IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 6, 2020, accepted January 30, 2020, date of publication February 10, 2020, date of current version February 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972958

Random Number Generator Using

Sensors for Drone

SEONG-MIN CHO"'!, (Student Member, IEEE), EUNGI HONG “, (Student Member, IEEE),

AND SEUNG-HYUN SEO "2, (Member, IEEE)

! Department of Electrical Engineering, Graduate School, Hanyang University, Seoul 15588, South Korea

2Division of Electrical Engineering, Hanyang University ERICA, Ansan 15588, South Korea

Corresponding author: Seung-Hyun Seo (seosh77 @hanyang.ac.kr)

This work was supported by the Research Fund of Hanyang University under Grant HY-2018-N.

ABSTRACT In recent years, drones have been widely used in many areas such as farming, movie making,
surveillance and delivery. So, there is a need to protect these drones against security attacks including
hijacking, spying and theft of stored data through the utilization of security mechanisms. Cryptographic
keys are needed to operate these security mechanisms, and they must be generated by using random number
generators which create unpredictable and non-regenerable random numbers. However, existing random
number generators used in drones are not tailored for drones specifically as they use random sources
generated on a desktop, not a drone. Recently, random number generators utilizing sensors in mobile phones
and IoT (Internet of Things) devices have been studied, but are not appropriate for drones. In this paper,
considering that drone sensors must be applied to flight and stationary modes, we proposed a drone specific
random number generator called DroneRNG and implemented it. Then, we showed that our DroneRNG
passed all of the NIST randomization tests and possesses better statistical properties and unpredictability
than random number generators that are currently used in drones.

INDEX TERMS Drone, random number generator, sensors.

I. INTRODUCTION

Drones, which are also known as Unmanned Aerial Vehicles
(UAVs), have emerged as an issue in the fourth industrial
revolution, and in addition, many industries are using them
in various ways [1]. For example, drones are no longer just
used for shooting video in the sky but can also perform topo-
graphical analysis or rescue activities using filmed images.
They also can be used for delivery services, climate forecast
through sensing, and more.

Yet, at the same time there have been many security
breaches against drones, such as the hacking of data stored in
drones, eavesdropping on and manipulating communicated
data, or injecting falsified sensor data into the drone [2].
So, it is imperative that we utilize some security mechanism
for secure drone services. The security mechanism is built on
cryptographic algorithms such as data encryption for protect-
ing collected data, and digital signature schemes for device
authentication in drones. The cryptographic key is essential
for the cryptographic algorithm to work, and the security of

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiquan Qiao

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the encrypted data with the key only relies on the secrecy
of the key. Thus, the cryptographic key must be unknown to
and unpredictable by an adversary [3]. These requirements
for cryptographic keys may be satisfied by using good ran-
dom numbers, which have unpredictable and non-regenerable
properties, in the key.

For cryptographic purposes, the random number genera-
tor used for generating cryptographic keys should guarantee
the output’s good statistical properties and unpredictability.
To achieve these properties, the random number generator
requires non-deterministic random sources with high quality
digital post-processing. Hence, the random number gener-
ator must utilize physical random sources, such as decay
time of radioactive materials and electronic noise from semi-
conductors or registers, which are unpredictable and non-
deterministic [4]. If physical random sources are not used,
the cryptographic keys generated from that random number
still can be easily predicted. So, in order to generate good
random numbers, a source with physical randomness is very
crucial. It is also needed to improve the statistical properties
of digital post-processing, such as pseudo random number
generators using cryptographic hash function. This is because
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the random sources may still have insufficient randomness in
statistical terms [5].

Currently, drones use open source cryptographic libraries
such as OpenSSL or standard C random function to generate
random numbers. The open source cryptographic libraries
collect random sources from user input resources available
on PCs, such as user/external peripherals like a desktop PC’s
mouse or keyboard, interrupt request time, and disk reading
and writing time [6]. However, it is not suitable for drones
because the drones have no such peripherals and some drones
have no operating systems like Linux, which manage the
interrupt request time and disk reading and writing time.
So, the existing random number generators, that use physical
random sources on PCs, cannot guarantee the output’s unpre-
dictability in drones. This is also applicable to mobile phones
and IoT (Internet of Things) devices for the same reasons.

Therefore, to generate random numbers for drones, mobile
phones, and IoT devices, it is necessary to utilize phys-
ical random sources available on these devices. Recently,
many studies have worked on random number generators
using sensors on IoT devices. According to the previous
studies [7]-[13], sensors on smartphones or on-body IoT
devices such as accelerometers, gyroscopes, and cameras can
be used as physical random sources.

But the characteristics of the drone’s sensor output differ
when it is stationary and when it is flying. There is no motion
when it remains stationary on the ground but it continues to
move and vibrate while in flight.

For this reason, we cannot directly apply the previous
random number generators using [oT sensors for use with
drones. Accordingly, there is a need to design a random
number generator which takes into account the characteristics
of the drone.

In this paper, we propose a drone-specific random num-
ber generator, which considers the sensor characteristics
that drones present in flight and in a stationary state, using
accelerometer, gyroscope, and barometer signals captured by
drones while flying and on the ground. The contributions of
this paper are as follows:

o We evaluated the randomness of the output of the exist-
ing random number generators (RNGs) which are cur-
rently used for drones. In our experiments, we found that
the output of the current drone RNG currently used in
drones is not unpredictable enough to meet the statistical
properties of a good random number.

