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ABSTRACT There have been abundant research efforts on predicting verbal descriptions of odorants through
the physicochemical features, physiological signals and E-nose signals. These approaches are interpreted
as feature-driven methods in which the information about the inner links among different odor percepts
is ignored. Different from that, we propose a perception-driven framework for predicting the missing
odor perceptual ratings from other known odor percepts. Specifically, the work emphasizes pleasantness
prediction based on level of importance in odor perception. In essence, this approach utilizes the relations
among different odor perceptions, exploring the odor perceptual space subsequently. The missing perceptual
ratings are predicted with an accuracy higher than 0.5 for more than half of the odor verbal descriptors, and
almost half of the descriptors are predicted with a correlation higher than 0.8. The asymmetric clustering
structure of odor perceptual space is revealed by feature selection for predicting the missing perceptual
ratings. It is found that ‘pleasantness’ is primarily determined by ‘sweet’.

INDEX TERMS Feature selection, perception-driven, perceptual ratings, pleasantness.

I. INTRODUCTION
Compared with vision and audition, the structure of olfactory
perceptual space is amore challenging issue, which stems pri-
marily from the more complicated physiology mechanism of
olfactory perception [1], [2]. Besides the physiological com-
plexity, olfactory perception is a comprehensive combination
of genetic variation [3], individual experience [4], culture [5],
[6] and psychology [7]; hence there is no general metric for
quantifying it. To address the problem of olfactory perception
description, a set of domain-specific odor verbal descriptors
have been developed to profile the odorants [8], [9], such as
‘sweet’, ‘fish’, ‘decayed’. These verbal descriptors, referred
to as semantic attributes, can represent odorant perception
reliably [10]. They constitute the odor perceptual space and
can be considered as axises in the space [11]. However,
the structure and dimensionality of odor perceptual space,
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as well as the relations among these descriptors, have been
elusive [11]. The uncertainties of odor perceptual space are
not obstacles for the practical use of odor descriptors, espe-
cially in perfume [12] and food industries [13].

There has been extensive demand in the industry for
a systematic way to evaluate odor impression profiled
by odor descriptors, leading to intense reasearch effort
in the field. Due to the complexity of odor perception,
numerous attributes and features have been used to predict
odor impression. Chemical features, such as carbon chain
length [14], [15] and molecular size [16] are correlated with
odor impression. In addition to the single chemical feature,
Keller et al. used thousands of chemical features to predict the
perceptual ratings of 21 odor descriptors [17]. Nozaki et al.
proposed an artificial neural network to predict the 138 odor
descriptors of 999 odorants by mass spectrum [18]. Chang
proposed a neural network for predicting odor perception
by chromatography-mass spectrometry [19]. Due to the ver-
bal representation of the odor perception, natural language
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processing techniques are combined in olfactory percep-
tion and the distributional semantic representations of odor
descriptors were used to predict odor perception [20], [21].
Among these odor descriptors, valence / pleasantness is the
most salient one, so numerous works have focused on pleas-
antness prediction. Wu et al. proposed a convolutional neural
network to predict the pleasantness of dozens of essential
oils through the E-nose signals [22]. In addition to these
physicochemical features, some physiological signals were
also used to predict odor perception of odorants [23]–[26].

The research works described above adopt a similar
approach – a set of highly efficient and effective odor
identification algorithms using some kind of odorant’s fea-
tures or signals. These can be regarded as signal-driven or
feature-driven methods, in which the relations among dif-
ferent odor percepts are not utilized and the information of
odor perceptual space is not used. Moreover, most of these
works just focus on a single odor descriptor’s prediction such
as pleasantness. There might be certain relations among dif-
ferent odor percepts, so some unknown odor percepts could
be predicted by the other known odor percepts through the
relations. For instance, if an odorant has a ‘sweet’ smell,
it is more likely to be ‘fruit’ than ‘garlic’. The relations
among different odor percepts can reveal the structure of the
odor perceptual space to some extent. For example, the dis-
tance between ‘bakery’ and ‘sweet’ should be closer than
the distance between ‘bakery’ and ‘decayed’ in odor per-
ceptual space. Motivated by these conceptions, we propose
a perception-driven framework for predicting the perceptual
ratings of a missing odor descriptor by the other known odor
percepts through the relations among them, with the aim to
reveal structure of the olfactory perceptual space. Particularly,
our work emphasizes the prediction of pleasantness based on
the level of importance in the odor perceptual space.

The main contributions of our work are summarized as
follows.

1) A perception-driven framework for predicting the miss-
ing perceptual ratings over a set of descriptors is proposed.
The predictions are not based on any odorant’s features, but
instead on the relations among these odor percepts. Consid-
ering the moderate size of the olfactory dataset, SVR is used.
It is a machine learningmethod with moderate complexity for
predicting perceptual ratings of the missing odor perception.
A new metric called probability of error-ratio per sample
is introduced to measure the performance of the predictive
model.

