IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 10, 2020, accepted February 5, 2020, date of publication February 10, 2020, date of current version February 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973023

An Unsupervised Deep Learning Model for Early
Network Traffic Anomaly Detection

REN-HUNG HWANG “'1-2, (Senior Member, IEEE), MIN-CHUN PENG"!, CHIEN-WEI HUANG',
PO-CHING LIN®', AND VAN-LINH NGUYEN 13, (Member, IEEE)

! Department of Computer Science and Information Engineering, National Chung Cheng University (CCU), Chiayi 62102, Taiwan
2 Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University (CCU), Chiayi 62102, Taiwan
3Department of Information Technology, TNU-University of Information and Communication Technology, Thai Nguyen 24119, Vietnam

Corresponding author: Van-Linh Nguyen (nvlinh@ictu.edu.vn)

This work was supported in part by the Advanced Institute of Manufacturing With High-Tech Innovations (AIM-HI) from the Featured
Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in
Taiwan, in part by the Ministry of Science and Technology of Taiwan, R.O.C. under Grant MOST 107-2218-E-194-014,

Grant 108-2221-E-194-022-MY3, and Grant MOST 108-2221-E-194-019-MY3, in part by the Taiwan Information Security Center,
National Sun Yat-sen University, under Grant TWISC@NSYSU, and in part by the TNU-University of Information and Communication
Technology, Vietnam.

ABSTRACT Various attacks have emerged as the major threats to the success of a connected world like
the Internet of Things (IoT), in which billions of devices interact with each other to facilitate human life.
By exploiting the vulnerabilities of cheap and insecure devices such as IP cameras, an attacker can create
hundreds of thousands of zombie devices and then launch massive volume attacks to take down any target.
For example, in 2016, a record large-scale DDoS attack launched by millions of Mirai-injected IP cameras
and smart printers blocked the accessibility of several high-profile websites. To date, the state-of-the-art
defense systems against such attacks rely mostly on pre-defined features extracted from the entire flows
or signatures. The feature definitions are manual, and it would be too late to block a malicious flow after
extracting the flow features. In this work, we present an effective anomaly traffic detection mechanism,
namely D-PACK, which consists of a Convolutional Neural Network (CNN) and an unsupervised deep
learning model (e.g., Autoencoder) for auto-profiling the traffic patterns and filtering abnormal traffic.
Notably, D-PACK inspects only the first few bytes of the first few packets in each flow for early detection.
Our experimental results show that, by examining just the first two packets in each flow, D-PACK still
performs with nearly 100% accuracy, while features an extremely low false-positive rate, e.g., 0.83%. The
design can inspire the emerging efforts towards online anomaly detection systems that feature reducing the
volume of processed packets and blocking malicious flows in time.

INDEX TERMS 10T security, anomaly detection, convolutional neural network, autoendcoder, online
DL-based anomaly detection.

I. INTRODUCTION state-of-the-art defense systems [1]-[4]. To stop malicious

In recent years, with increasingly massive IoT applications
and connected devices, distributed denial-of-service (DDoS)
attacks have caught the attention of the security community
with a series of record-high attack magnitude. Given a small
proportion of billions of IoT devices, e.g., cheap and insecure
IP cameras, injected to be zombies, an adversary can generate
a massive volume of flooding traffic to take down a target
such as a critical Internet service. Although this kind of attack
is by no means new, it still poses a tremendous threat to most

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

VOLUME 8, 2020

traffic, including that from DDoS attacks, the first step is to
detect traffic anomaly as soon as possible by analyzing net-
work traffic at the gateways, at edge servers, or in a scrubbing
center [5].

To date, existing approaches such as signature-based
and statistical detection systems still have several flaws,
e.g., the rule maintenance cycle cannot keep up with
soaring attack variants [3]. When the ecosystem of
Internet-connected systems expands and the diversity of IoT
devices increases rapidly, it is inevitable that there are more
potential vulnerabilities for an attacker to exploit. As a result,
a signature-based detection system, which may be able to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30387

https://orcid.org/0000-0001-7996-4184
https://orcid.org/0000-0002-6677-0687
https://orcid.org/0000-0001-8294-5857
https://orcid.org/0000-0002-3472-0108

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

detect well-known attacks with high accuracy, can quickly
lose its advantage because unknown attacks may appear
nearly per minute [1], [2]. Dealing with the explosion of the
attack variants, the anomaly detection approaches, as opposed
to the signature-based ones, can significantly help. Unlike
signature-based approaches, anomaly detection systems can
monitor network flows and classify them as either normal
or anomalous ones; thus, new attack variants are less likely
to bypass the detection. Nonetheless, anomaly detection
approaches often face high false alarm rates, since the sys-
tems must be taught to recognize normal activities [6]. So far,
such systems are often designed with strict mathematical
models and a set of predefined features [7]. Fortunately, deep
learning (DL) promises to be the game-changer to help to
solve the learning problem, i.e., automatically building the
traffic profile. The most benefit of deep learning is to build
a thorough pattern that can precisely characterize specific
objects through automatically learning a large volume of data
and species.

DL-based approaches have been well investigated in many
fields over the years, including anomaly detection. How-
ever, many challenges remain, e.g., speeding up the detection
and auto-profiling the traffic patterns effectively, which are
also the target of this work. From the design perspective,
the detection systems should characterize normal network
flows and define well-represented traffic profiling. Based on
this profiling, the systems can identify and isolate anomalous
network activities. In the literature, the common profiling
method is building a pre-defined list of features [6], [8] from
flow statistics, e.g., sending rate, packet count or flow size,
and then using the DL models such as a convolutional neural
network (CNN) for learning [9]. However, defining a list
of well-represented features manually for effective learning
poses tremendous challenges, e.g., labor time, particularly if
the network has a diversity of application traffic. Recently,
a promising approach is to use CNN to automatically extract
such features directly from raw traffic, instead of from the
summarized data, e.g., [10]. In this work, we go further in
building the traffic patterns (e.g., of benign applications) by
examining only the first few bytes of the first few packets of
the flows. This approach promises to have many advantages,
particularly for online anomaly detection systems. For exam-
ple, the detection does not need to waste remarkable compu-
tation and time for checking redundant data and storage in
a whole long session, while a few first packets of the flows
are sufficient for the detection. As a result, our system has
a significant advantage of speeding up the detection. Note
that summarizing the traffic in a flow-based approach may
demand much memory space for flow tracking in a large
network, particularly if many long flows exist.

The proposed system, namely D-PACK, consists of two
main parts: (1) A CNN module is designed for auto-learning
the features from the raw data; (2) An unsupervised DL
model (autoencoder) trained with the output data of (1) targets
at building the profile of benign traffic and then precisely
judge whether the traffic in the examined flows is abnormal.

30388

The experimental results show that D-PACK is competitive
and prominently outperforms prior studies in terms of accu-
racy, precision, recall, and F1-measure. Specifically, it can
detect malicious traffic with nearly 100% accuracy and less
than 1% FNR and FPR, even if it examines only two packets
from each flow and 80 bytes from each packet. To train the
system with the normal traffic characteristics and activities,
the training is set to run at the time of deploying the devices to
ensure the devices are in the clean state before any possible
compromising. The detection is also deployed close to the
devices (i.e., the traffic sources) to identify traffic anomaly.