« We differentiated the sensor characteristics between
flying and stopped drones and assessed the randomness
of these sensor values. Based on our analysis, we pro-
posed the DroneRNG (Drone Random Number Genera-
tor) designed for drones, which collects physical random
sources from drone sensors, and then post-processes the
random sources for statistical randomness.

e We implemented the DroneRNG and provided it
through Github.! We used another thread to collect

1 https://github.com/SeongminCho/DroneRNG
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entropy and to fill a random buffer to make it possi-
ble to generate random numbers and fill the random
buffer at the same time. The random numbers generated
from DroneRNG passed all NIST randomization tests.
By comparing the DroneRNG with existing RNGs cur-
rently used in drones and IoT devices, we demonstrated
that the output of DroneRNG has better statistical prop-
erties and more unpredictability.

The rest of this paper is organized as follows: we introduce
the concept of RNG and analyze RNG using IoT sensors
in Section II. Section III evaluates the randomness of col-
lected drone sensor data. And we propose DroneRNG in
Section IV. Finally, Section V evaluates the performance of
our DroneRNG and shows if it can pass all of the NIST
randomization tests.

Il. RELATED WORK

In this section, we introduce the concept of RNGs (random
number generators) and analyze the current state of RNGs
using IoT sensors. And we also analyze studies suggesting
drone security solutions.

A. RANDOM NUMBER GENERATORS USING SENSORS

1) RANDOM NUMBER GENERATOR

The Random Number Generator (RNG) can be classified as
either the True Random Number Generator (TRNG) or the
Pseudo-Random Number Generator (PRNG).

A TRNG generates random numbers based on unpre-
dictable natural phenomena and non-deterministic physical
phenomena. Such phenomena include noise source signals
such as decay time of radioactive materials and electronic
noise from semiconductors or registers. A TRNG is designed
based on hardware characteristics because of the need to mea-
sure and use noise source signals. However, the noise source
signals may not be random because they vary depending on
the environment. Therefore, a TRNG needs to use processing
functions, such as the entropy distillation process, Fourier
transform, and low (or high) pass filters, to overcome this
weakness.

In comparison, a PRNG generates random numbers
through deterministic algorithms, such as cryptographic hash
functions or symmetric key encryption algorithms. As inputs
for these algorithms, initial values, otherwise known as seeds,
are required. Since the seed must have randomness and
unpredictability itself, the outputs of a TRNG are used as
the seeds of a PRNG. The random numbers generated by
a PRNG have excellent statistical properties and may seem
more random than those of a TRNG. However, in terms of
security, it is important to make sure that the seed is not
known in order to make the random number unpredictable.
In a PRNG, the random number is reproducible from the seed,
because the PRNG has a deterministic property. The general
structure of the RNG consists of three steps as shown in Fig. 1.

The RNG collects entropy from the noise source signals in
the first step (entropy collection step). It accumulates enough
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FIGURE 1. The structure of random number generator.

entropy and nonce and then produces a seed through an
instantiation function in the next step (entropy accumulation
and seed generation step). When a reseed function is called by
a generation function, a new seed is produced by combining
the seed from the instantiation function with a new entropy
source collected from the first step. Finally, the generation
function receives these seeds as input and generates random
numbers in the last step (postprocess step).

PRNG uses all three steps and utilizes a deterministic
algorithm in the third step. However, TRNG uses only the first
and third steps. In the third step of a TRNG, the deterministic
algorithm is replaced by a processing function.

2) RANDOM NUMBER GENERATORS USING SENSORS
Previous studies [7]-[13] used various sensors, such as
accelerometers, gyroscopes, magnetometers, cameras, and
microphones of smartphones or other IoT devices, to design
an RNG. Among them, sensors which are available in drones
include accelerometers and gyroscopes essential for flight.

Thus, in this section, we analyze the randomness of val-
ues output by accelerometers and gyroscopes, and also ana-
lyze the studies that have designed the RNG using their
randomness.

An accelerometer measures acceleration through the reac-
tion caused by inertia. It is used in a wide variety of
devices, especially mobile or other wireless communication
devices. A lot of studies have been conducted on how to
generate random numbers using this accelerometer. In 2011,
Voris et al. investigated the randomness of accelerometers for
the TRNG [14]. They found that accelerometers can extract
sufficient entropy even when stationary, and that it is resistant
to various environmental changes. They also demonstrated
the validity of accelerometer-based RNG in RFID tags.

In 2013, Hennebert et al. revealed that accelerometers
provide sufficient entropy unlike temperature and baro-
metric pressure sensors, which measure phenomena with
high inertia [15]. The authors showed that the amount of
min-entropy collected by accelerometers was overestimated
at [14]. Loutfi et al. showed that resulting bits of three motion
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sensors, including accelerometers, are fit enough to be used
as output of a TRNG [16]. They recorded new sensor values
only when the sensors detected a change, so the continuous
output bits of the sensors were not addressed.

