
Received January 25, 2020, accepted February 4, 2020, date of publication February 10, 2020, date of current version February 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973043

FIRMCORN: Vulnerability-Oriented Fuzzing of IoT
Firmware via Optimized Virtual Execution
ZHIJIE GUI , HUI SHU, FEI KANG, AND XIAOBING XIONG
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China

Corresponding author: Zhijie Gui (zakiguixyz@gmail.com)

ABSTRACT The security situation of the Internet of Things (IoT) is particularly severe, and a large
number of IoT devices are prone to vulnerabilities. In this study, we present FIRMCORN, the first
vulnerability-oriented fuzzer for IoT firmware. Based on the novel technology of optimized virtual execution,
FIRMCORN focuses on three typical problems of IoT firmware fuzzing: (1) high throughput required by
fuzzing, (2) inaccuracy of emulation compared with real devices, and (3) instability of emulation due to lack
of hardware. Here, we optimize the initial environment and the execution process of virtual execution to
achieve faster, more accurate, and more stable fuzz testing. To improve the efficiency of vulnerability mining
with FIRMCORN, a vulnerable-code search algorithm is designed to obtain the entry points of fuzzing
according to the characteristics of IoT firmware; further, this vulnerability-oriented fuzzing is applied to
IoT device firmware. Our evaluation results show that optimized virtual execution used by FIRMCORN can
significantly improve the throughput, accuracy, and stability compared with conventional virtual execution.
FIRMCORN runs for only 2 hours to mine two 0-day vulnerabilities on a machine. Thus, compared
with the current state-of-the-art IoT firmware fuzzing framework, FIRMCORN can more effectively mine
vulnerabilities in real-world devices.

INDEX TERMS IoT, firmware, fuzzing, vulnerability, CPU emulator.

I. INTRODUCTION
In recent years, various Internet of Things (IoT) devices have
begun to access the Internet on a large scale, profoundly
changing people’s lifestyles; the number of IoT devices
is expected to exceed several times the global population
by 2022 [1]. Despite the explosive growth in the number
of IoT devices, manufacturers are yet to prioritize security
issues in such devices. Attackers can exploit vulnerabilities
in IoT firmware and control the IoT devices and even the
entire IoT system, because it often comprises a large number
of identical devices. Common IoT devices include routers,
IP cameras, and network-attached storage, and these devices
function more powerful compared with traditional embed-
ded devices in a network. Due to the limited resources of
IoT devices, the protection mechanisms commonly used in
desktop devices, such as Address Space Layout Randomiza-
tion (ASLR) [2] and Stack Canary [3], are not widely used for
IoT devices; therefore, exploitation of IoT devices becomes
even easier.

IoT firmware architecture is diverse and device dependent,
so firmware analysis and vulnerability mining are difficult

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

to research. For example, FIE [4] can only support auto-
mated analysis of firmware using MSP430 microcontrollers.
FIRMADYNE [5] can analyze firmware based on full-system
emulation, but NVRAM emulation failures often cause min-
ing process crashes. IoTFuzzer [6] can only test security for
App-based IoT devices.

Fuzz testing, an effective test method for discovering secu-
rity vulnerabilities, has been widely used in industry and
academia and has discovered many real-world vulnerabili-
ties. The current research trend is to apply fuzz technology
to quickly and effectively discover vulnerabilities in IoT
device firmware. For example, FIRM-AFL [7] is based on
FIRMADYNE, which applies AFL [8] to IoT firmware vul-
nerability mining through greybox fuzzing. However, this
tool can only test firmware that FIRMADYNE can emulate.

Many problems exist in applying fuzz technology to IoT
firmware. First, because accurate testing of IoT firmware
needs to be based on real devices, large-scale parallel testing
requires considerable real hardware. The scheme based on
emulation is computing-resource intensive and uses an emu-
lation environment different from the actual device operating
environment. Moreover, due to the hardware dependence of
device firmware, emulation sometimes crashes when encoun-
tered with lack of hardware.

29826 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1247-7792
https://orcid.org/0000-0002-7952-0038

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

We also note that greybox fuzzing that leverages code
coverage is not suitable for IoT firmware for the following
reasons: First, only a small part of the firmware constitutes
vulnerable codes; therefore, in spite of the higher code cover-
age of the fuzzer, most of the mined codes are not vulnerable.
Second, the firmware initialization process involves a large
amount of hardware interaction logic, but this part of the code
cannot be exploited remotely even if there is vulnerability.
Therefore, a more efficient fuzz testing technique is expected.
Our Solution: Vulnerability-oriented fuzzing on IoT

firmware via optimized virtual execution. In this study,
we aim to address the following general problems in firmware
fuzzing: (1) high-throughput requirement for fuzzing
(2) inaccuracy of emulation compared with real devices
(3) instability due to emulation crashes caused by lack of
hardware.

We propose optimized virtual execution, with the main
idea of optimizing the virtual execution initial environment
and the execution process. More specifically, we improve
emulation accuracy by incorporating the real context of
the actual device, system throughput by using heuristic
algorithms to skip unnecessary functions of fuzzing, and
fuzzing stability by hooking hardware dependency functions.
We design a vulnerable-code search algorithm to determine
the vulnerabilities of firmware for vulnerability-oriented fuzz
testing.

In this article, we present FIRMCORN, a vulnerability-
oriented IoT firmware fuzzing framework based on optimized
virtual execution. From the user’s viewpoint, FIRMCORN
can be used to dump runtime context information on real
devices, perform automatic analysis on firmware codes to
obtain vulnerable parts, and efficiently and stably conduct
fuzz testing on IoTfirmware of various architectures in a CPU
emulator.

We tested FIRMCORN with a benchmark program and
10 IoT devices, and the following results were obtained:
(1) Optimized virtual execution technology used by FIRM-
CORN could improve the efficiency and stability of fuzzing;
(2) The vulnerable-code search algorithm could effectively
locate vulnerable parts of the firmware; and (3) FIRMCORN
could effectively mine undisclosed vulnerabilities and detect
two 0-day vulnerabilities in real IoT devices after running
for 2 hours on a machine. We also provide a case study to
demonstrate the application of FIRMCORN to perform fuzz
testing on real devices.
Contributions: In summary, this study provides the follow-

ing contributions:
• We summarize existing methods for analyzing
IoT firmware. Most existing methods do not sufficiently
solve the typical problems of firmware fuzzing; there-
fore, we propose a novel technology called optimized
virtual execution, and use it as the basis for firmware
fuzzing.

• We propose and implement a vulnerable-code search
algorithm that performs static analysis on IoT firmware
to obtain vulnerable parts.

• We design and implement FIRMCORN, an IoT
firmware fuzzing framework based on optimized virtual
execution, and apply vulnerability-oriented fuzzing to
IoT firmware for the first time.

• The results of our extensive evaluation of the effec-
tiveness of FIRMCORN indicate that FIRMCORN can
significantly improve speed and stability compared
with the conventional virtual execution technology, and
FIRMCORN could discover two 0-day vulnerabilities in
real IoT devices within 2 hours.

• For supporting open science, our framework will be
open source to help other researchers in the in-depth
study of IoTfirmware fuzzing.(https://github.com/FIRM
CORN-Fuzzing/FIRMCORN)

II. BACKGROUND
A. IoT FIRMWARE
Firmware refers to a binary program that exists in an
EEPROMor a FLASH chip. There are two types of firmware:
low-level firmware and high-level firmware. Low-level
firmware mainly exists in an EEPROM, and it is difficult
to modify or update; high-level firmware usually resides in
Flash. Firmware works between the underlying hardware and
the upper layer software, and provides a simple call inter-
face for the software by effectively managing the hardware
devices.

Firmware mainly includes the firmware header, boot-
loader, system kernel, and file system, and due to the lim-
ited computing resources and storage space of IoT devices,
firmware is often burned in the device in a compressed form.
For performing firmware program analysis to understand
the device behavior and mine its potential vulnerabilities,
a debugging environment needs to be set up using static
analysis and dynamic debugging.