2) Random forest (RF), LASSO, and Pearson correlation
are applied to find the most important input features for pre-
diction of missing perceptual ratings. The negative, positive
and neutral effects of input features on the missing perceptual
ratings are validated.

3) An exploration of the odor perceptual space is con-
ducted. The asymmetric clustering structure of the odor per-
ceptual space is revealed to some extent.

The remainder of this paper is as follows. Section II
presents the related work of the representation and

prediction of olfactory perception. Section III presents the
method and material. The experiments and results are
reported in Section IV. The discussion is presented in
Section V. Finally, the conclusion and future work are shown
in Section VI.

II. RELATED WORK
A. DESCRIPTION OF OLFACTORY PERCEPTION
There are two principal methods to characterize odors in
practical applications: reference odorant methods [27] and
semantic methods [28], [29]. Semantic methods are most
frequently used for describing odor characters. Each odor
descriptor can be expressed as a numeric rating [29] or a
binary number [30], 1 representing the presence of odor
descriptors, and 0 representing the absence.

Considering that odor description can be influenced by
personal experience and subjectivity, resulting in bias in
the assignment of odor profiles, the use of a panel is
recommended [31]. There are hundreds of linguistic odor
descriptors, so the fundamental problems to solve in odor rep-
resentation are setting an appropriate number of odor descrip-
tors and selecting the most important ones that correspond
to primary odor descriptors. Consensus about these problems
has not been obtained, and ranges of perceptual ratings are
also diverse [17], [29].

B. THE PREDICTION OF OLFACTORY PERCEPTION
The datasets used to predict odor perception are composed of
two parts: attributes of the odorants called stimulus features
and the perceptual ratings of odor descriptors called per-
ceptual features. The perceptual ratings of odor descriptors
for odorant molecules are olfactory psychophysical datasets.
Many odor attributes are used to predict the odor per-
cepts, including GC-MS, E-nose signals, mass spectrometry,
electroencephalogram (EEG), functional magnetic resonance
imaging (fMRI), chemoinformatic features, etc. The main
drawback of the datasets used for odor perception prediction
is the small scale. Each dataset contain only hundreds of sam-
ples. Also, most of the odor compounds are mono-molecular
and the amounts of odorants are not the same in different
datasets [17], [29].

Many statistic methods and machine learning approaches
are applied in prediction of odor perception. Haddad et al.
proposed a three-layered BP neural network to predict pleas-
antness ratings of 123 odorants through E-nose signals with
above 80% similarity to average human ratings [32]. Sup-
port Vector Machine (SVM) was used to classify pleasant
and unpleasant odors through EEG signals [26]. In both of
these works, only pleasantness is predicted. Gutierrez et al.
applied a semantics-based approach to infer the perceptual
ratings of a large set of verbal descriptors, in which elastic
net regression model was used to predict the perceptual rat-
ings [33]. The linear model cannot reflect the non-linear rela-
tions and the semantic representations of the odor descriptors
are not biased in any way to include more or less olfactory
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FIGURE 1. The framework for the prediction of missing odor perceptual ratings and exploration of odor perceptual space.

perceptual information. Li et al. applied a RF model to
predict the perceptual ratings of 21 odor descriptors for
both population and individual perception from large-scale
chemoinformatic features, and found that just a small set of
physicochemical features were necessary for odor perception
prediction. The correlation was no more than 0.6 and RF
was used as both the feature selection model and regression
model [34]. These methods succeeded in predicting odor per-
ception; however, they only focused on stimulus, information
of different odor percepts’ correlation was not utilized.

C. OLFACTORY PERCEPTION SPACE
Odor perception space is viewed as a high dimensional space
and the basic perceptual dimensions of olfaction remain
unclear. There is no consensus on its dimension and struc-
ture, and it has been an extensively discussed issue. It is
widely accepted that pleasantness or hedonic valence is the
primary axis of the odor perceptual space [35]. Khan et al.
applied principal component analysis (PCA) to reduce the
dimensionality for both odor percepts and physicochemical
descriptors and claimed that pleasantness was the primary
axis of odor perception space [36]. Because PCA algorithm
changes the original axis of the input space, pleasantness
is not exactly the primary axis and the precise name of
the primary axis is not well-defined. Kepple and Koulakov
generated a perceptual space, in which a molecule’s loca-
tion defined its percept, by computing the geodesic distance
between all molecule pairs and embedding with ISOMAP,
but the olfactory space obtained from the five datasets was
slightly different from each other [37]. Koulakov investigated
the structure of olfactory space based on the Atlas of Odor

Character Profiles (AOCP), which was a database of sensory
responses of human observers to an array of odorants, and
found that odorants in human olfactory space accumulated
near a 2D curved manifold, a curved surface that could be
locally approximated by a plane [38]. The natural system
of coordinates of the 2D surface was used to equilibrate
the density of odorants, but they did not correspond to any
concrete odor perception. These studies of odor perceptual
space can not be used directly to profile the odor in the
industry due to their ambiguous meanings.