In summary, the main contributions of this work are as
follows:

o We propose a CNN-based deep learning approach for
auto-learning the traffic features and profiling traffic
directly from the raw traffic with only a few first packets
per flow. Following this, the auto-learning approach can
significantly save the efforts to build traffic patterns for
a complex network where the diversity of application
traffic is the major challenge to conventional methods.

« We implement the proposal and evaluate it with both the
credible datasets and self-collected realistic ones. The
evaluation with the datasets from multiple sources shows
that D-PACK can achieve nearly 100% accuracy and
precision in detecting malicious packets.

o Our design on packet-based deep learning classifica-
tion and detection promise to provide valuable informa-
tion and inspire the research community to overcome
the remaining challenges, particularly for speeding up
online DL-based anomaly detection.

The remainder of this paper is organized as follows.
Section II surveys the state-of-the-art work on traffic classi-
fication and deep learning detection approaches. Section III
presents our learning strategy and the detailed structure of
the auto-building traffic profile module, the key features
of this work. Our selected datasets and the detail of the
D-PACK framework are presented in Section IV. We show
the experimental design and results in Section V. Finally,
the conclusion and future work are summarized in Section VI.

Il. RELATED WORK

The issue of detecting malicious network traffic has been
studied extensively. The mainstream approaches fall into four
primary classes [8]: port-based/rule-based, deep/stochastic
packet inspection, statistical, and behavioral techniques.
While the first three approaches are common and gain
high performance in intrusion detection over decades, it is
expected to see a silver lining with the rising trend of deep
learning to overcome the known flaws of existing studies,
particularly in the last approach. From the evaluation perspec-
tive, the behavioral approach may have poor performance at
several metrics, e.g., high false alarm, due to the complexity
of benign traffic profiling and the definition of ‘normal’
network activities. With the potential of accumulating knowl-
edge from large-scale raw data without manual interference,
deep learning is an effective approach to improve anomaly

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

TABLE 1. Summary of related anomaly detection strategies.

Author Category DL method Features Dataset Performance Year
E.Min [12 Intrusion detecti Aut d Statistical NSL-KDD 0.99 DR 2018
. Min [12] ntrusion detection utoencoder atistica CICID 2017 .
E. Min [9] Intrusion detection VRV;”d embedding, CNN o icticalepayload ISCX 2012 0.99 DR 2018
. . . . 100% TPR
Y. Meidan [13] Intrusion detection Autoencoder Statistical Self-collected 0.00740.01 FPR 2018
. . DARPA 1998
W. Wang [14] Intrusion detection CNN+LSTM Header+payload ISCX 2012 FPR 0.99 DR 2018
G. Aceto [15] Traffic classification i/[/i%%l}\:lN,LSTM Header+payload Microsoft 0.93 DR 2019
M. Al-Qatf [16] Intrusion detection Autoencoder+SVM Statistical KDD99 0.95 DR 2018
L. Vu[17] Traffic identification AC-GAN Statistical Self-collected 0.99 DR 2017
- P ISCX
W. Wang [18] Traffic identification CNN Header+payload VPN-nonVPN 0.86 DR 2017
Z. Chen [19] APP/protocol RKHS+CNN Statistical Self-collected 0.88 DR 2017
identification
. APP/traffic ISCX ..
M. Lotfollahi [20] identification CNN/SAE Header+payload VPN/non-VPN 0.98 Precision 2019
M. LMartin [21] Mixed-type CNN+LSTM Header+time RedIRIS 0.99 DR 2019
classification
J. Hochst [22] Traffic identification Autoencoder Statistical+header Self-collected 0.8 Precision 2017
I. Arnaldo [23] Intrusion detection gll:lnl:]]: EIET% A System log Self-collected 0.94 AUROC 2017
. . Dilated convolution, CTU-UNB,
Y. Yu [24] Intrusion detection autoencoder Header+payload ISCX-IDS 2012 0.98 DR 2017
Y. Li [25] Malicious code detection Autoencoder+DBN Statistical KDD CUP’99 0.92 DR 2015

- DR(Detection Accuracy), TPR (True-Positive Rate), FPR(False-Positive Rate), AUROC (Area Under the Receiver Operating Characteris-

tics)

- CNN(Convolutional Neural Network), LSTM (Long-Short Term Memory), SAE (Stacked auto-encoders), DBN(Deep Belief Networks)
- MLP(Multilayer Perceptron), RKHS(Reproducing Kernel Hilbert Space), RNN(Recurrent Neural Networks)
- AC-GAN(Auxiliary Classifier Generative Adversarial Networks), PCA(Principal Component Analysis), RF(Random Forest)

detection in the future [11]. In Table 1, we summarize several
well-known state-of-the-art DL-based traffic classification
methods, their performance on common datasets, and then
address our research position.

As shown in Table 1, most works are in favor of using
CNN/autoencoder to build the traffic classifier for anomaly
detection. Notably, these approaches rely on a set of prede-
fined features, e.g., statistical features [9], [16], [25], for data
preprocessing. However, the DL techniques in these systems
are supposed to vary due to the different interests in address-
ing specific applications and defense strategies [15], [21]. For
example, the authors in [18], [20] select CNN for extracting
the features from the packet headers and payloads. Autoen-
coder, on the other hand, is proper for training on the extracted
features [12], [16], [22]. Also, the bias and imbalance of
the traffic classes in the training datasets are a key factor to
motivate the authors to select a proper DL model. Finally,
while Table 1 reflects no quantitative measurement of which
method is better due to their different usages in the datasets
and further different metrics for evaluation, our summary
here aims to give an overview of the dominant trends of
applying DL for anomaly detection.

Unlike prior research, we pursue a novel approach to detect
traffic anomaly. Instead of collecting the entire traffic flows
for finding the evidence of abnormal behavior, we pack the
first several packets per flow into segments of fixed lengths,

VOLUME 8, 2020

e.g., 80 bytes. The goal is to build a subset of the data and train
only on this trimmed version. This approach significantly
reduces the computation and memory space to process the
session flows, particularly the long ones. A closely related
work to ours is [13], in which the authors first collected
both normal and malicious traffic from an IoT environment
with devices infected by Bashlite and Mirai. The traffic is
trimmed by various time scales for experimental purposes,
including 100ms, 500ms, 1.5sec, 10sec, and 1min time win-
dows. For each time window, a set of pre-defined 23 flow fea-
tures are extracted as the input to the autoencoder. However,
the method still consumes quite much time since the sampling
is performed on the offline data and extracting the features is
an independent pre-processing step. In contrast, in this work,
we build a CNN model for auto-learning the features and
the sampling targets at just several packets per flow (instead
of sampling the whole flows at several check time points).
Compared with prior studies, this work features two major
differences: (1) D-PACK can build the profile of the traffic
by examining the first packets per flow, instead of checking
the total packets in the flows; (2) D-PACK can work directly
with raw packets (after data sanitization), i.e., building the
patterns, reading the input data and making the detection
decision. Finally, we believe that a detection approach by
trimming the data for inspection like ours is competitive with
the high detection accuracy achieved by prior studies for

30389

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

< =4 = i
Sender E*;z % % gg = %’ Receiver
- /////
P L 80 bytes Padding Zeros
) e \\ Extract & Trim p ' N
(z
() m—| .