B. INTRODUCTION TO FUZZING
Fuzzing is an automated software vulnerability mining tech-
nology whose basic idea is to input a large amount of mal-
formed data to the target software to be tested and repeatedly
drive the target program to run while monitoring the running
status of the program. If an abnormal situation such as a
program crash occurs, testers analyze crash samples and error
locations to detect exploits or improve software quality. Fuzz
testing technology can be classified into whitebox, blackbox,
and greybox fuzzing according to the mastery of target pro-
gram behavior and information.

Whitebox fuzzing [9] analyzes the program before testing
and obtains certain information to guide the input generation.
With the understanding of the program structure and input
conditions, whitebox fuzzing is a targeted process and avoids
generation of many useless test samples. However, due to the
complexity of the target program execution process, the pre-
liminary analysis requires considerable time and resources.
Blackbox fuzzing [10] is a simple and effective test solution.
Unlike whitebox fuzzing, blackbox fuzzing does not consider
the internal state and execution flow of the program but

VOLUME 8, 2020 29827

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

directly analyzes a large number of random inputs to test the
target program. Blackbox fuzzing is simple and effective but
can generate a lot of useless test cases. Following the intro-
duction of whitebox and blackbox fuzzing, some researchers
proposed greybox fuzzing [11], which uses a lightweight
analysis method to guide the fuzz test and provides results
more efficiently than whitebox fuzzing and with greater accu-
racy than blackbox fuzzing.

Coverage-based fuzzing has mined many real-world vul-
nerabilities, it is considered effective in practice. However,
in-depth research of fuzzing has suggested that a fuzzing
strategy that simply improves code coverage is inefficient
because vulnerable codes account for only a small proportion
of the entire codes [12]. More efficient strategies should
determine the vulnerable part of the target program and then
execute targeted testing.

III. OVERVIEW
A. MOTIVATION
Debugging and analysis of IoT firmware is the basis for fuzz
testing. In this section, we discuss the advantages and prob-
lems of the existing approaches and illustrate our solution.
Existing Approaches. We summarize below the IoT
firmware analysis approaches that are currently available:
1) Hardware Interface Debugging. The debugging

method directly debugs an IoT device through its hard-
ware interface, such as the UART or JTAG debug inter-
face [13]. Thismethod is accurate and reliable. However,
it relies on physical equipment and can only debug
the equipment that exists and is retained in the debug-
ging interface. In addition, the analysis process greatly
depends on manual execution, which is not conducive to
large-scale automated analysis.

2) Full Static Analysis. [14] The full static analysis
method is the most direct and simple way, requiring
complete and full decompression of the firmware, and
it is unrelated to a single program or multiple programs.
This method is suitable for large-scale and parallel anal-
ysis and can collect a large number of firmware for auto-
mated testing. Static analysis does not actually run on
firmware, so there is no external environment interaction
or missing NVRAMas in dynamic debugging. However,
this method has an obvious limitation that the actual
behavior in the firmware operation cannot be accurately
analyzed, resulting in a large number of false positives.

3) User-Mode Emulation. User-mode emulation technol-
ogy is a simple and fast dynamic debugging method.
By decompressing firmware, a root file system is
obtained, and a single program in the firmware can be
run using the QEMU [15] user mode. It can also coop-
erate with chroot command to change the location of
the root directory referenced during program execution
in order to solve the problem of missing dynamic link
library files during runtime under the complete root
file system. Further, the QEMU supports remote debug-
ging, wherein a remote target can be set by gdb and

its firmware can be effectively debugged with QEMU.
However, in thismethod, the firmware programmay per-
form many hardware device-based initialization opera-
tions at startup, and because emulation of the hardware
devices is not possible, the process often crashes at
startup.

4) Full-system Emulation. FIRMADYNE [5] is based
on full-system emulation and provides the user with a
web interface. This method is based on QEMU’s sys-
tem mode; it collects system architecture information
according to busybox using a firmware extraction file
system, matches the customized system kernel, and then
runs the firmware using the QEMU system mode. The
configuration file of the device is generally stored in
NVRAM, and the NVRAM values can be read in the
firmware through functions similar to nvram_get.
If NVRAM is missing, these functions will crash dur-
ing the emulation. To solve the problem of missing
NVRAM, FIRMADYNE customizes the libnvram.so
file, load it through LD_PRELOAD, and hijack the
call of an NVRAM-related function. However, in this
method, the whole system emulation is extremely dif-
ficult, with large time overhead, thereby limiting the
adaptation of the method to large-scale test analysis.
Moreover, this method has a low success rate and is
unstable during fuzzing, because if the program calls the
libnvram.so file without an emulated function, the emu-
lation immediately crashes.

5) Augmented Process Emulation. This technology aug-
ments user-mode emulation with full-system emulation
and attempts to solve the firmware operation compat-
ibility problem by using system-mode emulation and
the low throughput problem by user-mode emulation.
FIRM-AFL is based on this method. However, the full-
system emulation component of this method itself can-
not completely solve the hardware dependency function
problem existing in firmware. If the method encounters
an external function without emulation, the process will
crash. Moreover, the switching between the user mode
and system mode will cause performance overhead.

6) Multi-target Orchestration Analysis. Multi-target
orchestration analysis is based on both real devices and
emulation technology and strives to solve the accuracy
problem that cannot be solved by emulation and the
automatic analysis problems that cannot be solved by
hardware debugging. Avatar [16] and Avatar2 [17] are
concrete examples of this concept, trying to forward I/O
operations to real devices to solve external environment
interaction problems. However, the Avatar and Avatar2

schemes have the problem that switching between emu-
lation environment and real devices affects the running
speed in large-scale fuzz testing.

Although existing approaches play an important role in
firmware debugging, the existing approaches still have prob-
lems in terms of speed, accuracy, and stability; therefore, they
cannot be used as the basis of IoT firmware fuzzing. In order

29828 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

to solve the three typical problems of IoT firmware fuzzing,
we propose novel techniques in the design process, namely
optimized virtual execution and a vulnerable-code search
algorithm, and implement the FIRMCORN framework to
achieve faster, more accurate, and more stable IoT firmware
fuzzing.

Before the fuzz testing process starts, FIRMCORN first
analyzes the firmware using the vulnerable-code search algo-
rithm and determines the entry point of fuzzing, runs to the
entry point in the actual device, and dumps context infor-
mation of the location as the initial state of fuzzing. Then,
FIRMCORN sets up the registers and memory layout at
the entry point in the CPU emulator. It then uses heuristic
algorithms to collect functions that cannot be emulated or
do not need to be emulated before fuzzing. These include
hardware-dependent functions, functions that read and write
to dynamically allocated memory space, and functions that
are not necessary for fuzz testing; these are hereafter called
hardware-specific, unresolved, and unnecessary functions,
respectively. Finally, starting from the entry point, hooks are
added to the above functions or filters to start fuzz testing for
vulnerable codes.
Optimized Virtual Execution:Virtual execution technology

does not actually execute firmware, but uses a technique
to read and execute some firmware instructions through a
CPU emulator. This lightweight emulation solution avoids
large time overhead caused by full-system emulation. Con-
ventional virtual execution based on a CPU emulator is
lightweight but not accurate and stable, and some output
functions such as puts are not necessary for fuzz testing.
Optimized virtual execution optimizes the initial environment
of virtual execution by using the real IoT device dump con-
text. Heuristic algorithms are used to search the three types
of functions to optimize the virtual execution process, thereby
achieving faster, more accurate, and more stable virtual exe-
cution. In the implementation of FIRMCORN, we adopt
optimized virtual execution as the basis for fuzz testing.

B. CHALLENGES IN FIRMCORN DESIGN
In this section, we summarize the challenges encountered in
the design of FIRMCORN and provide their solutions.

1) CHALLENGES
In the implementation of FIRMCORN, the following chal-
lenges need to be resolved.

2) ENTRY POINT GENERATION
IoT device firmware contains a number of hardware-dependent
functions that cannot be remotely interacted with and effec-
tively exploited even if they contain vulnerabilities; there-
fore, this area of code needs to be omitted from fuzzing.
At the same time, virtual execution itself requires com-
puting resources, and the coverage-based fuzzer constantly
generates new inputs to determine new paths, making it an
extremely inefficient test strategy. The entry point of fuzzing
is key information that must be obtained in the framework

design and it affects fuzzing efficiency and the ability of
vulnerability mining.