III. METHOD AND MATERIAL
We adopt the DREAM or Vosshall dataset for missing odor
percept prediction [17]. Support Vector Regression (SVR)
is conducted as the regression model for the prediction of
the missing perceptual ratings. RF, LASSO, and Pearson
correlation are applied to perform input feature selection.
Due to the salient feature selection capability of RF, RF will
be combined with SVR to predict the missing perceptual
ratings. The relations among different odor descriptors and
the structure of odor perceptual space are explored through
these three feature selection approaches. The framework is
shown in Fig. 1.

A. ODOR PERCEPTION DESCRIPTION DATASET
We use the DREAM or Vosshall dataset which is a psy-
chophysical dataset. 21 perceptual attributes or descriptors
are used to profile the odor impression. The 21 verbal
descriptors are sweet, bakery, fruit, fish, garlic, spices, cold,
sour, burnt, acid, warm, musky, sweaty, ammonia / urinous,
decayed, wood, grass, flower, chemical, intensity / strength,
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and valence / pleasantness. There are 476 different mono-
molecules in the DREAM dataset, and their odor perceptual
ratings of 21 verbal descriptors range from 0 to 100, where
0 is ‘extremely weak’ and 100 is ‘extremely strong’ for
intensity; 0 is ‘extremely unpleasant’ and 100 is ‘extremely
pleasant’ for pleasantness; 0 is ‘not at all’ and 100 is ‘very
much’ for 19 semantic attributes.

The perceptual-rating dataset forms a 476 × 21 matrix.
This psychophysical matrix can be interpreted in two dif-
ferent ways. From a descriptors-as-points view, each col-
umn can be interpreted as the characterization of the given
semantic descriptions by several stimuli, which are vectors
of 476 dimensions; from a stimuli-as-points view, each row
can be treated as the characterization of a stimulus by several
verbal descriptors, which are vectors of 21 dimensions. Each
row also reflects the relations among these odor percepts.

B. PRE-PROCESSING OF DATA
One of the 21 odor descriptors is taken as the ‘missing odor
perception’ and the rest are the ‘ known odor perceptions’.
The perceptual ratings of missing odor perception are the
targets for prediction. The perceptual ratings of 20 known
descriptors are treated as input features. They are scaled
to values between 0 and 1. The preprocessing formula is
given as:

x′ =
x− xmin

xmax − xmin
(1)

where x is the original values and x′ is the scaled values.
xmin and xmax are the maximum and minimum of each input
feature, respectively.

C. FEATURE SELECTION
1) RANDOM FOREST
Random forest (RF) is an ensemble machine learning algo-
rithm for classification and regression, which contains numer-
ous decision trees. RF is also a feature selection algorithm for
obtaining the importance index of each input feature, and it
makes the most important feature prominent. To obtain the
importance index of each known feature, RF is trained on
the DREAM dataset of 476 molecules. The input for the RF
model is the perceptual ratings of 20 known odor percepts
and the output is the perceptual ratings of the missing odor
percept. Then the out of bag error of each known input feature
for each decision tree is calculated. The out of bag error of jth
decision tree for kth input feature is given as:

errOOBj1k =
1
m

m∑
i=1

(
‖y(i) − ŷ(i)‖

)2
(2)

where m is the total number of the samples out of bag, y(i) is
the label of ith sample, and ŷ(i) is the prediction of ith sample.
After obtaining the out of bag errors of the kth input feature

for all decision trees, random noise is added to the kth input
feature. Then the out of bag error of each decision tree for
all input features after adding noise is calculated. The out of

bag error of jth decision tree for kth input feature after adding
noise is given as:

errOOBj2k =
1
m

m∑
i=1

(
‖y(i) − ŷ(i)n ‖

)2
(3)

where m, y(i) are defined as above, and ŷ(i)n is the predicted
value of ith example after adding noise.
The importance index of kth input feature can be obtained

from errOOBj1k and errOOBj2k . The importance index of
kth input feature is given as:

IMk =
1
N

N∑
j=1

(
errOOBj2k − errOOB

j
1k

)
(4)

where N is the total number of decision trees.