L e

Segment with 3 packets
* A packet

FIGURE 1. lllustration of the sampling to extract the segment of the first
3 packets from a flow of 10 packets.

the same attack types. This approach can motivate further
research on optimizing and accelerating the processing in
early anomaly detection systems.

Ill. LEARNING STRATEGY FOR EARLY CLASSIFICATION
AND DETECTION

This section gives an overview of the learning strategy that
targets at building a thorough traffic profile while dramati-
cally reduces the data volume for processing. This mecha-
nism also makes early anomaly detection possible, which is
the key feature of this work.

A. SAMPLING NETWORK FLOWS

The traffic volume can be enormous in a high-speed net-
work; thus, it is important to reduce a load of packet
capturing and analysis on the detection function for high
efficiency. According to the heavy-tailed nature of Internet
traffic [26], it was reported that keeping only a small por-
tion of each flow is sufficient for protocol identification or
retrospective analysis while reducing the total traffic volume
significantly [27], [28]. Therefore, we consider sampling the
flows by extracting the first n packets of each, and each packet
is trimmed into a fixed length of / bytes, starting with the
header fields (with zero-padding if necessary; see the next
subsection for the detail). Note that the raw packets of a
flow is classified based on their 5-tuple information (source
IP, source port, destination IP, destination port, and transport
layer protocol). n and / may be flexibly adjusted according to
the network traffic characteristics at the time of deployment.
This sampling can significantly reduce the total amount of
traffic in the analysis, while the characteristics of the packets
are still representative to reveal whether the associated flows
are malicious or not for early anomaly detection. Our sam-
pling workflow is illustrated as Fig. 1.

As an example in Fig. 1, a flow consists of ten packets, and
we inspect only the first three packets and trim their lengths.
Since only several packets per flow are examined, the system
can inspect significantly fewer data in total, like the results
from in [27], [28]. This saving is even much more if the flow
is part of a long session. Notably, this saving is essential for
a system that requires early detection.

After the data extraction (from pcap) with trimming,
the next step is to read the data and form an understandable
format for the learning task. Since a DL system cannot be

30390

fed with data of different lengths, short packets are padded
with zeros. We view the trimmed bytes in each flow as a
one-dimensional vector with n x [elements, and turn them
into the input of the CNN model for training. Like major DL
studies, a step of trace sanitization is also used to eliminate
the errors and repeated traffic.

B. AUTO-BUILDING THE TRAFFIC PROFILE

Building the pattern of benign traffic is the next important
task. Compared with traditional methods that extract traffic
features manually, an auto-learning approach does not con-
tain independent modules such as feature extraction and fea-
ture selection. The features are automatically learned, and the
traffic is directly passed to the classifier. Therefore, the non-
linear relationship between the raw input and the expected
output is determined, partially achieving the goal of end-
to-end learning.

To date, CNN has been mainly applied in the domain of
computer vision, e.g., image classification [29]. Recently,
there are also successful applications in the field of natural
language processing (NLP) [7], [11]. CNN is most suitable
for the kinds of data in the form of multiple arrays or the ones
with strong local correlations or whose features can appear
anywhere, even in which objects are invariant to translations
and distortions [19]. Specifically, ID-CNN is good for data
like sequential data or language [7], [11]. 2D-CNN is good
for data like images. 3D-CNN is good for data like video or
volumetric images. 1D-CNN is also widely used for network
traffic analysis, e.g., [19], including this work.

It is common to visualize the extracted bytes from each
flow as the pixels of two-dimensional (grayscale) images
like those in Fig. 2, and then to apply 2D-CNN to traffic
classification. The authors [24] use this approach, although
they prefer to use a stacked auto-encoder (SAE) other than
2D-CNN. However, since a flow may consist of more than
one packet, a 2D-CNN filter may cover a region of irrelevant
bytes from two packets or more (e.g., the bytes in adjacent
rows of pixels are semantically irrelevant). Inspired by this
fact, our auto-profiling module is built on a 1D-CNN model
(i.e., the input to CNN is a one-dimensional image). A similar
approach was taken in [18], but this work differs from theirs:
we set a fixed number of packets and bytes taken from a flow
to form the one-dimensional image, regardless of whether the
bytes are from one or multiple packets.

HTTP Flood UDP Flood

SYN Flood

FIGURE 2. Visualization of the traffic types in our dataset (Mirai-CCU).
The detail will be described in section IV.

The architecture of the 1D-CNN model is illustrated as
in Fig. 3. We assume that the first n packets per flow are
sampled, and each sampled packet is trimmed into the first
[bytes (primarily in the packet header). The data are padded

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

Pooling Layer

Convolutional Layer Dense layer

FIGURE 3. CNN model for auto-building the traffic profile.

with zeros if the number of packets is less than n or the packet
size is less than [/ bytes. Let p; be the ith packet after the
above trimming. The one-dimensional image is composed
of the bytes in pi||p2||...||pn» as the input, where || is the
concatenation operator.

Let x; be a window of s bytes beginning from the ith byte
of the input, wherei = 1, ..., nx[—s+ 1. In the convolution
operations, let m be the number of filters to be applied to the
input x; to produce a new feature. As a result, a feature hf‘
from the kth filter to the window x; is generated by

B = fWEx; 4 by),)

where f is a ReLU function [18], Wk is the weight vector
of the kth filter, and by is a bias term or the offset of the
kth filter. The above parameters in this work will be summa-
rized in Table 5. Note that each filter is applied to the possible
windows of s bytes in the input to produce a feature map
(assuming the stride is 1 in Eq. 2):

, hnl—s+1 1. 2)

We then apply a max-over-time pooling operation over the
feature map and take the maximum value max(h) as the
feature in the next layer. In this work, we use multiple
convolution layers and pooling layers to extract high-level
features. These features form the layer and are passed to a
fully connected dense layer whose output is the probability
distribution of the type of benign flows (e.g., Gmail, Skype).

It is noted that increasing the parameter n may offer more
statistical characteristics about the flow, but pours more data
into the system. The evaluation in Section V reveals clearly
this relationship. In this work, we attempt to use as few
packets as possible while still guarantee detection accuracy.
Therefore, the ideal configuration of n and [is the threshold
in which the system performance is balanced among several
measurements, e.g., high accuracy and low traffic volume for
processing. We found in the empirical experiments that, with
n = 2 and [= 80, the system can attain this target on most
of the selected datasets (see Section V).

In this work, we run the model on benign traffic to build
the traffic profile for the binary classifier, i.e., to classify
whether the flows are from benign traffic or not. In this case,
autoencoder is used as the binary classifier. An example of the
distribution of benign/malicious packets after binary classifi-
cation from our autoencoder is illustrated in Fig. 4. Notably,
the hidden layers of the learning module are designed to
connect directly with the input layers of the autoencoder

h=[hi, ho, ...