3) LARGE-SCALE TESTING
In the process of fuzzing, large-scale repeated testing is
often performed to improve the accuracy of test results.
However, firmware operation is closely dependent on the
device; because large-scale testing requires a large number
of devices, fuzz testing may frequently lead to program exe-
cution crash and frequent restart, resulting in considerable
runtime. A frameworkmust be designed to effectively test IoT
device firmware within a limited time frame with acceptable
hardware and software resources.

4) AUTOMATED FUNCTION PROCESSING
During the virtual execution of firmware, functions that need
to be processed are encountered. For example, in actual
firmware testing, a large number of hardware-specific func-
tions exist, which may lead to the crashing of virtual execu-
tion. Manual annotation of the addresses of such functions is
time consuming. Hence, the framework design must consider
automation of these functions to ensure stable and fast fuzz
testing.

5) SOLUTIONS
To resolve the aforementioned problems, we provide the
corresponding solutions:

6) VULNERABLE-CODE SEARCH ALGORITHM
We use a static analysis method to design and implement
a vulnerable-code search algorithm. Based on IDAPython’s
advanced APIs, we calculate the cyclomatic complexity of
functions and the number of references as the complexity
index to obtain complexity groups. In each group, we cal-
culate the number of memory operations and the number of
sensitive function calls as the vulnerability feature index to
obtain the order of vulnerability functions; then, we use the
initial address of the function as the entry point of fuzzing.

7) CONTEXT DUMP
In the design process of FIRMCORN,we adopt themethod of
dumping context information to realize a collection and mul-
tiple tests. To achieve virtual execution accuracy, we dump the
context information in real IoT devices, recover the complete
context information, and set registers and memory layout
before virtual execution.

8) HEURISTIC HOOK
We implement an automated processing mechanism for dif-
ferent types of functions based on heuristic algorithms.
We coordinate the use of two hook techniques: Global Offset
Table Hook (GOT-based) and Exception Hook (exception-
based). Using these hooks, we can automatically replace and
emulate unresolved and hardware-specific functions and skip
unnecessary functions.

VOLUME 8, 2020 29829

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

FIGURE 1. Overview of FIRMCORN.

IV. DETAILED DESIGN
In this section, we introduce the design and implementation
details of FIRMCORN. One of FIRMCORN’s design prin-
ciples is modularity programming. According to different
functions, we can divide the framework into five submodules:
preanalysis, dump, hook, fuzz, and crash. These five submod-
ules are called by the FIRMCORN Core. We illustrate the
detailed design of FIRMCORN in Figure 1.

A. PREANALYSIS
The algorithm can be divided into two stages: complexity
grouping and vulnerability-feature ranking stages.

1) FIRST STAGE: COMPLEXITY GROUPING STAGE
In the complexity grouping stage, the algorithm classifies all
the functions in the firmware on the basis of the complexity
index to obtain complexity grouping lists. For a function,
the higher its complexity, the more complex the function
logic is and the higher the probability of vulnerabilities in
the function is. At the same time, in order not to miss the
vulnerabilities in a low-complexity function, we group all
functions and judge the vulnerability characteristics in each
group. The complexity of a function is reflected in two
aspects: the complexity of the logic of the function itself
and the complexity of the reference relationship, which are
measured, respectively, by cyclomatic complexity [18] and
the number of times the function is called.

a: CYCLOMATIC COMPLEXITY
We calculate the cyclomatic complexity of a function accord-
ing to the number of points and edges of the function control

flow graph (CFG), according to the following formula:

MF = E − N + 2× P (1)

where MF represents the cyclomatic complexity of
function F ; E represents the number of edges in the CFG; N
represents the number of nodes in the graph; and P represents
the number of connected components.

b: NUMBER OF TIMES A FUNCTION IS CALLED
The number of times a function is called can intuitively reflect
the complexity of the function call relationship. If a function
is vulnerable and is called multiple times, it implies that there
are multiple ways to trigger its vulnerability. The number of
times a function is called, XF , is calculated as follows.

XF =
n∑
i=1

XrefsTo(here)i

where XrefsTo, which takes the function start address here,
returns a list of callers. In the calculation of this value,
we ignore the function that has been called 0 times in the
target program. In the implementation of the vulnerable-code
search algorithm, we define the functional complexity index,
complexF , as follows.

complexF = bMF lnMFc

= b(E − N + 2× P) ln(E − N + 2× P)c

+

n∑
i=1

XrefsTo(here)i

This index can ignore the effect of a small circle complex-
ity on the index when the cyclomatic complexity of a function
is less than 3; it can enhance the effect of the cyclomatic

29830 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

TABLE 1. Sensitive functions.

complexity on the index when the cyclomatic complexity has
reference significance and ensure the result to be an integer by
rounding down. Next, in this stage, we group the functions of
the firmware program with the same complexity into a group
and thus obtain the function complexity groups.

Algorithm 1 Vulnerable-Code Search Algorithm
Input: Firmware functions funcs
Output: Vulnerability feature rank vulnerable_rank
1: Initialize complex group Group1, vulnerable rank
Group2

2: // stage1: complexity grouping stage
3: for i = 0 to len(funcs) do
4: complexi = GetFuncComplex(i)
5: if complexi == 0 then
6: continue
7: end if
8: Group1[complexi] = Group1[complexi] ∪ i
9: end for

10: // stage2: vulnerability feature ranking stage
11: Initialize ordering rules cmp
12: for i = 0 to len(Group1) do
13: for j = 0 to len(Group1[i]) do
14: vulnerabilityj = GetFuncVuln(j)
15: if vulnerabilityj == 0 then
16: continue
17: end if
18: cmp[i] = cmp[i] ∪ vulnerabilityj
19: end for
20: Group2[i] = sort(Group1[i], cmp[i])
21: end for
22: vulnerable_rank = Group2
23: return vulnerable_rank

2) SECOND STAGE: VULNERABILITY-FEATURE RANKING
STAGE
In the vulnerability-feature ranking stage, the algorithm sorts
the functions in each group based on the vulnerability feature
index and determines the most vulnerable function in each
group. The vulnerability feature of a function can be reflected
in two aspects: the sensitivity function call index and the
number of memory operations.

a: SENSITIVITY FUNCTION CALL INDEX
The call of sensitive functions is the most intuitive vulner-
ability feature. For example, the function system, which
executes system commands, can directly execute high-risk
vulnerabilities if its parameters are controllable. In the imple-
mentation process, we maintain a list of sensitive functions,
as shown in Table 1.

In addition, FIRMCORN is extensible, enabling users
to add sensitive functions according to specific con-
ditions. For example, we add a sensitive function
CGI_Find_Parameter to analyze QNAPNAS firmware;
this function is defined in the file libulinux_cgi.so.
0.0 to obtain HTTP request data. FIRMCORN also supports
users to assign different weights to different sensitive func-
tions depending on the value of the functions. The sensitive
function call index SF is calculated as follows:

SF =
n∑
i=1

wi × SenFunc(F)i

where wi represents the weights of different sensitive func-
tions; SenFunc(F) represents a function of the list of sensitive
function calls of F .

b: NUMBER OF MEMORY OPERATIONS
Incorrect memory operations can often lead to Out-of-
Bounds Read andWrite. If used properly, it can cause serious
consequences such as information leakage or arbitrary write.
We obtain the disassembly result of a function, then traverse
all the instructions and obtain the OpList set of each function
as follows:

OPList = {GetOPType(ea) | ea ∈ (funcstart , funcend)}

Then, we judge whether the instruction has memory oper-
ation and constitutes a memory operation instruction set
MemOPList . In the algorithm, we mark the number of mem-
ory operations of a function F as PF and calculate it as
follows:MemOPList = {op | op ∈ OPList and op == opmem}

PF =

∑n
i=1MemOPListi
len(OPList)

The number of memory operations is a more significant
index of vulnerability features than the sensitive function

VOLUME 8, 2020 29831

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

call index. The algorithm defines the vulnerability feature
index vulnerabilityF of a function F as the weighted sum
of two values, and finally ignores those functions whose
vulnerability features are 0. We describe the vulnerable-code
search algorithm in detail in Algorithm 1.