2) LASSO REGRESSION
LASSO regression is one of the most classical regression
algorithms. L1 norm is the regularization term, which forces
some of the feature coefficients to be 0. The sparse constraint
results in dimension reduction or feature selection. The per-
ceptual ratings of 20 known odor percepts are the input of the
LASSO model. The perceptual ratings of the missing odor
percept are the output target. The cost function is given as:

L(w, λ) =
1
M

M∑
i=0

(
y(i) − wTx(i)

)2
+ λ‖w‖1 (5)

whereM is the size of training dataset, w is the weight vector,
and λ is the regularization coefficient.

This is a convex optimization problem equivalent to:

min
w,b

1
M

M∑
i=0

(
y(i) − wT x(i)

)2
(6)

s.t. ‖w‖1 ≤ C

where C is the radius of a L1 norm ball. By optimizing (6),
weight vector w is obtained.

3) PEARSON CORRELATION
To estimate the relations among different odor percept
pairs, Pearson correlation coefficients are calculated pairwise
between every two 476-dimensional perceptual vectors. Pear-
son correlation coefficient is defined as:

ρij =
(pi − p̄i)

(
pj − p̄j

)
‖pi − p̄i‖2‖pj − p̄j‖2

(7)

where pi, pj are 476-dimensional perceptual vectors, and p̄i,
p̄j are themeans of pi, pj respectively, and ‖pi−p̄i‖2, ‖pj−p̄j‖2
are L2 norm, respectively. After calculating all the correlation
coefficients between every two 476-dimensional odor percep-
tual vectors, a 21× 21 symmetric Pearson correlation matrix
is obtained.
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D. SUPPORT VECTOR REGRESSION (SVR)
SVR is applied as the regression model to predict the missing
odor perceptual ratings through the other known perceptual
ratings. Twenty known perceptual ratings, as the input fea-
tures, are denoted as x = [x1, x2, x3, . . . x20] ∈ R20. The
missing perceptual ratings, as the target output, are denoted
as y ∈ R. The goal is to train the function to map the known
input perceptual ratings x to the target missing perceptual
ratings y. The model is expressed as:

f (x) = wT8(x)+ b (8)

where w is the weight vector, b is the bias, 8(x) is called
the kernel function and the Gaussian kernel is adopted. It is
given as:

8(x) = e−
‖x−x′‖2

2σ2 (9)

where σ is the bandwidth controlling the local scope.
The parameters of SVR are optimized by the following
expression:

min
w,b,ξ1,ξ2

1
2
‖w‖2 + C

M∑
i=1

(
ξi − ξ̂i

)
(10)

s.t. f (xi)− yi ≤ ε + ξi
yi−f (xi) ≤ ε + ξ̂i
ξi > 0, ξ̂i > 0 i = 1, 2, . . .M

where C is the regularization term, ε is the insensitive loss,
and ξi, ξ̂i are slack variables.
Considering that yi is the perceptual rating, f (xi) is the

prediction of yi, so it should satisfy the following constraint:

0 ≤ f (xi) ≤ 100

Finally, parameters of SVR are determined through
optimizing (10).

E. PERFORMANCE METRICS
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), R2, Pearson correlation r are adopted as the perfor-
mance metrics. RMSE is defined as:

RMSE(x, f ) =

√√√√ 1
M

M∑
i=1

(
ŷi − yi

)2 (11)

where M is the total number of samples, yi is the label of
ith sample, and ŷi is the prediction of ith sample.
MAE is defined as:

MAE(x, f ) =
1
M

M∑
i=1

∣∣ŷi − yi∣∣ (12)

where M, yi and ŷi are defined as above.
R2 is defined as:

R2 = 1−

∑M
i=1

(
ŷi − yi

)2∑M
i=1 (yi − ȳi)

2
(13)

where M, yi and ŷi are defined as above, and ȳi is the mean of
the target labels.

Pearson correlation coefficient is defined as:

r =

∑M
i=0 (yi − ȳi)

(
ŷi − ¯̂yi

)
√∑M

i=0 (yi − ȳi)
2

√∑M
i=0

(
ŷi − ¯̂yi

)2 (14)

where M, yi, ȳi and ŷi are defined as above, and ¯̂yi is the mean
of the prediction values.

Besides those metrics above, a novel metric is pro-
posed: the probability within 5% range of error-ratio per
sample(PERPS5%).

1) THE PROBABILITY WITHIN 5% RANGE OF ERROR-RATIO
PER SAMPLE(PERPS5%)
First, error-ratio per sample of ith sample is defined as:

ERPSi =
|yi − ŷi|

yi
(15)

Then, PERPS5% is defined as:

PERPS5% =
M5%

M
× 100% (16)

where the M5% is the number of samples whose ERPSi are
within 5%, M is the total number of samples. Different from
the metrics above, PERPS5% can reflect the details of error
per sample, and complements the other metrics. The prob-
ability within 10% range of error-ratio per sample and the
probability within 20% range of error-ratio per sample can
be defined in the same way.