VOLUME 8, 2020

. - -«
*

- 5

FIGURE 4. Packet distribution after binary classification, from left to
right: the normal traffic distribution, malicious traffic distribution and
common distribution.

network (see Section IV-B). This connection significantly
helps to achieve the goal of end-to-end learning, since the
learning and classification are under a connected and unified
DL network.

In summary, besides the auto-learning ability of the CNN
model on the raw packets, the learning strategy, along with
the sampling procedure to shorten the data for processing,
plays a decisive role in computation reduction and early
detection. Moreover, with the adjustable parameters, n and [,
the administrator can adjust the proper thresholds to balance
learning from as many features of the traffic as possible and
satisfying the limited system resources or the detection speed.
The effectiveness of this approach is revealed in Section V.

IV. AN UNSUPERVISED DEEP LEARNING MODEL

FOR EARLY ANOMALY DETECTION

In this section, we first cover the detail of our selected datasets
and then the architecture of the D-PACK detection frame-
work. The strategy for tuning the parameters to improve the
performance is also described.

A. DATASET

Lack of a variety of shareable traces dataset has hin-
dered the progress in traffic classification by deep learn-
ing. Researchers may create synthetic datasets through their
testbed, but the generated traffic may not reflect the Internet
traffic faithfully. Thus, the evaluation based on such traces
may not be credible. Over the decades, researchers have
been tempted to use famous public traffic datasets such as
KDD CUP 99 and NSL-KDD. The datasets provide useful
statistics on labeled features and both benign and malicious
flows as well, but they do not provide information at the
raw packet level, which is required in our approach. Also,
while the credible dataset from Microsoft Malware Classi-
fication Challenge [30] can provide a metadata manifest and
hexadecimal representation of the binary content of malware,
missing packet information in the data, unfortunately, makes
it unusable in this work.

USTC-TFC2016 [18] is a prominent dataset that matches
our requirements. Table 2 summarizes the statistics of benign
and malicious traffic in the dataset. Per their statement, totally
ten types of malware traffic were collected from public web-
sites in a real network environment from 2011 to 2015. Along
with such malicious traffic, the benign part contains ten types
of normal traffic collected using IXIA BPS, a professional

30391

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

TABLE 2. Summary of benign and malware traffic in
USTC-TFC2016 dataset.

Traffic type Total # of flows Flow type # of flows
Facetime 6,000
Skype 6,321
Bittorrent 7,517
Gmail 8,629

Benign 309,887 Outlook 7,524
WarCraf 7,883
MySQL 86,089
FTP 101,037
SMB 38,937
Weibo 39,950
Tinba 8,504
Zeus 10,970
Shifu 9,634
Neris 33,791
Malware 624,414 Cridex 461,548
Nsisay 6,069
Geodo 40,947
Miuref 13,481

Virut 33,103
Htbot 6,367

network traffic simulation equipment. The size of this dataset
is 3.71GB in the pcap format.

For the Mirai-based DDoS traffic, we use the dataset from
Robert Gordon University, denoted by Mirai-RGU, and its
statistics are shown in Table 3. The readers are referred to [31]
for the testbed used to collect the dataset. This dataset con-
tains Mirai botnet traffic such as scan, infect, control, attack
traffic, and normal IP camera traffic. The Mirai botnet traffic
consists of four main attack types: UDP flood, ACK flood,
DNS flood, and SYN flood attacks. The dataset includes
features such as time, source, destination, protocol, length,
and overall payloads.

TABLE 3. Summary of benign and malicious traffic by packet count in the
Mirai-RGU dataset [31].

Traffic type Total # of flows Flow type # of flows
Benign 76,725 Mixed traffic 76,725
Ack flood 7,425
HTTP flood 143
UDP flood 32,418
DNS flood 4,852
Malware 2,991,832 Mirai 2,795,422
VSE flood 4,990
GREIP flood 27,804
SYN flood 118,754
UDPPLAIN flood 19
GREETH flood 5

In order to enrich the traffic activities and identify the
attack traffic, we have built a Mirai botnet in the campus of
National Chung Cheng University (CCU) for testing (denoted
by Mirai-CCU), as shown in Fig. 5. The C&C server controls
seven IoT devices (i.e., WiFi access points) and collects all the
DDoS attacks from Mirai. Despite the small testbed, we argue
that the detection performance in the experiments does not
deviate from that in a large testbed because the detection
refers only to the first few bytes in the first few packets of the
flows as the features, instead of the number of flows, packets

30392

g

(s
Mirai C&C

-
5
P
[¢
Victim op — [—g
O\%’Te .
¢ | Mirai report

T

FIGURE 5. The testbed of our Mirai-based DDoS dataset in the campus of
National Chung Cheng University (CCU), in which the Mirai botnet is at
the WiFi APs in the bottom.

or bytes over a given period of time. It is important to note that
reproducing a large-scale Mirai-based botnet would be costly
and probably illegal; thus, we do not resort to that alternative.

The collected dataset consists of four DDoS attack types:
SYN flood, UDP flood, ACK flood, and HTTP flood. The
dataset covers over 304K malicious flows and its size is
277.1GB. Table 4 summarizes the collection of these four
types. Like [18], we also visualize these four attack types
in Fig. 2. For each type of attack, we randomly select nine
flows, and for each flow, a 2D grayscale image of 20*25 is
produced by selecting the first 100 bytes of the first five
packets (i.e., totally 500 bytes in a flow). Fig. 2 shows that
the same type of flows are similar in the visualization, but are
quite different between different flows.

TABLE 4. Mirai DDoS types collected in our testbed, namely Mirai-CCU.

Total # of flows Flow type # of flows
ACK flood 150,001
1,021,145 HTTP flood 7,722
UDP flood 99,986
SYN flood 763,436

B. UNSUPERVISED DL-BASED ANOMALY

DETECTION ARCHITECTURE

Fig. 6 shows the schematic diagram of the D-PACK frame-
work. After the pre-processing (left side), CNN is used
to automatically extract the flow features by classifying
flows into different types, e.g., 10 types in the USTC-
TFC2016 dataset. The network traffic is composed of raw
packets. The step of flow generation implies the packets
are grouped by S-tuple. One may question that IP can be
either benign or malicious alternatively and then the classi-
fication on such data is meaningless. In this case, D-PACK
is a flow-based classifier, an IP source with both malicious
and benign flows does not affect D-PACK’s classification.
D-PACK will classify benign flows as benign and mali-
cious flows as malicious no matter what is the source IP.

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

Preprocessing

Network Traffic

v

Flow Generation

v

Trace Sanitization

¥

[Malicious Identity]

Information Randomization

v

[Uniform Length Trimming]_ i

\4

-~
0
A

Q @ . O O
O -

O O) 9 O

O Q ~

B @ O » O

® O 7 O
O

(@ O

O

(1

a g
(3

FIGURE 6. The architecture and workflow of D-PACK, including the preprocessing (left), training and auto-learning module (right).