B. DUMP CONTEXT
Optimized virtual execution ensures the accuracy of the emu-
lation environment by dumping the context of a firmware
program running in an actual device.

In the analysis of IoT devices, accessing the inside of the
device for more detailed security analysis is often not possi-
ble. For example, the D-Link DIR series of routers provide
users with only one web interface, facilitating some simple
configuration work. In this case, we cannot gain access to
the current router process and port information; therefore,
we obtain the shell of the device through one of the following
three ways and execute the system commands.

1) BASED ON TELNET/SSH SERVICE
If the device itself provides the Telnet or SSH service at
boot time, we can easily get the shell of the device and execute
system commands.

2) BASED ON DEVICE DEBUG INTERFACE
After the hardware analysis of the device, the Universal
Asynchronous Receiver/Transmitter(UART)
interface is found and the RXD, TXD, and GND pins are pulled
out to set the appropriate baud rate. We can generally obtain
the shell of the device through the UART port.

3) BASED ON FIRMWARE UPDATE MECHANISM
IoT devices are generally facilitated with a means to update
the firmware. If the firmware is not validated during the
update process, the firmware to be upgraded can be extracted,
the startup script rcS is modified, and the Telnet or
SSH service is provided when the device is turned on. The
firmware is repackaged and the modified firmware is finally
updated to the device.

After obtaining the device shell, we upload a stati-
cally linked gdbserver to the device over the network,
then specify the debug port on the device side through
gdbserver, connect the remote debug port on the host
side through gdb, and then run to the entry point to begin
preparing the dump context.

We define the complete context as a combination of the
register status set Regs, the memory segment set Segs, and
the architecture information Arch:

Context = Regs ∪ Segs ∪ Arch

In the FIRMCORN design process, we implement the
complete context dump algorithm in the dump submodule,
as presented in Algorithm 2:

In FIRMCORN, the dump submodule uses Algorithm 2 to
obtain the context Context of the entry point location,

Algorithm 2 IoT Firmware Context Dump Algorithm
Input: IoT device firmware runtime state
Output: Context information file dump.json and segments

packed files seg.bin
1: Initialize register status list reg_state, memory segment

list seg_state
2: Initialize architecture arch
3: for reg = 0 to len(Multi_Arch_Regsarch) do
4: reg_val = GetRegister(reg)
5: reg_state[reg] = reg_val
6: end for
7: for seg = 0 to len(Vmmp_Segs) do
8: seg_content = ReadMemory(seg)
9: packed_seg_content = Compress(seg_content)

10: Write(packed_segcontent) to seg.bin
11: seg_state[seg] = packed_seg_content
12: end for
13: Write(reg_state,seg_state,arch) to dump.json
14: return dump.json, seg.bin

including the dump.json file and multiple memory segment
compressed files. The dump.jsonfile includes the architecture
information and the register status set.

C. HOOK
We implement function hijacking and skipping in the dump
submodule.

Before starting the emulation, the framework analyzes the
GOT information of the firmware program. After setting the
initial environment of the CPU,we traverse theGOT table and
read the memory for the address of each entry of the GOT
to obtain the actual address of the function. However, due
to the lazy binding mechanism of the ELF [19], the binding
of the address will not be complete for some functions in
the GOT. Next, by parsing the symbol table information of
the dynamic link library file in the firmware, the offset of the
library function in the dynamic link library can be obtained.
This allows calculation of the actual address of all functions
in the memory, as described below.

Select a function that is denoted as funcX ; the func-
tion’s address in memory is defined as mem_addrfuncX , and
the offset address of funcX in the dynamic link library
is offsetfuncX . Hence, we obtain the actual load address
of the dynamic link library file in memory, libcaddr , as
follows:

libcaddr = mem_addrfuncX − offsetfuncX

For any function func_i, if the function address is not
resolved, we calculate the actual address of the function in
memory by the following formula:

mem_addrfunc_i = libcaddr + offsetfunc_i

With the above calculation, we obtain both the actual
memory address list of functionsGOTmem and the unresolved

29832 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

FIGURE 2. Function hook.

address list of functions GOTorig. In the hook submodule
of FIRMCORN, we use the hook_add function provided
by Unicorn Engine [20] to add a callback function of type
UC_HOOK_CODE to monitor whether the running address of
the firmware is in GOTmem or GOTorig. Unicorn Engine is a
CPU emulator based on QEMU. On the basis of QEMU, only
the CPU emulator part is retained and unnecessary peripheral
emulation is removed. Unicorn Engine can support the emu-
lation of multiple architecture codes under one framework
as well as support multiple levels of hooks. If the match is
successful, FIRMCORN provides an interface for the user
to replace the original function with a custom function or to
skip the address resolution of __dl_runtime_resolve
[21] and jump directly to the actual address of the function in
memory. Similarly, FIRMCORN can automatically identify
and skip unnecessary functions in the fuzz testing process
based on GOTmem and GOTorig, thereby increasing the speed
of virtual execution. The implementation principle of the
above process is presented in Figure 2.

For statically linked binaries, the compiler compiles the
required library files into the program during the compilation
of the executable program. This approach can still automat-
ically identify the function and add the hook by parsing the
binary symbol table.

D. OPTIMIZED VIRTUAL EXECUTION
In the FIRMCORN Core, we implement the optimized vir-
tual execution technology. In this section, we first introduce
a CPU emulator and Unicorn Engine and then introduce
the framework to support multiple architectures. Finally,
we introduce heuristic algorithms to optimize the virtual
execution process.

1) CPU EMULATOR
A CPU emulator is a tool that uses pure software to emulate
a CPU, thereby implementing instructions that run different
instruction sets on one architecture. The input to a CPU
emulator is a binary code or a fragmented binary code. Before
using a CPU emulator, the context state needs to be set and the
architecture information must be specified. A CPU emulator
creates and maintains a virtual stack and memory segment

and then decodes binary code into multiple instructions based
on the specified instruction set and endianness information.
It then reads each instruction for interpretation execution after
the formal execution and updates the context state after each
instruction execution.

It is not an easy task to implement a full-featured and
accurate CPU emulator. Due to the variety of architectures
and instructions, the implementation of a CPU emulator
is very complicated and cumbersome. Fortunately, QEMU
has implemented a pure C CPU emulator, and Unicorn
Engine [22] only retains the CPU emulator part of QEMU,
removes emulation for other devices, and provides a python
interface binding. We use the Unicorn Engine CPU emulator
to avoid reinventing the wheel.

The FIRMCORN Core is based on Unicorn Engine APIs.
For examples, reg_write is used to write register groups,
mem_map is used to allocate stack space, and mem_write
is used to write memory to implement context state import,
and complete the migration of the entry point state from a
physical device to the CPU emulator.

2) MULTI ARCHITECTURE
FIRMCORN is designed to support multiple architec-
tures. The framework will extract program architec-
ture information, including instruction set, word length,
and endianness, and automatically configure the CPU
emulator.

Function parameters, function calls, and endianness vary
in different architectures. For example, in an x86 32bit envi-
ronment, all parameters of function calls are passed through
the stack, and the return value of the function is stored in
the eax register. However, in an MIPS environment, the first
four parameters are passed through the $a0∼$a3 registers,
the latter parameters are passed through the stack, and the
return value of the function is stored in the $v0∼$v1 reg-
ister. Therefore, in the framework design, we abstract the
registers that may be used and provide users with a consistent
interface to allow them to write custom emulation functions.
FIRMCORN currently supports testing four architectures,
shown in Table 2.We implement register abstraction for these
four architectures.

VOLUME 8, 2020 29833

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

TABLE 2. Abstract registers.