Since the raw values from accelerometers have sufficient
entropy, researchers have used them to study RNGs. In 2011,
Suciu et al. proposed a TRNG that takes sensor values from
hardware sensors such as accelerometers, magnetometers and
orientation sensors in mobile phones and combines them
to generate random numbers through XOR operations [10].
In 2014, Marghescu et al. proposed an RNG for Android
smartphones using accelerometers [11]. They only utilized
the Least Significant Bits (LSBs) of the accelerometer output
to generate a random number sequence, and then applied the
Von-Neuman PRNG. In 2016, Wallace et al. proposed a way
to generate random numbers from sensors in mobile phones
and IoT devices [12]. They collected data from 37 Android
devices to analyze sensors, and determined that the output
of the accelerometer had sufficient randomness. In addition,
they designed a TRNG by combining the collected sensor
values through a lightweight mixing algorithm. In 2017,
Dinca et al. analyzed the randomness of biometric data
collected from 6 smartphone sensors: accelerometer, gyro-
scope, and linear acceleration, gravity, rotation and sound
sensors [17]. They showed that since human gait is pre-
dictable, it should not be used as a random source. However,
in 2018, Sun et al. showed that the use of an accelerometer
and a gyroscope together can generate random numbers even
taking into account the predictability of human gait [13].
They re-indexed the values of the accelerometer and the
gyroscope in descending order of absolute values of energy
differences between a single gait cycle signal and the average
signal of multiple gait cycles measured by each sensor. And
then, the values of the accelerometer and the values of the
gyroscope are bitwise-XOR operated. Using that method,
Sun et al. proposed an RNG for on-body IoT devices based
on time variation of signal output while walking.

A gyroscope measures or maintains directions using angu-
lar momentum principles. Like accelerometers, gyroscopes
are used in a variety of devices, especially in devices that
measure and calibrate posture, such as drones and virtual real-
ity (VR) headsets. Along with accelerometers, Loutfi ez al.
showed that the gyroscope on the smartphone had enough
randomness to allow all three-axis to be used as random
numbers [16].

Since the gyroscope has sufficient entropy, like the
accelerometer, Marghescu et al. proposed a PRNG using a
gyroscope with the accelerometer [11]. Wallace et al. showed
that the output of the gyroscope on Android devices has
randomness [12]. In addition, they designed the TRNG by
aggregating the outputs of the gyroscope as the seed(i.e.
initial value), and performing folding technique and reduction
function on the seed.

In Table 1, we compared RNG research using sensors
in IoT or mobile devices. The table 1 shows the sensors
used and identifies the kinds of RNGs and applications.

30345



IEEE Access

S.-M. Cho et al.: RNG Using Sensors for Drone

TABLE 1. Comparison of RNG researches using sensors.

Paper Sensors used Kinds of RNG Randomness Applications
[71 camera TRNG 0.61 Camera of smartphone
[8] microphone TRNG N/A microphone input of Desktop
[10] accelerometer, magnetometer TRNG 0.56 Smartphone
[12] accelerometer, gyroscope, microphone TRNG 0.48 Smartphone, IoT device
[13] accelerometer, gyroscope TRNG 0.41 on-body IoT device
[9] microphone PRNG N/A Smartphone
[11] accelerometer, gyroscope, magnetometer PRNG N/A Smartphone

proposed accelerometer, gyroscope, barometer TRNG 0.74 Drone

It also shows the randomness of each RNG. All the research
shown in Table 1 utilizes the NIST randomization test for
randomness verification. So, we compared the average of
the p-values in the test. If the previous works [8], [9], [11]
do not include the p-values of randomness in their papers,
we marked the randomness of those RNGs as “N/A”.

These existing random number generators, using sensors
in IoT or mobile devices, are designed without considering
differences in sensor values depending on the state of the
devices. But the sensor value output when the drone is flying
is very different compared to when it is stationary, because
sensors equipped on the drones measure the motion of the
devices. Our proposed random number generator considers
these differences of sensor values between an in-flight state
and a stationary state.

B. CRYPTOGRAPHY FOR SECURING DRONES

Drones have a number of security breaches, such as cyber
attacks, physical capture, spoofing attacks, and WiFi attacks.
Therefore, drones must be protected against these attacks
with some drone-specific security mechanisms. To that end,
a lot of studies have been conducted for drone security.

In 2015, J. Won et al. proposed a secure drone commu-
nication protocol that supports essential security functions
such as key agreement, authentication, non-repudiation, and
revocation in order to protect communication between drones
and various smart objects [18]. In 2016, S. Seo et al. pro-
posed a security framework for drone delivery service that
uses white-box cryptography to protect data and crypto-
graphic keys in delivery drones [19]. Their framework pro-
tects data stored in drones from cyber attacks and physical
capture attacks, as drones may have to be operated in hos-
tile areas. In 2017, A. Ivan et al. proposed a secure data
transmission method between drones and a ground control
station [20]. They applied an encryption method using one-
time passwords to transmit data from drones with limited
computational resources. J. Won et al. proposed crypto-
graphic protocols for secure communication in drones for
smart cities [21]. In 2018, S. Benzarti et al. proposed a
drone authentication mechanism that can be applied to a
drone-based IoT [22]. This mechanism relies on Identity-
based Signcryption to provide authentication and tracking
while drones are in flight. In 2019, A. Allouch et al. iden-
tified the security weaknesses of MAVLink and proposed
MAVSec protocol, an enhanced version of MAVLink which
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uses a cryptographic algorithm for securing communications
between UAVs and GCSs (Ground Control Stations) [23].

So far, research on drone security has been mainly focused
on drone communication security and drone authentication.
Most studies have designed lightweight cryptographic algo-
rithms and authentication mechanisms which consider the
limited computing power of drones for secure drone ser-
vices. In order to apply cryptographic algorithms or authen-
tication techniques to drones, cryptographic keys must be
securely generated from drones. They must use good random
numbers that should guarantee the randomness with good
statistical properties and unpredictability. However, research
on a drone random number generator capable of generating
cryptographic keys in the drone has never been conducted,
until now.