CrossEntropyLoss + MSELoss

Autoencoder for
learning benign traffic

Convolutional neural network
for capturing features

FIGURE 7. The direct connection between one-dimensional CNN and
autoencoder through the hidden layers of the CNN model.

Also, n and [are referred to in Uniform Length Trimming.
To anonymize the source of the attack traffic, particularly in
the synthetic dataset, the identity information such as IP and
MAC addresses is randomized, while the same identity of all
the packets in the same flow is preserved. The next is the
detection model on the right-hand side, which consists of two
parts. The first part is the CNN for flow features extraction,
and the second is the autoencoder for classifying flows into
benign or malicious. The detailed design of the detection
model is illustrated in Fig. 7.

For classification, a threshold is set to distinguish benign
and malicious traffic based on the MSELoss distribution
of benign traffic. Note that, when detecting an attack,
the MSELoss distribution generated by the autoencoder train-
ing set (i.e., benign flows) is used for determining the detec-
tion threshold. We hope that this design can reduce the
error caused by data dispersion and improve accuracy. Also,
MSELoss calculates the flow based on the blurred features,

VOLUME 8, 2020

B benign

1600 -
malicious

1400
1200
1000

8OO

Number of flows

600

400
200

0-— T T T T T
0.000 0.001 0.002 0.003 0.004 0.005
MSELoss

FIGURE 8. The statistical results of benign and malicious classification
from CNN learning, including the MSELoss distribution of the testing set
(the red line is the threshold set by the classification).

and these features are treated as different vectors and put
into MSE to calculate loss attributes. To avoid the impact
of the extreme maximum value of the MSELoss, the maxi-
mum is compared with the 99th percentile of the MSELoss.
For threshold, if the difference between these two values
exceeds the triple standard deviation of the MSELoss distri-
bution, the 99th percentile is set as the detection threshold;
otherwise, the maximal MSELoss is set as the threshold.
To improve the classification performance, we also adopt the
approach to jointly optimize the loss functions of CNN and
autoencoder, as shown in Fig. 7. Fig. 8 illustrates an example
of the statistical results of MSELoss of benign and malicious
flows from autoencoder. The red line is the threshold set by
the above mechanism.

For the layer structure of the detection module, Table 5
shows the structural parameters of the design in detail.

30393

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

TABLE 5. Structural parameters.

Filters/neurons Stride

32 (kernel size=6) 1 5

Layer Type
1D-ConV+Relu+
Batch Normalization

Padding

1
2 Maxpooling Kernel size=2 2
ID-ConV+Relu+ .
3 Batch Normalization 64 (kernel size=6) 1 5
4 Maxpooling kernel size=2 2
5 Dense + Bqtch 1024
Normalization
Dense + Batch
*
6 Normalization 25
*7 Dense 10
8 Dense 512
9 Dense 256
10 Dense 512
11 Dense 1024

Note that the number of filters/neurons in the last layer
of CNN depends on the number of types of benign traf-
fic (e.g., 10 in the USTC-TFC2016 dataset), while the
other parameters are fixed for different traffic types. First,
the one-dimensional CNN filter gets the first [bytes of the
first n packets as the input (i.e., the input size is n x [); the
kernel size of the filter of the convolution layer is set to 6 (in
the header, the largest field is the MAC address). The hidden
layer (layer 5) in the CNN, connecting to the autoencoder
module, is used to learn the flow features. Specifically, layers
from 1 to 7 in Table 5 are the architecture of the CNN, and
layer 5 plus layers from 8 to 11 are the architecture of autoen-
coder. Summary, the structural parameters in Table 5 are the
parameters that we refer to the architecture mentioned in [18]
and improve them. Moreover, such parameters are what we
have found after many cross-validation and experiments.

Hyperparameters for tuning

The performance of the DL-based approaches is suscepti-

ble to the changes of the hyperparameters such as the learning
rate. In this work, tuning the following parameters may sig-
nificantly help to improve the performance of the system.

1) n and /: As mentioned in Section III-A, these are the
key parameters for early detection while maintaining
high accuracy.

2) Batch normalization: Due to the depth of the deep
learning architecture, the batch normalization between
each layer can keep the parameter distribution stable,
accelerate the learning efficiency, ease the gradient
disappearance and avoid over-fitting.

3) Add additional dense layers for CNN: In general,
adding more hidden layers could improve the perfor-
mance of CNN. In our CNN architecture, it consists of 3
hidden layers (layer 5 to 7). What we have learned from
our experiments is that adding the second layer with
size of 25 improves the performance significantly. Our
conjecture is that, besides the benefit of an additional
hidden layer, the size of 25 actually corresponds to the
number of header fields in a TCP/IP packet. Although
we may also encounter UDP/IP packets with fewer
header fields, from our observation, setting the size to

30394

25 seems to be able to accommodate both TCP and
UDP packets.

4) All dense layers adopt layer-wise greedy pre-training
for initialization: The layer-wise greedy pre-training
design targets at mitigating the impact of vanishing
gradient problem and overfitting in the deep archi-
tecture. Fortunately, Unsupervised Greedy Layer-Wise
Pretraining model [32] genuinely works well with the
classification based on the autoencoder.

V. EVALUATION RESULTS
Similar to most existing deep learning research, our pro-
posed classification model has been implemented using
TensorFlow/Keras and Pytorch. The evaluations have been
all performed on the GPU-enabled TensorFlow (Pytorch) run-
ning on a 64-bit Ubuntu 16.04 LTS server with an Intel Xeon
Silver 4116 CPU@2.10GHz, 256GB RAM, and NVIDIA
Tesla V100. We also use the Python package dpkt, a pcap
parser and creator, to convert the raw packets for training.
To perform the evaluations, we have sequentially tested
the system on USTC-TFC2016, Mirai-RGU, and Mirai-CCU
datasets (mentioned in Section IV-A). Training the model
is performed only on the benign traffic; however, to verify
the system on various conditions, the testing scenario will
involve three cases: the input data of only benign, benign
and malicious, and pure malicious traffic. Also, since our
approach aims to gain a significant reduction in the process-
ing time, we prefer to classify an incoming flow, whether
it is malicious or not, instead of considering its attack type
in detail. In practice, if the proposed system detects a mali-
cious flow, it will raise an alarm and redirect the packets to
some off-line computationally intensive traffic classification
systems for further analysis, while blocking the malicious
flow simultaneously. Therefore, in the following subsections,
several common metrics are used for performance evaluation
in terms of a binary classifier.
e True Positive (TP) — number of attack flows that are
correctly classified as an attack.
« False Positive (FP) — number of benign flows that are
incorrectly classified as an attack.
o True Negative (TN) — number of benign flows that are
correctly classified as normal.
« False Negative (FN) — number of attack flows that are
incorrectly classified as an normal.
The accuracy in Eq. 3 measures the proportion of the total
number of correct classifications. The precision, recall, and
F1-mesaure are defined in Eq. 4, Eq. 5 and Eq. 6, respectively.
The first two reflect the rate of correct classifications influ-
enced by incorrect ones, and the last is the overall measure
between the precision and the recall.
TP + TN

Accuracy = 3)
TP+ TN + FP + FN
. P
Precision = —— “4)
TP 4 FP
TP
Recall = —— ©)
TP 4+ FN

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

F1 2TP 2 «x Precision x Recall 6
" 2TP+FP+FN Precision + Recall ©)
The FAR in Eq. 7, also known as FPR, measures the rate
of benign flows incorrectly classified as malicious. The FNR
in Eq. 8 measures the rate of malicious flows incorrectly
classified as benign.