3) HEURISTIC OPTIMIZATION
First, we specifically describe the three types of functions,
namely unresolved, unnecessary, and hardware-specific func-
tions:

a: UNRESOLVED FUNCTION
Although the context information is extracted as much as
possible, dynamically allocated memory, such as heap space,
may not be initialized and thus not obtained at the entry
point; therefore, import of this part of memory in advance
is not possible. If the library function reads and writes this
part of the memory, it will cause errors in the emulation
process. We define these functions as unresolved functions
in the framework.

b: UNNECESSARY FUNCTION
There are some functions that are not needed in the fuzzing
process, such as the puts function and similar functions.
We define these functions as unnecessary functions. To real-
ize more efficient fuzz testing, our framework provides an
interface for users to skip certain functions. When these
functions are executed, the program counter (PC) register will
be set to the address of the next instruction and the stack will
be balanced.

c: HARDWARE-SPECIFIC FUNCTION
IoT device firmware has access to hardware functions, such as
reading GPIO pins or NVRAM regions; however, the lack of
these hardware pins during emulation will cause the program
to halt and crash. These functions depend on the hardware
of the device, and therefore defined as hardware-specific
functions.

In order to handle the aforementioned functions, we coor-
dinate GOT-based and exception-based hook techniques to
carry out heuristic optimization. FIRMCORN adds two types
of exception hook (UC_HOOK_MEM_READ_UNMAPPED and
UC_HOOK_MEM_WRITE_UNMAPPED) functions; each time
it reaches the memory space function that encounters
dynamic allocation of read and write, it enters the hook func-
tion for exception handling. The list of unresolved functions
is recorded in the hook function by recording the library
function that throws an exception at that time. In the formal
fuzzing process, FIRMCORN uses a custom library function
to replace the function in the unresolved function list based
on the hook submodule. In order to add support for dynamic

memory allocation-related functions, we implemented a sim-
ple heap emulation with reference to uClibc in FIRMCORN,
designed chunks as the basic unit of allocation, and imple-
mented support for malloc, free, realloc, and other functions
on this basis. To handle unnecessary functions, FIRMCORN
uses the skip function of the hook submodule, which can
automatically skip common unnecessary functions in the
virtual execution process by adopting the GOT-based hook.
As for hardware-specific function, FIRMCORN has written
common NVRAM read/write functions that automatically
replaces hardware-specific functions that cannot be emulated.

E. FUZZ TESTING
In this section, we will introduce the fuzz submodule and
crash submodule of FIRMCORN.

1) START FUZZING
In FIRMCORN, the fuzz submodule is implemented, which
is imported and called by the FIRMCORN Core to address
two key issues: generation and execution of test cases.

In fuzz testing, test cases are generally generated by either
a mutation-based or a generation-based approach [23].The
mutation-based approach creates more number of test cases
by mutating test samples, whereas the generation-based
approach generates test cases on the basis of modeling the
protocol or file format used by the system under test.

Due to the limited computing resources, IoT devices sel-
dom use complex protocols or perform complex data process-
ing. Our fuzz submodule allows users to simply model pro-
tocols or inputs and create test cases based on the generation
method. At the same time, by default, the fuzz submodule
supports users to create a large number of test cases using the
mutation-based method for fuzz testing the target program.
Through the generated test cases, we hijack an input function
based on the hook module, shield the differences among
various data input methods, and provide a unified interface
to facilitate the target program to read into the test cases. For
example, in the testing of the DLink router, we hijack the
getenv function. The Common Gateway Interface (CGI)
program of the router can get the CGI environment variables
controlled by the attacker through getenv. To adapt to
various firmware programs, FIRMCORN’s design is exten-
sible, thus supporting user-defined hijack functions. If at the
entry point of the fuzzing, the tested field data have been
imported into the memory, we monitor the parameters of the
function. If the field or the address of the field is found, then
FIRMCORN replaces this parameter with the generated test
cases to implement fuzz testing in this case.

2) CRASH CHECK AND LOG
Another key issue in fuzz testing is monitoring and recording
the crash of the sequence and providing the user with a test
case that can crash the program. To achieve this, we imple-
ment the crash submodule in FIRMCORN.

In the process of optimized virtual execution, we consider
two types of crash monitoring methods: memory corruption

29834 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

TABLE 3. Summary of IoT devices used for experiments.

check and exception detection. Because the MMU of some
IoT devices does not have a memory destruction check mod-
ule, there are cases where although overflow has occurred,
the program has not crashed; this is referred to as silent
memory corruption in the literature [24]. To counter this, after
a sensitive function call, we check the stack data to see if
an overflow exists. We also monitor abnormal situations in
the execution process and identify exceptions for determining
whether the executed program has crashed.

After monitoring the crash, FIRMCORN records the test
case of the crash and provides it to the user to determine the
specific location of the vulnerability and generate .crash
files.

V. EVALUATION
In this section, we will evaluate the prototype imple-
mentation of FIRMCORN. Herein, we verify whether the
proposed method solves the difficulties of IoT firmware
fuzzing and test the effectiveness of FIRMCORN vulnera-
bility discovery. In short, we aim to answer the following
questions:

• Accuracy. Is FIRMCORN’s optimized virtual execution
more accurate than conventional virtual execution?

• Efficiency. By what extent is FIRMCORN’s optimized
virtual execution efficiency higher than conventional
virtual execution efficiency?

• Stability. Is FIRMCORN’s optimized virtual execution
stable?

• Effectiveness. How effective is FIRMCORN in identify-
ing vulnerabilities in real IoT devices.

Finally, we present an example to demonstrate how to
perform a fuzz testing on an IoT device using FIRMCORN.
Testing Environment: Our experiments were conducted on

an Intel(R) Core(TM) i7-7700 CPU 3.60 GHz CPU machine
with 8G RAM and 512 G hard disk. The operating system
was Ubuntu 16.04.6 LTS.
IoT Device Selection: For our experiments, we chose

10 IoT devices that are mainstream products, and the
firmware of these devices can be downloaded from their
official websites. Table 3 shows a list of the selected
devices and their firmware versions as well as the pro-
grams that were tested. The photos of the devices are shown
in Figure 3.

FIGURE 3. IoT devices used for experiments.

A. ACCURACY
For the 10 devices listed in Table 3, FIRMCORN used
gdbserver to attach the firmware program and specify the
debugging port. Using the gdb remote connection debugging
port, the firmware of the devices was remotely debugged.
Then, FIRMCORNwas run at the entry point to start dumping
the context information of the location as the initial condition
for this part of the experiment.

In the first experiment, we set the context in FIRMCORN’s
CPU emulator and prepared to perform optimized virtual exe-
cution. The complete functions were executed while tracing
the assembly-level jump of the functions in their execution
sequence. Then, the result obtained was compared with the
optimized virtual execution result; it indicates that the execu-
tion sequences of optimized virtual execution and the actual
device were exactly the same.

In the second experiment, we set the context for traditional
virtual execution in the traditional CPU emulator. However,
the entire firmware crashes or exits during the subsequent
operation. This is because of the existence of hardware inter-
action in the firmware or due to the NVRAM read/write
functions.

In summary, optimized virtual execution used by
FIRMCORN can be based on the actual firmware dump
context. While it skips considerable hardware interaction
occurring in the firmware initialization phase, it can guar-
antee the accuracy of virtual execution.

VOLUME 8, 2020 29835

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

TABLE 4. Results of nbench. Unit: iterations/second.

B. EFFICIENCY
To test the efficiency of virtual execution, we used a bench-
mark program of nbench [25] and added custom I/O oper-
ation scenarios and GPIO pin reading scenarios. Note that
we modified the nbench compilation method as a dynamic
link in order to make it adaptable to various firmware pro-
grams. FIRMCORN was used to obtain the context state of
the starting position of the main function of the nbench
program. Then, optimized virtual execution and conventional
virtual execution were performed to run the program in the
CPU emulator, and their performance was recorded in terms
of execution time. Furthermore, low-level optimization was
performed on unresolved functions in conventional virtual
execution to ensure the stable execution of the program. The
test results are presented in Table 4.