IV. EXPERIMENTAL RESULTS
In this section, extensive experiments are conducted for pre-
dicting each missing odor percept with and without feature
selection. Experimental settings are presented in Subsec-
tion A, the prediction of pleasantness ratings without feature
selection is presented in Subsection B, feature selection for
pleasantness prediction is presented in Section C, the predic-
tion of pleasantness ratings with feature selection is presented
in Subsection D, the predictions of the perceptual ratings of
all the odor percepts without feature selection are presented
in Subsection E, the predictions of the perceptual ratings of
all the odor percepts with feature selection are presented in
Subsection F, and an exploration of odor perceptual space is
presented in Section G.

A. SETTINGS OF EXPERIMENT
In the experiments, each known perceptual rating is first
normalized into a value range from 0 to 1. In addition, ten-fold
cross-validation is implemented. The detailed configuration
of each base line is presented as follows.

1) For RF, 1000 estimators are used, iterating for 20 times
to obtain a stable result of feature importance indices.

2) For LASSO, hyper parameter λ is searched in set
{0.005, 0.001, 0.01, 0.1, 1}.
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FIGURE 2. PERPS and correlation of pleasantness prediction.

3) For SVR, it is implemented with the Gaussian kernel
function. We take grid search for the best hyperparameters C
and 1

σ
. The parameter C is searched in set {0.1,1,10,100,200}.

The parameter 1
σ
is searched in set {0.0001,0.001,0.1,1}. The

number of iterations is 50.

B. THE PREDICTION OF PLEASANTNESS RATINGS
WITHOUT FEATURE SELECTION
Due to the importance of pleasantness in odor percep-
tion, the pleasantness prediction is examined emphatically.
To investigate whether pleasantness perceptual ratings could
be inferred from the other 20 known odor perceptual rat-
ings, all 20 known odor perceptual ratings are first used
to predict the pleasantness ratings. SVR is adopted as the
predicting model without feature selection and the predicted
ratings of pleasantness are clamped within the range of 0
to 100. The results are reported in Table 1. The prediction
of pleasantness rating has an R2 around 0.92, a correlation
around 0.96. The PERPS5% is above 50% and the PERPS10%
is almost 80%. The detailed probabilities of ERPS are shown
in Fig. 2, as well as the scatter diagram of the test dataset.
To demonstrate the stability of the results, 50 iterations were
implemented and the results are shown in Fig. 3. The results
indicate that pleasantness can be inferred from other odor per-
cepts. In other words, there are intrinsic connections among
different odor percepts.

TABLE 1. The results of pleasantness prediction through 20 known odor
percepts.

C. FEATURE SELECTION FOR PLEASANTNESS PREDICTION
Although perceptual ratings of pleasantness are predicted
very well by all the 20 known perceptual ratings, it is

FIGURE 3. The performance of pleasantness prediction along with the
iterations.

of interest to find out how many and which of them are
essentially necessary for pleasantness prediction. To inves-
tigate this problem, we implemented feature selection by RF,
LASSO, and the Pearson correlation matrix, with the aim to
find the most important features for pleasantness prediction.
The feature importance indices obtained by the three methods
are shown in Fig. 4 (a), as well as the performance of pleas-
antness prediction through perceptual ratings of single known
odor percept shown in Fig. 4 (b).

As shown in Fig.4 (a), for RF, the most important fea-
ture for pleasantness prediction is ‘sweet’, followed by
‘decayed’, ‘flower’, ‘ammonia / urinous’, ‘musky’, ‘acid’,
etc. Except for ‘sweet’ and ‘decayed’, the importance of other
odor perception all become rather faint, that is, the most
salient features for pleasantness prediction are ‘sweet’ and
‘decayed’, but whether a feature selected by RF has a positive
or negative effect on pleasantness prediction is not clear.
For LASSO, the most important six features are ‘decayed’,
‘sweet’, ‘musky’, ‘flower’, ‘acid’ and ‘burnt’ in order.
The coefficients of ‘sweet’ and ‘flower’ are positive whereas
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FIGURE 4. The results of three feature selection methods for pleasantness prediction and R2, correlation of pleasantness prediction through
single known percept.