FP
False Alarm Rate = — (7)
FP+ TN
. FN
False Negative Rate = ———— (8)
TP + FN

In the following subsections, we present the detection
performance of D-PACK for three selected datasets in three
scenarios: the input data for training and testing can consist of
only benign, benign and malicious, and pure malicious traffic.

In the first scenario, the classes and number of flows of the
training and testing sets are shown in Table 6. The training
data in the CNN and autoencoder module in this scenario
include only benign traffic. The testing data include benign
traffic from USTC-TFC 2016 and malicious traffic from
Mirai-CCU.

TABLE 6. Scenario 1: USTC-TFC 2016 (benign) and Mirai-CCU (malicious)
datasets.

(a) Training set for CNN and au- (b) Testing set A (benign from
toencoder (benign from USTC- USTC-TFC 2016 and malicious

TFC 2016) from Mirai-CCU)
Traffic type # of flows Traffic type # of flows
BitTorrent 6000 BitTorrent 2398
Facetime 6000 Facetime 2398
FTP 6000 FTP 2399
Gmail 6000 Gmail 2399
MySQL 6000 MySQL 2399
Outlook 6000 Outlook 2399
Skype 6000 Skype 2399
SMB 6000 SMB 2399
Weibo 6000 Weibo 2399
World of Warcraft 6000 World of Warcraft 2399
ACK Flood 5997
SYN Flood 5997
UDP Flood 5997
HTTP Flood 5997

In the case of auto-learning traffic features, the learning
performance of the CNN model on benign traffic is summa-
rized in the confusion matrix table in Fig. 9. The top number
in each cell of the confusion matrix is the number of flows
for testing in the benign traffic set. The learning module can
classify the benign traffic type with nearly 100% accuracy.

Table 7 shows the accuracy of D-PACK in the first testing
scenario, i.e., on the testing set A, which contains benign
flows from USTC-TFC 2016 and malicious flows from
Mirai-CCU. As we observe from Table 7, with only 40 bytes
per flow, the accuracy is nearly 100%. When the number
of packets per-flow and bytes per packet are increased for
inspection, e.g., 2 packets per-flow and 50 bytes per packet
or 3 packets per flow and 60 bytes per packet, the system can
achieve 100% accuracy, a very promising result. However,
we also notice that when we increase the number of packets

VOLUME 8, 2020

Confusion matrix

o o 1 1
oot om% 00% 00% oo% o00% o002 oo% o0o% oox [

°
°
°
°
°
ggn
g]

o
0 0 0 0 0 0 0 0 0
o 00 00 00 00 00% 00 00 00 00
o
§
666
e oo o oo o w% oo o0 o0 o0 100%
4t® 2
667
0 0 0 0 0 0 0 0 0 9
a® 00% 00% 00% 00% 00% 00% 00% 00% 00% [N
666
. 0 0 5 1 0 0 0 0 o .
" oo@ 00% oo% oos% 002 00% 00% 00% 00% 00% |RE
]
o]
S 666
o 0 0 0 0 0 0 0 0 0 e
= G9° 00% 00% 00% 00% 00% 00% 00% 00% 0.0%)
E R
]
667
< 0 o o 0 o o o 0 o o
@° 00% 00% 00% 00% 00% 00% 00% 00% 00% o
0 1 o 0 0 0 0 0 0
o 00% 002% 00% o00% 00% 00% 0.0% 00% 00%
o
a0
o 666

W(jc.\/ 00% 00% 00% 00% 00% 00% 00% 00% 00 [

Ea
N

et
[0

665 667 671 668 660 666 668 665 666 668
<‘0\ 100% 99.85% | 99.25% | 99.85% 100% 100% 99.85% 100% 100% 99.85%
s
A
< &Q & & &

& R

N
o &

2

& o &
& @& S
&
&

Predicted Class

FIGURE 9. The learning performance of CNN for benign traffic.

TABLE 7. The accuracy of D-PACK running with various values of n and /
(scenario 1: testing set A).

f;::;ft Packet size (bytes)

40 50 60 70 80
2 99.96% 100% 100.00% 100% 100%
3 99.99% 99.99% 100.00% 100% 100%
4 99.97% 99.95% 100.00% 99.99% 100%
5 99.98% 99.39% 99.99% 99.99% 100%

TABLE 8. The performance of the framework in Scenario 1: testing set A
with n =2 and / = 50.

Measurements Result
Accuracy 100%
Precision 100%
Recall 100%
F1-Measure 100%

FNR and FPR 0%

per flow does not yield higher accuracy. This result indicates
inspecting more bytes per packet is better than more packets
per flow. This is promising for reducing the flow processing
time as well as the training and detecting time. The best result
for the testing set A is with the configuration of n = 2 and
| = 50, which yields ideal performance, i.e., 100% accuracy
and no FPR/FNR. The performance with the five-metric mea-
surements in this ideal case is presented in Table 8.

In the second scenario, the training data and testing data
are all from the USTC-TFC 2016 dataset. The ratio of benign
traffic in the training set and the testing set is 7:1, as shown
in Table 9. The malicious traffic only appears in the testing
set, making the ratio of the total amount of flows in the
training set and that of the testing set becomes 4:1. After
training, we have tested the system with the testing set B.

30395

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

TABLE 9. Scenario 2: USTC-TFC 2016 dataset (both benign and malicious).

(a) Training Set for CNN and autoencoder (benign from USTC-TFC
2016)

Traffic type # of flows
BitTorrent 5333
Facetime 5333
FTP 5333
Gmail 5333
MySQL 5333
Outlook 5333
Skype 5333
SMB 5333
Weibo 5333

World of Warcraft 5333
(b) Testing set B (both benign and malicious are from USTC-TFC
2016)

Traffic type # of flows
BitTorrent 666
Facetime 666
FTP 666
Gmail 666
MySQL 666
Outlook 666
Skype 666
SMB 666
Weibo 666
World of Warcraft 666
Cridex 667
Geodo 666
Htbot 667
Miuref 666
Neris 666
Nsis-ay 666
Shifa 666
Tinba 667
Virut 667
Zeus 666

TABLE 10. The detection accuracy of running with variances of n and /
(testing set B).

Packet Packet size
count

40 50 60 70 80
2 99.95% 100% 100.00% 100% 100%
3 99.99% 100% 100.00% 100% 100%
4 99.99% 99.96% 100.00% 100% 93.07%
5 99.96% 99.91% 99.95% 100% 100%

Table 10 shows the system performance on the testing set
with variances of n and /. Compared with the first scenario,
the system gains better performance with the low values of n.
The performance with five metrics in Table 11 reinforces this
indication. However, similar to the previous case, increasing
the value of n and / does not mean that the system gets better
performance.

