75 0.798 0.824 0.840 0.849 0.853 0.852 0.848
RLDNet
Stage(t) 1 2 3 4 5 6 7 8
Rainl00H PSNR 23.02 25.26 27.09 28.08 28.58 28.85 28.96 28.95
SSIM 0.720 0.789 0.845 0.876 0.887 0.891 0.892 0.892
Raing00 PSNR 23.27 23.88 2421 24.95 25.82 26.38 26.47 26.24
SSIM 0.700 0.7723 0.804 0.820 0.836 0.841 0.847 0.845

0.26dB higher, indicating that the RDNet added LSTM model
is more effective in rain removal than the added GRU model.

Fig. (9) and (10) demonstrates the visual results obtained
by the three proposed models: RDNet, RLDNet and RGDNet.
The performance of RDNet was significantly improved after
adding the memory unit. However, As observed in the red
boxes in images, RDNet performs poorly at edges compared
with the other two methods. RLDNet and RGDNet gain
almost the same visual effects except for a slight difference
at edges. The detail preservation of RLDNet is better than
RDGNet.

VII. CONCLUSION

In this paper, we propose a double recurrent dense network
for single image deraining. Our double recurrent scheme has
two information flow, one for rain streaks and the other for
the background. By using the double recurrent framework
and the hybrid loss function, our model provides the capac-
ity to remove the rain streaks with various directions and
intensities. Extensive experiments validate that our proposed
RLDNet is better than the state-of-the-art methods in the task
of removing rain, and it is also better than the most classic
denoise methods in removing Gaussian noise.
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