Therefore, we propose a drone-specific random number
generator to securely generate cryptographic keys in a drone
when equipped with a security protocol. If our DroneRNG
is used in the drone security protocol, the cryptographic key
can be generated securely, further improving the security of
existing drone protocols.

lll. EVALUATION OF DRONE SENSOR OUTPUT

In this section, we will show how different the sensor outputs
are when the drones are flying and when they are stationary.
And then we will assess how random the raw sensor data
output by drones is.

A. DATA COLLECTION

Like other IoT devices, drones are equipped with various
sensors such as accelerometer, gyroscope and barometer.
An accelerometer and gyroscope are essential for flight. The
barometric pressure sensors are used to measure the altitude
of drones. The barometer is not previously studied as a sensor
for RNGs but it is essential for flying drones. We extract
and collect values from sensors to assess randomness of
raw data output by sensors equipped on drones. We analyze
the randomness of accelerometers, gyroscopes, and altitude
sensors, which are integral to the flight performance of the
drones.

1) DRONES USED IN THE EXPERIMENT

For our experiments, we used a Raspberry Pi drone and a
Pixhawk drone. The Raspberry Pi drone was made using the
Raspberry Pi Zero board as a Flight Controller (FC), making
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(a) Raspberry Pi Drone

FIGURE 2. Drones used in the experiment.

it more accessible and thus it is easier to perform various func-
tions by mounting additional modules. The Pixhawk drone is
friendly to the Unix/Linux programming environment and is
used extensively by developers, providing powerful develop-
ment capabilities using autopilot functions and multithread-
ing. Fig. 2 shows the drones we used in the experiment,
the Raspberry Pi drone on the left and the Pixhawk drone on
the right.

The Raspberry Pi drone is equipped with an MPU6050
gyro & accelerometer and an MS5611 barometer for
altitude measurement, while the Pixhawk drone uti-
lizes an MPU6000 main gyro & accelerometer and an
MS5611 barometer for altitude measurement.

2) COLLECTION METHOD

Voris et al. [14] showed that the raw sensor data has ran-
domness since the sensor values include noise that are fall
within the margin of error, and that sufficient entropy can
be derived even when the accelerometer is in a stationary
state. When the drone moves in flight, the values of the
sensor fluctuate further due to changes in the values mea-
sured by the sensor and noise, thus giving better entropy
than when it is stationary. Therefore, we use raw data from
the sensors to enhance the randomness of the seed. The
data collecting process was conducted in two situations
to determine how the characteristics of the sensor values
change when the drones are in a stationary state and in flight
state.

1) In a stationary state, we collected sensor data after the
drone was horizontally fixed indoors where no external
influence could be exerted.

2) In a flight state, we collected sensor data on a drone
flying in a straight line outdoors. We conducted the
experiment by setting the flying altitude of the drone
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(b) Pixhawk Drone

MSB LSB
sample 1 | b, by | by string 0
sample 2 | by, by, | by, string 2
- .

string k

FIGURE 3. Bit rearranging.

at 3 m. In practice, the drone had an average altitude
error of 0.09 m and a maximum altitude error of 0.32 m.

B. EVALUATION OF RANDOMNESS BY SENSOR

OUTPUT BIT

In order to evaluate randomness of drone sensors, we first
characterize sensor values in both stationary and flight states.
The oscillation of bits adjacent to the Least Significant Bit
(LSB) has a small effect on the fluctuation in sensor values,
and the oscillation of bits adjacent to the Most Significant Bit
(MSB) has a large effect on the fluctuation in sensor values.
Thus, in the stationary state, only the bits adjacent to the LSB
fluctuate due to the influence of sensor noise. On the other
hand, most bits fluctuate in a flight state.

In order to determine which sensor bits have randomness
according to these characteristics, we conducted the random-
ness test by putting together the bits of the same bit position
to one bit string, respectively, as shown in Fig. 3. This test
classifies good bits that have randomness and bad bits that do
not.

To evaluate the randomness of bit strings, we utilized
the National Institute of Standards and Technology (NIST)
statistical test suite for RNGs and PRNGs for cryptographic
applications [5]. The NIST test suite provides statistical ran-
domness information for a given bit stream. The NIST test
suite also provides a total of 15 statistical tests. Each test is
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FIGURE 4. The randomness of each sensor by bit of the Raspberry Pi drone and the Pixhawk drone.

designed to assess whether a characteristic that appears in the
uniform random stream appears at a given input stream, and
its randomness can be assessed through p-value to indicate
if each has been passed or not. If the p-value is greater than
0.01, then the bit stream has passed the test.

For the assessment of sensor data randomness by bit,
we conducted seven tests out of the full NIST test suite,
including the frequency test, a frequency test within a block,
the runs test, the longest run of ones within a block, a binary
matrix rank test, a DFT test, and an approximate entropy test.
We classify the bits corresponding to the bit string as good bits
if the bit string has passed at least three NIST tests in more
than 75% of trials. These criteria are referred to as the analysis
methodology in [12]. A bad bit is a bit that fails to pass
the above criteria. We use only good bits among raw sensor
data bits to provide enough entropy for the DroneRNG seed.
The accelerometer and gyroscope of the Raspberry Pi drone
output 16 bits each as sensor values for all three axes, while
the barometer outputs 24 bits as sensor values. In the case of
the Raspberry Pi drone in a stationary state, the accelerometer
has a total of 12 bits (4 bits each) for all three axes that have
randomness, and the gyroscope is the same. The barometer
has three out of 24 bits with randomness. In a flight state,
23 bits from the accelerometer have randomness (12 bits for
the x-axis, 11 bits for the y-axis) and the z-axis does not have a
single bit of randomness. The gyroscope has a total of 40 bits
of randomness, with 14 bits each on the x-axis and y-axis and
12 bits on the z-axis. And for the barometer, a total of 4 bits
have randomness.