TABLE 2. Three odor-descriptor categories of pleasantness prediction.

the other four are negative. It follows intuition. It means
that ‘sweet’ and ‘flower’ smell would make people pleasant,
on the contrary, ‘decayed’, ‘musky’, ‘acid’ and ‘ammonia /
urinous’ are offensive. Only the coefficient of ‘warm’ equals
to 0. The coefficients of the rest odor percepts are not 0, and
the magnitude of more than half of them are rather large.
It shows that the results of LASSO are not sparse enough
for feature selection, which means that it cannot pick the
most important features while not suppressing the influence
of each odor percept. Moreover, it should be pointed out
that the signs of LASSO coefficients do not always indicate
the positive or negative effect on odor perception prediction.
For Pearson correlation, the six most important features are
‘sweet’, ‘musky’, ‘decayed’, ‘sour’, ‘flower’ and ‘sweaty’.
As expected, ‘sweet’ and ‘flower’ are positively correlated
with ‘pleasantness’ while the other four are negatively cor-
related. According to Pearson correlation coefficients, these
descriptors are classified into three categories based on their
impact on pleasantness prediction. They are negative, posi-
tive, and neutral categories. The results are shown in Table 2.
‘Sweet’, ‘flower’, ‘fruit’ and ‘bakery’, which have corre-
lations with pleasantness higher than 0.4, belong to posi-
tive category; ‘decayed’, ‘musky’, ‘sweaty’, ‘acid’, ‘sour’,
‘ammonia / urinous’, ‘fish’, ‘garlic’, ‘burnt’, which have cor-
relations with pleasantness lower than −0.4, belong to nega-
tive category; ‘chemical’, ‘intensity’, ‘grass’, ‘cold’, ‘warm’,
‘wood’ and ‘spices’, which have a correlation with pleasant-
ness between−0.3 and 0.3, belong to neutral category, having
little effect on pleasantness prediction. Similar to LASSO,
the results of the Pearson correlation are not sparse enough for

pleasantness prediction. Moreover, the Pearson correlation
matrix is symmetric, which does not agree with the criteria of
odor perception. Meanwhile, pleasantness prediction through
a single known odor percept is conducted and the results are
shown in Fig. 4 (b), which coincides with the results of feature
selection, that is, the odor percepts belonging to a strong
positive or negative category for pleasantness prediction have
better prediction performance, while the single-known odor
percepts belonging to the neutral category have R2 below 0.1,
correlation below 0.3.

From the analysis above, it is concluded that RF is the
most effective method for feature selection due to its spar-
sity and effectiveness. Combining RF, LASSO, and Pearson
correlation, the relation between pleasantness and the other
odor percepts could be revealed in details.

D. THE PREDICTION OF PLEASANTNESS RATINGS
WITH FEATURE SELECTION
In this section, we combine RF and SVR to implement the
prediction for perceptual ratings of pleasantness by using
RF as the feature selection model and SVR as the regres-
sion model. The importance indices of the input features are
determined by RF in order, then SVR is implemented as the
feature number increases from 1 to 20. The results are shown
in Table 3. When the number of known odor descriptors is
more than two, the performance of pleasantness prediction
tends to be flattened, especially when the number of input fea-
tures is more than six. The performance smoothness implies
that the perceptual ratings of pleasantness could be predicted
precisely only through the combination of one positive and
one negative odor percept. To demonstrate this hypothesis,
another nine experiments were conducted, and the results are
shown in Fig. 5. Fig. 5 (a) shows that the performance of
pleasantness predictions of all the four positive descriptors
are rather smooth, indicating that they are similar to each
other, i.e. they belong to the same cluster or they are in vicin-
ity in odor perceptual space. Similar conclusions are derived
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TABLE 3. The performance of pleasantness prediction along with the increasing number of odor descriptors.

from the negative category and neutral category. Besides,
the performances of the positive or negative category are
much better than that of the neutral category. TheR2 of neutral
category increases from 0.05 to 0.3, this index is too lousy for
the prediction of the pleasantness, but the amount of increase
indicates that there may be a great distance among those
neutral descriptors so that this diversity forms a complemen-
tary for each other and an increasing performance through
the combination of them is achieved. Fig. 5 (b) and (g) are
the results of combining positive descriptors with negative
descriptors for pleasantness prediction. The results of four
positive descriptors combining with each one of the neg-
ative descriptors are shown in Fig. 5 (b). The result curves
in Fig. 5 (b) show that a significant improvement in the per-
formance of pleasantness prediction is achieved only by the
combinantion of one positive descriptor and one negative
descriptor except for the combination of ‘bakery’ and ‘acid’.
In Fig. 5 (g), the result curves are overall flattening, indicating
that a positive descriptor combining with one or two negative
descriptors can almost reach optimal performance and the
other negative descriptors are redundant. Notably, the com-
bination of ‘sweet’ and ‘decayed’ outperforms other com-
binations and these two descriptors are exactly the first two
important features the RF has sought out. It is demonstrated
that RF is a powerful algorithm for feature selection.