In the third scenario, the training and testing data are
from the Mirai-RGU dataset. Since this dataset classifies all
benign traffic into one type, namely, the normal type; thus,
we use both benign and malicious traffic to train the CNN,
but only the benign traffic to train the autoencoder, as shown
in Table 12. The testing data also include both benign and
malicious traffic from this dataset, as shown in the third

30396

TABLE 11. The performance of the framework on the testing set B with
n=2and/ =50.

Measurements ~ Result
Accuracy 100%
Precision 100%
Recall 100%

F1-Measure 100%
FNR and FPR 0%

TABLE 12. Scenario 3: training and testing sets from Mirai-RGU.

CNN Training set Autoencoder testing and training
#of #of .
Traffic training testing Traffic # of training flows
type flows flows type
ACK Flood 6600 825 Normal 68200
HTTP Flood 120 15
UDP Flood 28816 3062
DNS Flood 4312 539
Mirai C&C 68200 539
VSE Flood 4432 554
GREIP Flood 24712 3089
SYN Flood 68200 8525
Normal 68200 8525

TABLE 13. The detection accuracy when running with the Mirai dataset
for various values of n and /.

Packet Packet size
count

40 50 60 70 80
2 99.01% 99.11% 99.71% 99.76% 99.77%
3 97.88% 98.40% 99.67% 99.77% 99.77%
4 96.39% 97.60% 99.51% 99.71% 99.75%
5 95.54% 96.66% 99.38% 99.69% 99.73%

TABLE 14. Performance of the framework on the whole malicious traffic
withn =2 and / = 80.

Measurements ~ Result

Accuracy 99.77%

Precision 99.93%

Recall 99.17%
F1-Measure 99.55%

FNR and FPR 0.02% and 0.83%

column of Table 12. The Mirai-RGU dataset contains nine
types of attack traffic with quite a variant number of flows.
The detection accuracy of running the framework on the
testing data with variances of n and [is shown in Table 13.
Compared with the first two scenarios, the performance is
slightly worse with the same configuration of n and [, but the
accuracy is still higher than 99.7% when two packets per-flow
and more than 60 bytes per packet are examined. Moreover,
in the applications where recursive communications probably
generate extremely long flows, the configuration (i.e., n =
2, I = 60) still gives the detection system significant advan-
tages in skipping tremendous traffic volume for processing.
Similar to the accuracy, the performance of the rest mea-
surements in this scenario also deteriorates slightly. In this
case, we set n = 2 and / = 80 for the sampling configuration.
The system gains nearly 99% for the first four measurements,

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

TABLE 15. Pre-processing capacity of our framework on various datasets.

Datasets Benign Processing capacity (flows/s) Malicious Processing capacity (flows/s)
USTC Weibo 11300 Geodo 18992
MySQL 46716 Shifu 36901
Skype 81402 Cridex 36330
Gmail 77597 Tinba 83772
Outlook 134833 Zeus 69217
Facetime 315628 Miuref 99057
SMB 87156 Nsis-ay 103894
World of Warcarft 87410 Htbot 107344
BitTorrent 233757 Neris 105687
FTP 158360 Virut 115988
Mirai-CCU HTTP Flood 37047
SYN Flood 80604
ACK Flood 127525
UDP Flood 333088
Mirai-RGU Normal 2555180 Ack Flood 521845
HTTP Flood 205510
UDP Flood 232113
DNS Flood 130353
Mirai C&C and spread 1743501
VSE Flood 65618
GREIP Flood 1651175
SYN Flood 223064

while the FNR rises marginally but is still less than 1%,
as summarized in Table 14. The results reinforce our original
judgment that a well-designed learning strategy combined
with a slight adjustment of n, [may not significantly impact
the overall performance of the detection system while it
can significantly help to save traffic volume for processing
and speed up the detection. Admittedly, in the case of other
applications and datasets, e.g., malware binary, the values of
n and [can vary since their data structure for sampling may
need a tweak.

In summary, our experiments in all the scenarios demon-
strate that the performance of the proposed mechanism
either outperforms or is competitive to that of state-of-the-art
research works listed in Table 1.

A. TIME EFFICIENCY

The time efficiency in terms of the training time and the
detection time is also an important metric in our experiment.
The training time is the total time to complete the training
on the selected dataset. This time depends on the data pre-
processing, the training model (number of layers and dimen-
sions) and the server capacity. Therefore, it would be unfair to
compare the execution with different hardware and software.
The pre-processing capacity of our system is summarized
in Table 15. The system can capture the packets, classify them
into different flows, extract n packets per flow and discard
the rest with hundreds of thousands of the flows per second.
Since the pre-processing time includes reading all the packets
in the dataset, which demands much I/O time, and training
the deep learning model, which requires much CPU/GPU
processing time; thus, in some cases, it can only process tens
of thousands of flows. However, the pre-processing task shall
be done offline; thus, it is acceptable to have slightly longer
pre-processing time.

VOLUME 8, 2020

TABLE 16. Detection speed with different datasets.

Training Set Testing Set Detection Speed
USTC-TFC2016 USTC-TFC2016 576,058 flows/s
USTC-TFC2016 Mirai-CCU 675,832 flows/s

Unlike the pre-processing, the detection on the same traffic
type is supposed to be significantly faster because the clas-
sification can work on the raw traffic directly after training,
instead of spending time in the learning tasks. In our empirical
experiment, the detection can serve hundreds of thousands
of flows per second (as summarized in Table 16), no matter
which dataset it runs on. The processing capacity here is
defined as the total number of flows that can be classified
per second on a given testing dataset. With the processing
of hundreds of thousands of flows per second, our approach
can work for on-line monitoring since this speed can satisfy
most on-demand applications and in medium networks. For
the core networks, we may need more efforts to integrate this
system for potential deployment, since the network speed at
such nodes can be up to hundreds of gigabits per second. Note
that the system at the core networks can be equipped with
much more powerful hardware.

B. DISCUSSION

There is a trade-off between the number of trimmed pack-
ets, trimmed length, and the classification performance,
i.e., accuracy and detection time. Reducing the trimmed
length, e.g., from 80 bytes to 40 bytes, can potentially help
to reduce the detection time and the training time, but may
dramatically impact the accuracy. The accuracy also depends
on the considered attack type. In the evaluation, we found
that the ideal configuration is at n = 2 and [= 80.
However, promising research is to propose an algorithm to

30397

IEEE Access

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

calculate a proper configuration automatically in a deployed
environment.

Moreover, the approach to consider the classification at
the packet level can open the door towards accelerating the
detection since we can schedule the packets for parallel pro-
cessing. However, the explicit shortcoming is to increase the
training time and resource usage (e.g., memory) due to a
large number of parameters and data size put into the training
model. Balancing the factor of acceptable training time but
still gaining high classification performance is a non-trivial
task and a potential research direction.

Finally, the DL-based classification approach is highly
susceptible to the data poisoning attack due to its depen-
dence on the training data. So far, we have found few attack
models targeting at evading the deep learning-based mali-
cious classification systems, including ours. However, this
can soon be changed when the popularity of deep learning
will attract more attackers to exploit its vulnerabilities for
hacking or monetization. Generating/preventing adversary
models against deep learning thus is a very interesting and
promising security research topic.