Like the Raspberry Pi drone, the accelerometer and gyro-
scope of the Pixhawk drone also output 16 bits each as sensor
values for all three axes, while the barometer also outputs
24 bits as sensor values.
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In the case of the Pixhawk drone in a stationary state,
the accelerometer has a randomness of 10 bits in total, 3 bits
each for the x-axis and z-axis, 4 bits for the y-axis. The
gyroscope has a randomness of 3 bits in total for 1 bit each
on all three axes, and the barometer, like the one on the
Raspberry Pi drone, has a randomness with a total of 3 bits out
of 24 bits. In particular, the number of bits with randomness
in the gyroscope is only one bit per axis.

In a flight state, the accelerometer has a total of 32 bits with
randomness (11 bits each on the x-axis and y-axis, 10 bits
on the z-axis) and the gyroscope has a total of 27 bits with
randomness (each has 9 bits on all three axes), and for the
barometer, a total of 4 bits have randomness. Fig. 4 shows
the randomness of each sensor by bit of the Raspberry Pi
drone and the Pixhawk drone. Based on the experiment’s
results, we use 27 bits per one reading of sensor value with
the Raspberry Pi drone in a stationary state and 67 bits in a
flight state to collect the entropy of our RNG. In the Pixhawk
drone, 16 bits per reading in a stationary state and 63 bits in
a flight state are used to collect the entropy in our RNG.

IV. DroneRNG

We propose a DroneRNG that generates random numbers
using drone sensors and we will explain the algorithm in this
section. Fig. 5 shows the algorithm and the overall structure
of our DroneRNG. The DroneRNG consists of five main
components: Sensor Controller, Dividing, Shuffling, Byte
Binding, and Mixing and Swap. The sensor controller con-
trols whether the drone collects data from sensors, depending
on the size of the random number pool. When we collect data,
we divide it into good bits and bad bits according to our ran-
domness test. After processing the good bits, we convert the
bits to bytes. Then, we mix the data converted to bytes using
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FIGURE 5. The algorithm and overall structure of DroneRNG.

some algorithm. As our DroneRNG goes through these steps,
it generates cryptographically secure true random numbers.

A. SENSOR CONTROLLER

The DroneRNG collects sensor data from drone accelerom-
eters, gyroscopes, and barometers to generate random
numbers. The sensor controller monitors the amount of data
available in the random number pool, which has an inter-
nal buffer to maintain the minimum desired capacity. If the
random numbers from the internal buffer are used and the
amount falls below a certain level, the sensor controller col-
lects the data from the sensor and sends it to the dividing step
so that it can be used to generate random numbers. The sensor
controller stops collecting data when the internal buffer is
filled to a certain level.

B. DIVIDING

This step processes the raw data from the sensors. According
to the randomness analysis by bit assessed in Section 3,
the raw data of each sensor is divided into G bits (Good bits)
with randomness and B bits (Bad bits) without randomness.
And it is able to remove bits without randomness and make
entropy have more randomness through postprocessing dur-
ing the shuffling step. Since the G bits and B bits of each
sensor are different depending on whether the drone is sta-
tionary or flying, we implement the dividing step differently
depending on these states.

C. SHUFFLING

Using the G bits and B bits, we enhance the randomness of the
seed used in the mixing and swap step. We take the parity of
each B bit and process the G bits to be used as seeds according
to the parity bit. If the parity bit is 1, save the G bit in a bit
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FIGURE 7. The shuffling step.

string S as it is. And if the parity bit is 0, use the bitwise NOT
operation on each bit of G bits and save it in bit string S.
When the bit string S, which is the size of 2048 bits, is filled,
we carry out the next step.

We can say that maybe the bit string S obtained after the
shuffling step already has some randomness because it con-
sists of only bits with randomness that have enough entropy
among the raw sensor data. However, when we assess the
bit string S after the shuffling step using the NIST test suite,
it does not pass the frequency test, the frequency test within a
block, the runs test, as well as the longest run of ones within
a block, but it does pass the binary matrix rank test, the DFT
test, and the approximate entropy test. In order to improve
these results, we designed the algorithm by adding two steps:
The Byte Binding, and Mixing and Swap.

D. BYTE BINDING

A bit string S of 2,048 bits is converted to 256 Bytes and
saved in array K of size 256 because the mixing and swap
step, the next component of this process, generates random
numbers by processing input in bytes.

E. MIXING AND SWAP

The Mixing and Swap is based on RC4 stream cipher. We cre-
ate an array T of size 256 and initialize T[i] = i where
i is from O to 255. Then, using array K of size 256 as a
seed, the arbitrary index j of array T is calculated using the
following expression.

j =T[il @ (+K[i]) mod 256, (i : 0 ~ 255)
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K[0] | KI1]
KI1eJ|K[17]

K[14]| K[15]
K[30]| KI[31]

FIGURE 8. The byte binding step.