The results indicate that in the benchmark test program
of nbench, the efficiency of the optimized virtual exe-
cution technology is improved compared with that of the
conventional virtual execution technology. This is because
optimized virtual execution simplifies the calling process
of the library function, and can automatically jump to the
actual address in memory, saving time in address resolution.
In the I/O operation scenario, optimized virtual execution
is significantly more efficient than conventional virtual exe-
cution, because FIRMCORN’s heuristic optimization skips
unnecessary functions, thereby improving the running speed.
In the GPIO scenario, FIRMCORN writes custom functions
to replace hardware-specific functions, thus ensuring contin-
ual running of virtual execution. However, this method does
not accurately emulate the hardware, but only aims to be as
accurate as possible in the virtual execution process.

C. STABILITY
To test the stability of optimized virtual execution, exper-
iments were conducted in the selected device firmware.
We imported the IoT firmware contexts into the FIRMCORN
framework to perform conventional virtual execution. How-
ever, due to the lack of processing of the read and write
functions of the dynamicmemory area, all the tested firmware
crashed. Next, we performed optimized virtual execution;
we added automated processing of unresolved functions and

FIGURE 4. Function category.

hardware-specific functions, all of which could be executed
normally in the CPU emulator. We recorded the three types of
functions—unresolved, unnecessary, and hardware-specific
functions—present in the firmware listed in Table 3, and
plotted histograms shown in Figure 4.

In optimized virtual execution, the presence of unresolved
functions (blue bar) and hardware-specific functions (green
bar) majorly contributes to the restriction of the stability of
the simulation process, but FIRMCORN can automatically
recognize and replace these functions. FIRMCORN incorpo-
rates some library functions and common NVRAM operation
functions as well as provide interfaces for users to write
custom functions. However, a steady increase will result in
an increase in virtual execution time; owing to the addition
of hook functions in the execution process, optimized virtual
execution results in a certain amount of time consumption
compared to user-mode emulation.

D. EFFECTIVENESS
We evaluated the effectiveness of FIRMCORN in deter-
mining real-world IoT device firmware vulnerabilities. This
section is divided into three parts:
• Evaluation of the effectiveness of the vulnerable-code
search algorithm

• Evaluation of the effectiveness of FIRMCORN in vul-
nerability discovery

• Evaluation of the accuracy of FIRMCORN’s vulnerabil-
ity reports.

1) EFFECTIVENESS OF THE VULNERABLE-CODE SEARCH
ALGORITHM
We selected 10 firmware programs with known vulnerabili-
ties from Firmadyne datasets [26] and CVE [27] list as the
base dataset and used FIRMCORN’s preanalysis submod-
ule to analyze them. Then, we compared the entry points
of the functions of 1-day vulnerabilities with the result.
Figure 5 shows the relationship between complexity sorting
and the percentage of the vulnerability features of these

29836 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

FIGURE 5. FIRMCORN preanalysis results.

TABLE 5. Time to crash.

firmware programs. In the figure, the red dots denote the
entry points of the functions where the 1-day vulnerability
was located.

Figure 5 indicates that all firmware has a similar func-
tion distribution: many functions with low-complexity and
low-vulnerability features exist in the firmware, and irre-
spective of whether the complexity of 1-day vulnerabil-
ity functions is high or low, they generally have more
high-vulnerability features. Among the 10 test sets, seven
1-day vulnerability functions are ranked first in the com-
plexity grouping, and nine 1-day vulnerability functions are
ranked in the top 20% of the complexity grouping. In par-
ticular, in the analysis results of the DLink DIR-629 router,
two 1-day vulnerabilities (CVE-2018-5318 and CVE-2018-
10996) are ranked first in vulnerability ranking. However,
note that the result of the preanalysis submodule shows
only the sorting of potential vulnerability functions, but the
functions with higher ranking are not necessarily vulner-
able. For example, the vulnerability-feature percentage of
EDB-ID-38720 is 57%, because other functions of the group
have performed multiple memory operations and have been
confirmed to have no exploitable vulnerabilities, thus result-
ing in a significant vulnerability feature for EDB-ID-38720.

In the experiment, FIRMCORN was tested according
to the default configuration in order to ensure reasonable

effectiveness evaluation. This resulted in the firmware effect
for some sensitive functions with customization not being
particularly good. For example, in the CVE-2017-17033 test
sample, the vulnerability is a stack overflow of the QNAP
NAS device. Although in the test results, the ranking of the
feature of the 1-day vulnerability is still the best, the vulner-
ability feature of this function is not high. In practical use,
the preanalysis module needs to be simply configured to fit
different types of firmware. FIRMCORN supports experi-
enced analysts to add theCGI_Find_Parameter function
as a sensitive function, through which the QTS system could
obtain user input. Therefore, there may be exploitable vulner-
abilities in the process.

2) EFFECTIVENESS OF VULNERABILITY DISCOVERY
In this experiment, we focused on evaluating FIRM-
CORN’s effectiveness of vulnerability discovery, espe-
cially in firmware vulnerability discovery of real-world IoT
devices. We used FIRMCORN to initiate service requests
to devices listed in Table 3. After obtaining the context
of the entry point location, fuzz testing was performed in
FIRMCORN.We recorded the time when the first valid crash
occurred and plot the values in Table 5. To obtain statistically
significant results, the above procedure was repeated 10 times
and the average of 10 data was obtained.

VOLUME 8, 2020 29837

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

As Table 5 shows, FIRMCORN completed execution
within 16 h and 50 min and determined eight memory cor-
ruptions in 10 IoT devices. Upon checking, seven of these
corruptions were due to buffer overflow (stack-based).

FIRMCORN has a significant efficiency and utility
improvement over the current state-of-the-art IoT device
fuzzing tools. Unlike IoTFuzzer, FIRMCORN does not
need to restart the device repeatedly in the testing process,
thus saving considerable time for device restart. Moreover,
the IoTFuzzer framework can only test App-based devices,
so it has major device limitation. By contrast, the DLink
DIR-629 router tested by FIRMCORN, for example,
is not controlled by an App. Compared with FIRM-AFL,
FIRMCORN can find some special vulnerabilities; for
example, after 42 minutes of testing of TPLink WR940N,
FIRMCORN could locate a group with a complexity of 109.
The first ranking of the vulnerability index in this group
was for the ipAddrDispose function, and after testing
this function to determine the stack overflow vulnerability
caused by incorrect use of strcpy calls, the vulnerability
of CVE-2017-13772 was confirmed. However, testing the
firmware using FIRM-AFL did not report a valid crash for
more than 24 h.

We analyzed the above .crash files and confirmed that
most of them were caused by the same known vulnerabilities;
however, we also discovered two new vulnerabilities during
our testing, which we will discuss below.
0-day Vulnerabilities: During the testing of the DLink

DIR-859 router using FIRMCORN, we found two unknown
vulnerabilities after 36 min and 1 h 18 min.We reported these
to the equipment manufacturer and MITRE corporation. The
details of these two vulnerabilities are as follows:
• CVE-2019-16341: Buffer overflow in D-link dir-859
(hardware version: A3 firmware version: 1.06). Attack-
ers can use the HTTP_SOAPACTION field in the
cgibin to cause device crash or remote command
execution.

• CVE-2019-16342: Buffer overflow in D-link dir-859
(hardware version: A3 firmware version: 1.06). Attack-
ers can use the REMOTE_ADDR field in the cgibin to
cause device crash or remote command execution.

3) ACCURACY OF VULNERABILITY REPORTS
To test the accuracy of vulnerability report generated by
FIRMCORN, we applied FIRMCORN to the devices listed
in Table 3, ran it for 24 h, and analyzed .crash files.
Figure 6 presents the plot to show the number of crashes
reported by FIRMCORN and the number of crashes that is
considered valid.

Figure 6 shows that a large number of configuration read
functions are present in the IoT devices. For example, in the
goahead program of DLink DIR-823G, apmib_get is
called to read the username and password. These configura-
tion files do not exist in the CPU emulator, causing the fuzz
testing to crash; this is the main cause of false positives in
the experiment. To eliminate these false positives, we added

FIGURE 6. False positives.