Fig. 5 (c) and (f) show the performance of pleasantness
prediction of the combination of positive and neutral descrip-
tors. Fig. 5 (c) shows the results of four positive descriptors
combined with only one neutral descriptor. Fig. 5 (f) shows
the results of four positive descriptors combined with neutral
descriptors whose number of members change from 1 to 7.
Prediction smoothness of all these curves reveals that the neu-
tral descriptors have little impact on pleasantness prediction.
Fig. 5 (e) and (h) show the results of combining negative
and neutral descriptors, the similar conclusion can also be
derived from the smoothness of these curves. It means that the
combination with neutral descriptors has little performance
improvement. On the contrary, the combination of positive

and negative descriptors could improve the prediction perfor-
mance remarkably, as shown in Fig. 5 (b), (d), (g) and (i).
These results demonstrate the validity of RF feature selection
and reveal the relations between these odor percepts and
pleasantness to some extent.

E. THE PREDICTIONS OF THE PERCEPTUAL RATINGS OF
ALL THE ODOR PERCEPTS WITHOUT FEATURE SELECTION
In this section, the predictions of the perceptual ratings were
implemented for each of the odor descriptors by SVR through
the other odor perceptual ratings without feature selection.
The results are shown in Fig. 6. These results can be classified
into three categories. The top team which has a R2 higher
than 0.8, r higher than 0.9, includes ‘sweet’ and ‘pleasant-
ness’. The medium team, which has a R2 between 0.5 and
0.8 includes ‘fruit’, ‘chemical’, ‘musky’, ‘sweaty’, ‘acid’,
‘sour’, ‘decayed’, ‘bakery’, ‘flower’, ‘garlic’, ‘ammonia / uri-
ous’ and ‘fish’. The bottom team, which has a R2 lower than
0.5, includes ‘burnt’, ‘intensity / strength’, ‘warm’, ‘wood’,
‘spices’, ‘cold’ and ‘grass’. It should be noted that all the
correlations of the perceptual rating prediction of 21 odor
descriptors are higher than 0.5. It means that they are not
independent points and some of them can be inferred from
the other odor perceptual descriptions precisely. Those with
a R2 less than 0.5 can be interpreted as independent points
due to the feeble prediction through other odor percepts.

F. THE PREDICTIONS OF THE PERCEPTUAL RATINGS OF
ALL THE 21 ODOR PERCEPTS WITH FEATURE SELECTION
To investigate the relations among different odor percepts
and seek the most important features for the prediction of
the missing odor perception, RF was implemented for all
odor percepts as a feature selection technology. Then SVR
was applied to predict the missing perceptual ratings. The
results are shown in Fig 7. It is shown that all the curves
are rather flattening at the tail, that is, only less than four
features are important for the missing percept prediction and
particularly most of the missing percepts are determined
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FIGURE 5. The performance of different combination among three categories for pleasantness prediction.

FIGURE 6. The performance of 21 percepts prediction without feature
selection.

by only one or two input features. Notably, the perceptual
ratings of ‘pleasantness’ and ‘sweet’ are predicted with R2

above 0.9. The top three curves correspond to ‘pleasant-
ness’, ‘sweet’ and ‘fruit’ with R2 above 0.79. 15 out of
the total 21 odor descriptors are predicted with correlations
above 0.7.

G. EXPLORATION OF ODOR PERCEPTUAL SPACE
21 odor descriptors can be interpreted as axes in the olfac-
tory perceptual space and they are not isolated to each
other. To investigate the relations among these odor percepts,
RF, LASSO, Pearson correlations are calculated as shown
in Fig. 8. The labels of 1 to 21 represent sweet, bakery,
fruit, fish, garlic, spices, cold, sour, burnt, acid, warm, musky,
sweaty, ammonia / urinous, decayed, wood, grass, flower,
chemical, intensity / strength, and valence / pleasantness,
respectively. The coefficients with the odor percept itself are
all set to 1 in those three feature selection results, that is, all
the elements on the diagonal are 1.

According to the previous analysis, the results of LASSO
feature selection are not sparse enough and does not depress
the effect of known perception belonging to the same cluster
on missing odor perception prediction. Besides, it could not
reflect the positive or negative effects on the prediction of
the missing odor percepts. Pearson correlation determines
the positive, negative or neutral effect on the missing odor
prediction, but its symmetric property is not applied for the
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FIGURE 7. The performance of the prediction of 21 odor percepts with feature selection.

FIGURE 8. The results of feature selection for all 21 odor percepts.

odor perceptual space and is not sparse. RF can find the most
important features for the missing odor perception prediction,
but it suppresses the effects of the features which is similar to
the most important features for the prediction of the missing
odors percepts and it could not confirm the positive or neg-
ative effect for the prediction of the missing odor percepts.
Therefore, we combine the results of LASSO, RF and Pear-
son correlation, and take the sign of correlation coefficient
as the sign of the importance indices of RF to obtain the
ultimate feature importance with a positive or negative sign,
as shown in Table. 4. At the same time, the results of LASSO
are accounted for the features whose effects are suppressed
by RF. Then we examine the relations among different odor
percepts.