Algorithm : Mixing and Swap

input : K (256 Bytes)
output : Random Number
1 T[256]
2j«0
3 for (i=0 to 255){
T[i] «1

4 for (=0 to 255){
j<{T[i]® (+K[i])} mod 256
swap (T[i], T[j])

5 Random Number = T[256]
6 return Random Number

FIGURE 9. The mixing and swap algorithm.

Using the index j obtained from this calculation, we swap
the T[i] and the T[j]. After iterating O to 255 for i, we save
the last generated array T in bits in the random number pool,
which is in the internal buffer. When designing the RNG up
to this point, the output bit string of RNG passes the NIST
randomness test suite, including not only the binary matrix
rank test, the DFT test, and the approximate entropy test but
the frequency test, the frequency test within a block, the runs
test, the longest run of ones within a block. So, our RNG
generates cryptographically secure true random numbers.

The SensoRNG [12], that we have referred to in the pre-
vious section, has weak p-values in the runs test and the
rank test. Through this mixing and swap algorithm, we can
improve the results of the runs test and the rank test. Also,
DroneRNG is able to have much stronger p-values partic-
ularly when it comes to the cumulative sum test and the
frequency test.

V. EVALUATION OF DroneRNG

We evaluated the performance of the DroneRNG we
designed. We utilized the NIST test suite once again to evalu-
ate the randomness of our DroneRNG output. We conducted
a larger subset of tests, compared to section 3, for more
rigorous evaluation of our outputs while only seven tests were
conducted to evaluate the randomness by bit of raw sensor
data in section 3. In addition to the seven tests previously
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conducted, we conducted a total of 10 tests including the
cumulative sum test, serial test, and linear complexity test.
We excluded the nonoverlapping template test, overlapping
test, universal statistic test, and random excursion test due to
the large number of potential parameters [12].

A. IMPLEMENTATION OF DroneRNG

We used the accelerometer and gyroscope with all three axes,
and the barometer for the implementation of DroneRNG
by referring to the results of the experiment in section 4.
The Raspberry Pi drone in flight does not use the z-axis
of the accelerometer because it does not have any bits
with randomness in the output. Accordingly, we imple-
mented our RNG using the accelerometer with only two axes
(x and y), the gyroscope with three axes, and the barometer
for the Raspberry Pi drone in flight. We utilized only bits
with randomness, and the bits can be seen in Fig. 4. The
Sensor Controller was implemented to work similarly to
LinuxPRNG(LPRNG). The internal buffer is 4,096 bits like
LPRNG [24]. When the internal buffer falls below 50 %
capacity, the Sensor Controller activates the sensors to collect
data and generates 2,048 bits of random numbers. Then,
the buffer is filled with these 2,048 bits, and the Sensor
Controller deactivates the sensors and stops collecting data to
prevent waste of resources. And a random number generation
is extracted from the buffer as needed. Extracting from the
buffer and filling the buffer were implemented to operate
on different threads. It enables the generation of random
numbers when the random numbers, that are stored in the
buffer, fall below the threshold while also filling the buffer
at the same time.

B. ENTROPY POOL

We compare the random number pool of DroneRNG with the
input pool of Linux PRNG using dev/random. The standard C
random function is excluded from comparison because it does
not have any entropy pool. Since LPRNG is not available on
Pixhawk, the comparison is conducted on the Raspberry Pi
drone. The input pool of the LPRNG on a desktop equipped
with other user devices such as a mouse and keyboard is
maintained at about the 2,048-bit level as 256 bits of entropy
are dissipated and charged at about five-minute intervals as
shown in Fig. 10.

However, for the Raspberry Pi drone without such user
devices such as mouse or keyboard, the remaining input
pool is maintained at the 256 and 512-bit level as shown
in Fig. 11. The entropy is periodically used in Linux envi-
ronments because Linux includes an Address Space Layout
Randomization (ASLR). The ASLR is a memory-protection
process for operating systems that changes the address of the
data by randomly arranging the address space positions of key
data areas of a process, including the base of the executable
and the positions of the stack, heap, and libraries [25]. As a
result, it prevents attacks on memory and uses random num-
bers to allocate addresses randomly.
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TABLE 2. Randomness of sensor output comparison.