FIGURE 7. Fuzzing accuracy.

a simple emulation of the above functions so that these
functions can return values normally. FIRMCORN auto-
matically identifies these functions during fuzz testing and
replaces them with custom emulation functions to ensure that
fuzz testing will not produce false positives.

Further, we used vulnerability-led crash inputs as input for
testing the actual device, and then monitored the operation of
the device program to determine whether a crash occurred.
Figure 7 shows the relationship between invalid crashes
in actual equipment and the number of crashes reported
by FIRMCORN.

Figure 7 indicates that the efficiencies reported by FIRM-
CORN cannot always be achieved on actual devices. In par-
ticular, vulnerability existed in the part of the branch
that required authentication, which could not be bypassed
in the actual device; therefore, vulnerability-led crashes
reported by FIRMCORN could not cause the actual device
crash.

29838 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

E. CASE STUDIES
In this section, we present a test case showing the application
of FIRMCORN to perform fuzz testing on real-world devices.
The device is DLink DIR-859, with the hardware version
A3 and firmware version 1.06.

We obtained the shell of the device through the UART
ports by TTL serial to USB converter (FT232 chip), as shown
in Figure 7.

We used FIRMCORN’s preanalysis submodule to analyze
the cgibin program in the firmware, which was a firmware
CGI binary. We sorted the entry points of vulnerable codes
and performed dumping of context information of these entry
points in the device. After importing the context, we added
a Fuzzer object using the add_fuzz function provided
by FIRMCORN, and finally started the fuzz test using the
start_run function. After FIRMCORN ran for 34 min,
we tested the entry point address 0x40F7DC with a com-
plexity value equal to 8. The entire entry point information of
the complexity group is as follows.

Further, we continued to use the default seed for the
fuzzing, and FIRMCORN prompted occurrence of crashes
after approximately 2 min. We checked the .crash files
under the outputs folder and checked the binary code to
confirm that the crash was caused by stack overflow due to
incorrect calls to sprintf. The binary code is represented
by MIPS, as follows.

In the above assembly code, we can see that the sprintf
function is called at the 0x040F8CC address. The destina-
tion address (register $a0) is the stack space, the format
string (register$a1) is%s/%s, the first source address (regis-
ter$a2) is the identified string, and the second source address
(register $a3) is the content of the HTTP_SOAPACTION
parameter obtained through getenv, which is controllable
and causes the stack overflow.

FIGURE 8. DLink DIR-859. Connected to a computer by a USB converter.

VI. DISCUSSION
Although our framework can effectively discover vulnerabil-
ities in IoT devices, it has further scope for improvement.
In this section, we discuss the limitations of the framework
and provide some insights into future work.

A. LIMITATION ON CPU ARCHITECTURE
FIRMCORN currently supports the following CPU archi-
tectures: armel, armeb, mipsel, mipseb, and x86(LE). These
architectures already account for 92.7% of the FIRMADYNE
datasets and 81.5% of the reference [14] datasets. In the
future work, it is relatively easy to provide more architecture
support, because Unicorn Engine provides direct support for
related architecture APIs. FIRMCORN also pays attention to
the decoupling of different architectures during the imple-
mentation process, which is convenient for adding new CPU
architectures.

B. LIMITATIONS ON OPERATING SYSTEM
Currently, FIRMCORN can only support the testing of
firmware on Linux systems. This limitation comes from the
way FIRMCORN dumps context information. In the future,
we may explore additional dump methods for general context
information to support more operating systems.

VII. RELATED WORK
In this section, we briefly describe the work of other
researchers.

A. IoT FIRMWARE ANALYSIS
Costin et al. [14] performed the first public large-scale
analysis of firmware images, unpacking 32000 firmware
images and yielding 1.7 million individual files. The authors
implemented an automated framework to collect and analyze
large-scale firmware images, and detected 38 CVE vulnera-
bilities inmore than 693 firmware images without performing
complex static analysis. Shoshitaishvili et al. [28] proposed
the Firmalice framework for embedded device firmware anal-
ysis based on symbolic execution engines, and proposed

VOLUME 8, 2020 29839

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

a new authentication bypass vulnerability model that can
detect complex backdoor vulnerabilities without relying on
the details of the firmware implementation itself.

Xu et al. [29] proposed a neural network-based approach
to detect cross-platform binary code similarity, implemented
a prototype system called Gemini, and evaluated it on
OpenSSL. In addition, Wang et al. [30] proposed a novel
staged firmware vulnerability detection method that provides
a higher degree of similarity analysis accuracy in a two-stage
combination. Feng et al. [31] proposed a bug search scheme
for IoT systems, implemented the bug search engine called
Genius, and conducted extensive evaluation on real devices.

Static analysis of IoT firmware is simple and efficient, but
there are still problems such as inaccurate analysis results
and high false positives. Zaddach et al. [16] proposed the
Avatar framework to forward I/O accesses from the emu-
lator to the embedded device. On the basis of this work,
Muench et al. [17] implemented Avatar2 to enable
interoperability between different dynamic binary analysis
frameworks, debuggers, emulators, and real physical devices.
However, the above scheme has considerable overhead in
hardware and emulator switching, thereby limiting its appli-
cation in fuzz testing.

Chen et al. [5] proposed a dynamic analysis framework
FIRMADYNE based on full-system emulation, and based
on this, the Metasploit framework was developed to dis-
cover known vulnerabilities. Costin et al. [32] conducted
large-scale dynamic analysis of firmware and found vulnera-
bilities related to a Web interface; however, the scheme could
not identify vulnerabilities in other modules of the firmware.
Zandberg et al. [33] proposed the possibility of creating a
secure, standards-compliant firmware update solution that
uses security technology to secure IoT devices.

B. FUZZING
Li et al. [12] implemented V-Fuzz, analyzed the exist-
ing limitations of coverage-based fuzzing, proposed a
vulnerability-oriented evolutionary fuzzing prototype, and
used the probability of the existence of vulnerability of the
deep learning model to guide fuzz testing. However, this
solution requires dataset support and is currently only based
on the NIST dataset training model, which is not applicable
to IoT device firmware fuzzing. Du et al. [34] implemented
the lightweight and extensible framework LEOPARD, which
uses program metrics to identify potential vulnerability func-
tions, but the framework is not suitable for firmware without
source codes.

In addition, Maier et al. [22] explored the use of CPU
emulation to fuzz arbitrary parsers in kernel space with
coverage-based feedback and proposed a fuzzing frame-
work based on Unicorn Engine, which can perform fuzzing
tests on kernel modules and drivers. However, this approach
has several problems in firmware fuzzing because it does
not support the MIPS architecture and is not effective for
hardware-dependent function processing. Yan et al. [35] pro-
posed a fuzzing-based framework of quantifying software

exploitability, called ExploitMeter. ExploitMeter integrates
machine learning-based prediction and dynamic fuzzing tests
in a Bayesian manner. The author evaluated the perfor-
mance of ExploitMeter in a dynamic environment based on
100 Linux programs.

C. IoT FIRMWARE FUZZING
In 2018, Muench et al. [24] raised the point regarding the
difficulty of fuzz testing on IoT firmware and proposed six
heuristics for detecting faults due to memory corruption.
However, this solution incurs immense overhead during the
device restart and hardware switching phase, so it is not
suitable for fuzz testing on real-world devices. Chen et al. [6]
implemented IoTFuzzer, which can conduct fuzz testing on
devices without firmware and automatically detect vulnera-
bilities in IoT devices. However, this scheme can only test
App-based IoT devices, thus posing limitations of devices.
In 2019, Zheng et al. [7] developed FIRM-AFL, which
can combine the advantages of system-mode emulation and
user-mode emulation via augmented process emulation, and
tested IoT firmware based on greybox fuzzing. However,
due to the hardware dependency of firmware and the low
proportion of vulnerability codes, the scheme only relying
on greybox fuzzing has the problem of low efficiency of
vulnerability mining.