As shown in Fig. 8(a) and (c), the feature selection results
are not thoroughly symmetric. For example, the RF impor-
tance index of ‘sweet’ for ‘pleasantness’ is 0.74416, while the
RF importance index of ‘pleasantness’ for ‘sweet’ is 0.6541.
This indicates that the relation between ‘pleasantness’ and
‘sweet’ is close, and could be clustered into one group, but
their relation is not symmetric, that is, ‘sweet’ could predict

‘pleasantness’ more accurately than ‘pleasantness’ could pre-
dict ‘sweet’.

In addition, it is found that, ‘acid’ and ‘chemical’ have high
mutual importance indices, 0.5869 and 0.6341, and they can
be predicted only by the other with a R2 above 0.55. This
indicates that ‘acid’ and ‘chemicial’ have a close relation
with each other and can be clustered into one group, but
the distance between them should be father than the distance
between ‘sweet’ and ‘pleasantness’. The mutual importance
indices for ‘fish’ and ‘garlic’ are 0.5011, 0.4935. The mutual
importance indices for ‘sweaty’ and ‘musky’ are 0.59587,
0.63915, therefore these odor descriptors can be clustered
into the same groups. The importance of ‘sweaty’ for ‘sour’
is 0.4423, indicating that the distance between ‘sour’ and
‘sweaty’ are not too far. On the other hand, all the impor-
tance indices of ‘burnt’, ‘intensity’, ‘warm’, ‘wood’, ‘cold’,
‘spices’ and ‘grass’ are all below 0.3, and the sum of the first
three importance indices is less than 0.5, resulting in the poor
performance of their prediction, therefore these odor percep-
tual descriptors may be interpreted as independent points.
Besides, The highest RF importance indices of ‘bakery’,
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TABLE 4. The relations among different odor percepts.

‘flower’ and ‘ammonia / urious’ are all less than 0.3, which
means that they can be interpreted as independent points, but
the sum of the first three importance is more than 0.5, which
lead to R2 of their prediction is above 0.5.

V. DISCUSSION
The aim of this paper is to explore the relations among
different odor percepts and reveal the structure of the odor
perceptual space. To this end, the predictive model is estab-
lished, in which the known odor perceptual ratings are
the input, and the missing odor perceptual ratings are the
output.

The results in this paper indicate that the relations between
different odor percepts are different and asymmetric. The
different distances between odor percepts in odor perceptual
space may imply that odor percepts which are in a vicinity
could be clustered into the same group, and the asymmetric
relations among different odor percepts may imply a hierar-
chical structure of the odor perceptual space. These findings
are in consistent with those in [38]. Moreover, some odor per-
cepts can be predicted precisely through the other odor per-
cepts. Different from the previous feature-driven methods for
predicting the target odor perceptual ratings [17]–[19], [22],
[24]–[26], [30], [32]–[34], [36], [37], a perception-driven
framework is proposed to predict the perceptual ratings of
missing target odor percepts with a much better perfor-
mance, and some rules of olfactory perception psychology are
revealed to some extent, which could not be obtained though
feature-driven methods.

In summary, these findings form the foundation of olfac-
tory perception psychology, and they are important for the
identification of primary odor percepts.

VI. CONCLUSION
This paper proposes a perception-driven framework for pre-
dicting the perceptual ratings of the missing odor percepts
through other known perceptual ratings. This model com-
prises two parts: using RF to implement feature selection
and using SVR to predict the missing perceptual rating.
This approach can predict perceptual ratings through only
the known perceptual ratings, without the need of any other
physicochemical features nor a small set of general olfac-
tory perceptual descriptors. This model can be extended to
mixture odorants. The result is much better than that in [17],
especially for ‘sweet’ and ‘pleasantness’, in which the R2 is
higher than 0.9.

This paper also explores the structure of the odor per-
ceptual space. The essence of this predicting approach is to
exploit the relations among different odor percepts, so it can
reveal the structure of the odor perceptual space to some
extent. The present work demonstrates that the odor descrip-
tors are clustered into different asymmetric categories. Also,
it guarantees the axes of the odor perceptual representations is
understandable by feature selection to reduce the dimension
of input perceptual features. This result is useful for choosing
the most appropriate general odor descriptors when launch-
ing odor psychophysical experiments for research or in the
application in the industry, such as food, perfume odor test.
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It is also beneficial for the identification of the primary odor
descriptors.

Several limitations of the current approach need to be
mentioned. In this paper, isolated odor descriptors are not
predicted well enough. To address this, additional features
could be used. The structure of the odor perceptual space
is not adequately detailed, so more powerful model, such as
deep neural network, could be applied. The number of odor
descriptors necessary for constituting the odor perceptual
space remains elusive. Natural language processing technique
could be introduced to solve this problem. Despite these
limitations, our work could be a solid foundation for these
extensions.
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