RPi Drone Pixhawk
Stationary state Flight state Stationary state Flight state
CRAND | LPRNG | raw data | DroneRNG | raw data | DroneRNG | CRAND | raw data | DroneRNG | raw data | DroneRNG
Approx. Entropy | 0.411264 | 0.545586 | 0.435102 | 0.584533 |0.513895| 0.645326 | *0.000003 | 0.223154 | 0.494678 | 0.376954 |  0.686802
Block frequency | 0.471336 | 0.585751 | 0.535042 | 0.619709 | 0.586674 | 0.525563 | 0.179621|0.310125 | 0.644418|0.438739| 0.715751
Cum. Sum (f) 0.610680 | 0.520274 | *0.003860 | 0.999875 | 0.457462 | 0.999933 | 0.990002 | 0.459841 | 0.999367 | 0.488048 | 0.999531
Cum. Sum (r) 0.534291 | 0.600174 | *0.003320 | 0.999875 | 0.502612 | 0.999904 | 0.997211 | 0.419488 | 0.999367 | 0.430660 | 0.999498
FFT 0.457250 | 0.302751 | 0.536937 | 0.561590 | 0.557101 0.238712 | *0.000007 | 0.516688 | 0.638170 | 0.602695 | 0.727055
Frequency 0.510056 | 0.429460 | *0.002892 | 1.000000 | 0.568635 | 1.000000 | 0.878246 | 0.585094 | 1.000000 | 0.601143 | 1.000000
Linear Complexity | 0.538410 | 0.585204 | 0.495005 | 0.422657 | 0.514560 | 0.484159| 0.405132|0.319488 | 0.512673|0.332008 | 0.445875
Longest Run 0.616710 | 0.578107 | 0.523295 | 0.697727 [ 0.427797 | 0.698781 | *0.000815 | 0.359777 | 0.698781 | 0.420573 | 0.675553
Rank 0.605057 [ 0.380930 | 0.485428 | 0.622145[0.519138 | 0.780703 | 0.519133 | 0.508538 | 0.587734 | 0.405280| 0.780703
Runs 0.538800 | 0.545532 | 0.553537 | 0.765361 | 0.441601 | 0.821530 | 0.341266 | 0.344772 | 0.782889|0.318849 | 0.890596
Serial (f) 0.526890 | 0.257166 | 0.506249 | 0.607417 | 0.494206 | 0.578619 | *0.000000 | 0.416938 | 0.511314|0.302998 | 0.472524
Serial (r) 0.482851 [ 0.325452 | 0.546516| 0.621897 | 0.436888 | 0.614679 | *0.000000 | 0.448182 | 0.516503 | 0.409479 | 0.492133
LPRNG in PCs DroneRNG in Raspberry Pi Drones
4096 4096
3584 3584
3072 3072
2560 2560
2048 2048
1536 1536
1024 1024
512 512

0

FIGURE 10. LPRNG entropy over time in desktop PCs.

LPRNG in Raspberry Pi Drones
4096
3584
3072
2560
2048
1536
1024

0

FIGURE 11. LPRNG entropy over time in Raspberry Pi Drones.

Fig. 11 shows the entropy trace of the LPRNG when users
do not use random numbers at all. The remaining entropy,
as seen in Fig. 11, is not sufficient, so it may run out when
users use it. Since the entropy pool of Linux PRNG (LPRNG)
is a blocking pool that uses dev/random, LPRNG does not
generate random numbers when the entropy runs out.

We are able to fix such problems by using drone sen-
sors which can rapidly output the entropy with sufficient
randomness.

Accordingly, we design a DroneRNG that collects sensor
data from drones and generates random numbers of 2,048 bits
in a single process to fix such an entropy depletion problem.
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0

FIGURE 12. DroneRNG entropy over time in Raspberry Pi Drones.

The size of the entire entropy pool is set to 4,096 bits. When
the amount of remaining entropy drops below 2,048 bits,
we collect bits with randomness from sensor data and gen-
erate random numbers to fill the entropy pool. Fig. 12 shows
the entropy trace of the random number pool in DroneRNG.
The entropy is collected very fast and stored in the random
number pool with sufficient randomness through DroneRNG.

C. RANDOMNESS OF SENSOR OUTPUT

We use accelerometers, gyroscopes, and barometers of drones
as a seed of DroneRNG. These sensors are commonly
equipped on all drones for flight. As we explored in section 3,
the drone also outputs bits with randomness both when it is
stationary and when it is in flight. Methods for generating
random numbers with the Raspberry Pi drone are LPRNG
and standard C random function (CRAND, rand()). The
LPRNG collects noise signals from device drivers and other
sources in the entropy pool through a character device called
dev/random provided by the kernel and generates random
numbers using these noise signals and interrupt time intervals
that occur in the device driver.

Therefore, we compared the performance of our
DroneRNG with the LPRNG and CRAND by quantifying
randomness of each RNG through NIST randomization test.
DroneRNG was also compared to the method of generating
random numbers just by attaching only random bits of raw
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sensor data in Table 2. The p-values of random numbers from
DroneRNG are generally higher than the p-values of random
numbers from existing RNGs shown in Table 2.

In the case of the Pixhawk drone, the LPRNG is not avail-
able because the OS is not Linux. Thus, with the Pixhawk
drone we compare DroneRNG with the standard C random
function and the method of attaching only raw sensor data.
We run each RNG using sensors of both stationary and flying
drones. Table 2 shows the comparison of the existing RNGs
and DroneRNG in the Raspberry Pi drone and the Pixhawk
drone.

The outputs of both CRAND and LPRNG, the existing
RNGs of the Raspberry Pi drone, have sufficient randomness.
However, the bit string generated by attaching only random
bits of sensor data while the drone is stationary does not
pass the cumulative sum test and frequency test. In the case
of DroneRNG, all tests have been passed and the p-value
of the frequency test is 1.0 so that bits 0 and 1 are output
exactly half-and-half. In addition, the p-values are generally
higher in all tests than those of the existing RNGs. In the
NIST test suite, a higher p-value means that the output of an
RNG is statistically more random [5]. In the flight state of
the Raspberry Pi drone, the bit string generated by attaching
only random bits of sensor data passes all of the tests. For
DroneRNG, the p-value of the frequency test is also 1.0, and
the p-values are generally higher in all of the tests compared
to the existing RNGs.

The random numbers generated using CRAND in the Pix-
hawk drone fail the approximate entropy test, FFT test, and
serial test. A bit string consisting only of random bits of
sensor data - both stationary and flying - passes all of the tests.
Using DroneRNG, the p-value of the frequency test is 1.0, and
the randomness is greatly improved for all of the tests.