VIII. CONCLUSION
In this paper, we presented FIRMCORN, a firmware fuzz
testing framework based on optimized virtual execution, and
it was used to apply vulnerability-oriented fuzzing to IoT
firmware for the first time. To achieve faster, more accurate,
and more stable fuzz testing, we developed a series of novel
technologies according to the characteristics of IoT device
firmware, namely, the vulnerable-code search algorithm to
determine the entry point for vulnerability-oriented fuzzing
and optimized virtual execution technology to improve exe-
cution speed, accelerate execution accuracy, and ensure exe-
cution stability.

We extensively evaluated the efficiency and effectiveness
of FIRMCORN and demonstrated the application of FIRM-
CORN to fuzz testing on real-world IoT devices. The results
showed that FIRMCORN can significantly improve the accu-
racy, efficiency, and stability over conventional virtual execu-
tion and can detect 0-day vulnerabilities.

REFERENCES
[1] Gartner. Leading the IoT—Gartner Insights on How to Lead in

a Connected World. Accessed: May 12, 2014. [Online]. Available:
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

[2] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, ‘‘Jump over ASLR:
Attacking branch predictors to bypass ASLR,’’ in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[3] T. H. Dang, P. Maniatis, and D. Wagner, ‘‘The performance cost of shadow
stacks and stack canaries,’’ in Proc. 10th ACM Symp. Inf., Comput. Com-
mun. Secur. (ASIA CCS), 2015, pp. 555–566.

[4] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, ‘‘FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,’’
in Proc. 22th USENIX Secur. Symp. (USENIX Sec), Washington, DC, USA,
Aug. 2013, 2013.

29840 VOLUME 8, 2020

Z. Gui et al.: FIRMCORN: Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execution

[5] D. D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated
dynamic analysis for linux-based embedded firmware,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 1–16.

[6] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, ‘‘IoTFuzzer: Discovering memory corruptions in
IoT through app-based fuzzing,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.,
2018, pp. 1–15.

[7] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, ‘‘FIRM-
AFL: high-throughput greybox fuzzing of iot firmware via augmented
process emulation,’’ in Proc. 8th USENIX Secur. Symp. (USENIX Sec),
2019, pp. 1099–1114.

[8] M. Zalewski. American Fuzzy Lop. Accessed: Jun. 1, 2015. [Online].
Available: http://lcamtuf.coredump.cx/afl/

[9] P. Godefroid, M. Y. Levin, and D. Molnar, ‘‘SAGE: Whitebox fuzzing for
security testing,’’ Queue, vol. 10, no. 1, p. 20, Jan. 2012.

[10] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, ‘‘Scheduling black-
box mutational fuzzing,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), vol. 13, 2013, pp. 511–522.

[11] M. Bohme, V.-T. Pham, and A. Roychoudhury, ‘‘Coverage-based greybox
fuzzing as Markov chain,’’ IIEEE Trans. Softw. Eng., vol. 45, no. 5,
pp. 489–506, May 2019.

[12] Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu, ‘‘V-Fuzz:
Vulnerability-Oriented Evolutionary Fuzzing,’’ 2019, arXiv:1901.01142.
[Online]. Available: http://arxiv.org/abs/1901.01142

[13] M. Sharma, N. Agarwal, and S. R. N. Reddy, ‘‘Design and development
of daughter board for USB-UART communication between Raspberry
Pi and PC,’’ in Proc. Int. Conf. Comput., Commun. Autom., May 2015,
pp. 944–948.

[14] A. J. A. Costin Zaddach Francillon and D. Balzarotti, ‘‘A large-scale
analysis of the security of embedded firmwares,’’ in Proc. USENIX Secur.
Symp. Aug. 2014, pp. 95–110.

[15] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX ATC, 2005, pp. 41–46.

[16] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘Avatar: A frame-
work to support dynamic security analysis of embedded systems’
firmwares,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1–16.

[17] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, ‘‘Avatar2: A multi-
target orchestration platform,’’ in Proc. Workshop Binary Anal. Res., 2018,
pp. 1–11.

[18] C. Ebert and J. Cain, ‘‘Cyclomatic complexity,’’ IEEE Softw., vol. 33, no. 6,
pp. 27–29, Nov. 2016.

[19] C. Zhang, L. Duan, T. Wei, and W. Zou, ‘‘SecGOT: Secure global offset
tables in ELF executables,’’ in Proc. 2nd Int. Conf. Comput. Sci. Electron.
Eng. (ICCSEE), 2013, pp. 1–4.

[20] N. A. Quynh and H.-V. Dang, ‘‘Unicorn: Next generation cpu emulator
framework,’’ in Proc. BlackHat, 2015, pp. 1–39.

[21] A. D. Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
‘‘How the ELF ruined Christmas,’’ in Proc. 24th USENIX Secur. Sym.,
2015, pp. 643–658.

[22] D. Maier, B. Radtke, and B. Harren, ‘‘Unicorefuzz: On the viability of
emulation for kernelspace fuzzing,’’ in Proc. 13th USENIX Workshop
Offensive Technol., 2019, pp. 1–11.

[23] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
‘‘VUzzer: Application-aware evolutionary fuzzing,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2017, pp. 1–14.

[24] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
‘‘What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[25] Nbench. Accessed: Jan. 2, 2017. [Online]. Available: https://www.math.
utah.edu/~mayer/linux/bmark.html

[26] FIRMADYNE Dataset. Accessed: Feb. 21, 2016. [Online]. Available:
https://github.com/firmadyne/firmadyne/tree/master/database

[27] CVE List Home. Accessed: Feb. 5, 2019. [Online]. Available: https://cve.
mitre.org/cve/

[28] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
‘‘Firmalice–automatic detection of authentication bypass vulnerabilities
in binary firmware,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2015,
pp. 1–15.

[29] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2017,
pp. 363–376.

[30] Y. Wang, J. Shen, J. Lin, and R. Lou, ‘‘Staged method of code similar-
ity analysis for firmware vulnerability detection,’’ IEEE Access, vol. 7,
pp. 14171–14185, 2019.

[31] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, ‘‘Scalable graph-
based bug search for firmware images,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur. (CCS), 2016, pp. 480–491.

[32] A. Costin, A. Zarras, and A. Francillon, ‘‘Automated dynamic firmware
analysis at scale: A case study on embedded Web interfaces,’’ in Proc.
11th ACMAsia Conf. Comput. Commun. Secur. (ASIA CCS), vol. 16, 2016,
pp. 437–448.

[33] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
‘‘Secure firmware updates for constrained IoT devices using open stan-
dards: A reality check,’’ IEEE Access, vol. 7, pp. 71907–71920, 2019.

[34] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, ‘‘LEOP-
ARD: Identifying vulnerable code for vulnerability assessment through
program metrics,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
May 2019, pp. 60–71.

[35] G. Yan, J. Lu, Z. Shu, and Y. Kucuk, ‘‘ExploitMeter: Combining fuzzing
with machine learning for automated evaluation of software exploitabil-
ity,’’ in Proc. IEEE Symp. Privacy-Aware Comput. (PAC), Aug. 2017,
pp. 164–175.

ZHIJIE GUI was born in 1996. He received the
B.S. degree in network engineering from Informa-
tion Engineering University, Zhengzhou, in 2018.
He is currently pursuing the M.S. degree in
cyberspace security with the State Key Laboratory
of Mathematical Engineering and Advanced Com-
puting. His research interests include the IoT secu-
rity and vulnerability detection and exploitation.

HUI SHU was born in 1974. He received the Ph.D.
degree in computer science and technology from
Information Engineering University, in 2001. He is
currently a Professor with the State Key Labora-
tory of Mathematical Engineering and Advanced
Computing, China. His research interests include
reverse analysis and the IoT security.

FEI KANG was born in 1972. She is currently
a Professor with the State Key Laboratory of
Mathematical Engineering and Advanced Com-
puting, China. Her research interests include net-
work security mechanism analysis and malware
analysis.

XIAOBING XIONGwas born in 1985. He received
the Ph.D. degree in computer science and tech-
nology from Information Engineering University,
in 2013. He is currently an Assistant Professor
with the State Key Laboratory of Mathematical
Engineering and Advanced Computing, China.
His research interests include reverse analysis and
malware detection.

VOLUME 8, 2020 29841