D. PERFORMANCE EVALUATION

In this section, we provide a performance evaluation of our
algorithm. First, we analyzed the time complexity and space
complexity.

The proposed algorithm consists of four steps. In the first
step, the raw sensor values are divided into G bits and B bits
in n operations, where n is the number of bits in a given
input. The next step is to take the parity of each B bit and
process the G bits according to the parity bit by performing
another n operations. Then the third step requires additional n
operations to convert bits into bytes. Finally, the last step is to
perform one substitution operation and one byte-level XOR
operation to generate the random number. Thus, the total
number of operations required is 3n 4 2, with the time com-
plexity of the DroneRNG being O(n). In addition, since the
algorithm does not use any recursive call and the memory
required does not depend on the input value, the required
memory space is given constant, resulting in a space com-
plexity of O(1).

Second, we implemented our algorithm and measured how
long the CPU cycle took and how much RAM and virtual
memory was used for the actions. We present the CPU
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TABLE 3. Performance comparison.

Cycle Time RAM Virt. Mem.
(700 MHz) (ms) (KB) (KB)
DroneRNG(1) 173,600 0.248 1,396
DroneRNG(2) 143,500 0.205 1,392
DroneRNG(4) 127,400 0.182 1,428
DroneRNG(8) 119,700 0.171 1,484 12,200
DroneRNG(16) 116,200 0.166 1,408
DroneRNG(31) 114,100 0.163 1,360
CRAND(1) 240,800 0.344 1,152
CRAND(2) 126,700 0.181 1,092
CRAND4) 75,600 0.108 1,056
CRAND(8) 46,900 0.067 1,056 1,796
CRAND(16) 35,700 0.051 1,092
CRAND(31) 27,300 0.039 1,016
LPRNG(8) 195,300 0.279 1,088 1,796
TABLE 4. Power consumption comparison.
Drone Idle With With With Both
DroneRNG Motors
Raspberry Pi 032 W 041 W 1.25W 1.27W
Pixhawk 720 W 735W 15642 W | 157.19 W

cycle and memory required to generate random numbers
of 2,048 bits each using CRAND, LPRNG, and DroneRNG.

The number in parentheses on Table 3 is the bits of a
random number generated. When we pass the number of bits
as a parameter of DroneRNG, it extracts only the number of
bits from the random number pool and outputs that as the
random number. Our RNG is more efficient in this respect
than the CRAND which always outputs a 31-bit random num-
ber. When a smaller random number than 31-bit is required,
we use a random number divided by n that is a desired size.
The size of a random number generated by LPRNG is fixed at
8-bit. As seen in Table 3, the cycle and time in the generation
of random numbers of less than 2-bit in the Raspberry Pi
drone are not significantly different from the CRAND and
the DroneRNG, but the CRAND is faster in the generation
of random numbers of larger size. Our DroneRNG generates
random numbers, which are also cryptographically secure,
in exchange for lower performance in terms of cycle and
memory compared to CRAND, which is significantly less
random. It also generates random numbers in drones that
cannot use LPRNG, and it is faster than LPRNG.

E. POWER CONSUMPTION EVALUATION

A drone uses most of its power consumption for motors to run
the propellers. We set up four situations and measured the
power consumption in each situation to analyze how much
power the DroneRNG needs. The four situations were an idle
drone, a drone running only DroneRNG, a drone running
only motors, and a drone running DroneRNG and motors
together. Fig. 13 shows the power consumption comparison
over time of the two drones in each of the four situations and
Table 4 summarizes the average power consumption in four
situations.
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FIGURE 13. Power consumption comparison in Drones.

The idle Raspberry Pi drone used an average power
of 0.32 W and the Raspberry Pi drone running only
DroneRNG used an average power of 0.41 W. The Rasp-
berry Pi drone running only motors used an average power
of 1.25 W, and the Raspberry Pi drone running DroneRNG
and motors together used an average power of 1.27 W. In the
case of the Pixhawk drone, the idle drone used an average
power of 7.2 W and the drone running only DroneRNG
used an average power of 7.35 W. The drone running only
motors used an average power of 156.42 W, and the drone
running DroneRNG and motors together used an average
power of 157.19 W.

When the Raspberry Pi runs DroneRNG in an idle state,
the increase in power consumption is only 0.09 W. The
difference between the Raspberry Pi running just the motors
and running the motors with the DroneRNG is only 0.02 W.
In the case of the Pixhawk, the increase in power when
running DroneRNG in an idle state is 0.15 W. The difference
then between using only motors and using motors with the
DroneRNG is 0.77 W. The result was that power consumption
for DroneRNG was miniscule compared to the amount of
power the drone used to run the motors.

VI. CONCLUSION
In this paper, we showed how the sensor outputs are different
when the drone is in flight and when it is stationary. We also
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confirmed that sensors in drones can be used as sources of
randomness, and tested which output bits are random enough
to be used as random sources for a random number generator.

Based on the results of our experiments, we designed a
drone-specific random number generator, called DroneRNG,
which can use random numbers in the program regardless of
the depletion of entropy stored in the buffer by using thread,
in order to collect sensor data and generate random numbers.
Moreover, it is possible to use DroneRNG both when the
drone is stationary and in flight.

The random numbers generated by our DroneRNG achieve
enhanced statistical randomness. Particularly, the p-value is
determined to be almost equal to 1 for the cumulative sum test
and frequency test, which means that the random numbers are
also cryptographically secure.
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