VI. CONCLUSION

In this work, we present a novel early malicious traffic detec-
tion framework, namely D-PACK, based on traffic sampling,
traffic auto-profiling (CNN), and an unsupervised DL model
(autoencoder). By targeting at examining as few packets and
number of bytes from each packet as possible, our system can
significantly reduce the traffic volume for processing. The
evaluation results show that D-PACK can detect malicious
traffic with nearly 100% accuracy and less than 1% FNR and
FPR, even if it examines only two packets from each flow and
80 bytes from each packet. Moreover, it is supposed to con-
sume much less flow pre-processing time and detection time
than prior works because much fewer packets and bytes are
inspected. Thus, the important advantage of this framework
is to speed up the detection. We believe that this first attempt
can inspire the research community to consider further opti-
mization methods, particularly by exploiting the advantages
of deep learning to build effective online anomaly detection
systems without suffering significant detection delay.

REFERENCES

[1] M. Bacon. New Mirai Variant Attacks Apache Struts Vulnerability.
Accessed: Jun. 12, 2018. [Online]. Available: https://searchsecurity.
techtarget.com/news/252448779/New-Mirai-variant-attacks- Apache-
Struts-vulnerability

[2] S. Gatlan. Mirai Botnet Variants Targeting New Processors and
Architectures. Accessed: Apr. 9, 2019. [Online]. Available: https:/www.
bleepingcomputer.com/news/security/mirai-botnet-variants-targeting-
new-processors-and-architectures

[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.

[4] R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona,
“IoDDoS the Internet of distributed denial of service attacks—A case
study of the mirai malware and IoT-based botnets,” in Proc. 2nd Int. Conf.
Internet Things, Big Data Secur., vol. 1, 2017, pp. 47-58.

[5] P. Zilberman, R. Puzis, and Y. Elovici, “On network footprint of traffic
inspection and filtering at global scrubbing centers,” IEEE Trans. Depend.
Sec. Comput., vol. 14, no. 5, pp. 521-534, Sep. 2017.

30398

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]
[26]

(27]

(28]

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 303-336, 2014.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153-1176, 2016.

S. Valenti, D. Rossi, A. Dainotti, A. Pescap, A. Finamore, and M. Mellia,
“Reviewing traffic classification,” in DataTraffic Monitoring and Analy-
sis. Cham, Switzerland: Springer, 2013, pp. 123-147.

E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR-IDS: Anomaly-based
intrusion detection through text-convolutional neural network and random
forest,” Secur. Commun. Netw., vol. 2018, pp. 1-9, Jul. 2018.

W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “‘End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,”
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (1S1), Jul. 2017, pp. 43-48.
D. Berman, A. Buczak, J. Chavis, and C. Corbett, “A survey of deep
learning methods for cyber security,” Information, vol. 10, no. 4, p. 122,
Apr. 2019.

E. Min, J. Long, Q. Liu, J. Cui, Z. Cai, and J. Ma, “SU-IDS: A semi-
supervised and unsupervised framework for network intrusion detection,”
in Proc. 4th Int. Conf. Cloud Comput. Secur., 2018, pp. 322-334.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, D. Breitenbacher,
A. Shabtai, and Y. Elovici, “N-BaloT: Network-based detection of IoT
botnet attacks using deep autoencoders,” IEEE Pervas. Comput., vol. 17,
no. 3, pp. 11-22, Jul./Sep. 2018.

W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,” IEEE Access, vol. 6,
pp. 1792-1806, 2018.

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, ‘“Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,” IEEE Trans. Netw. Serv. Manage., vol. 16, no. 2,
pp. 445-458, Jun. 2019.

M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, ‘“Deep learning
approach combining sparse autoencoder with SVM for network intrusion
detection,” IEEE Access, vol. 6, pp. 52843-52856, 2018.

L. Vu, C. T. Bui, and Q. U. Nguyen, “A deep learning based method for
handling imbalanced problem in network traffic classification,” in Proc.
8th Int. Symp. Inf. Commun. Technol. (SoICT), 2017, pp. 333-339.

W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic clas-
sification using convolutional neural network for representation learning,”
in Proc. Int. Conf. Inf. Netw. (ICOIN), 2017, pp. 712-717.

Z. Chen, K. He, J. Li, and Y. Geng, “Seq2Img: A sequence-to-image
based approach towards IP traffic classification using convolutional neural
networks,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017,
pp. 1271-1276.

M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, ‘“Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Comput., vol. 24, no. 3, pp. 1999-2012, Feb. 2020.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks for
Internet of Things,” IEEE Access, vol. 5, pp. 18042-18050, 2017.

J. Hochst, L. Baumgartner, M. Hollick, and B. Freisleben, ‘“Unsupervised
traffic flow classification using a neural autoencoder,” in Proc. IEEE 42nd
Conf. Local Comput. Netw. (LCN), Oct. 2017, pp. 523-526.

I. Arnaldo, A. Cuesta-Infante, A. Arun, M. Lam, C. Bassias, and
K. Veeramachaneni, “Learning representations for log data in cyberse-
curity,” in Proc. Int. Conf. Cyber Secur. Cryptogr. Mach. Learn., 2017,
pp. 250-268.

Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through stacking
dilated convolutional autoencoders,” Secur. Commun. Netw., vol. 2017,
pp. 1-10, Nov. 2017.

Y.Li,R. Ma, and R. Jiao, “‘A hybrid malicious code detection method based
ondeep learning,” Int. J. Secur. Appl., vol. 9, no. 5, pp. 205-216, May 2015.
V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson model-
ing,” IEEE/ACM Trans. Netw., vol. 3, no. 3, pp. 226-244, Jun. 1995.

B. Hullar, S. Laki, and A. Gyorgy, “Efficient methods for early pro-
tocol identification,” IEEE J. Sel. Areas Commun., vol. 32, no. 10,
pp. 1907-1918, Sep. 2014.

G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and
F. S Hneider, “Enriching network security analysis with time travel,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, p. 183, Oct. 2008.

VOLUME 8, 2020

R.-H. Hwang et al.: Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection

IEEE Access

[29] S. Albawi, T. A. Mohammed, and S. Al-Zawi, ‘“Understanding of a
convolutional neural network,” in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1-6.

[30] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi,
“Microsoft malware classification challenge,” 2018, arXiv:1802.10135.
[Online]. Available: http://arxiv.org/abs/1802.10135

[31] C. D. Mcdermott, F. Majdani, and A. V. Petrovski, ‘“Botnet detection in
the Internet of Things using deep learning approaches,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1-8.

[32] P. L. Y. Bengio, D. Popovici, and H. Larochelle, “Greedy layer-wise
training of deep networks,” in Proc. 19th Int. Conf. Neural Inf. Process.
Syst. (NIPS), 2006, pp. 153-160.

REN-HUNG HWANG (Senior Member, IEEE)
received the Ph.D. degree in computer science
from the University of Massachusetts, Amherst.
He joined the Department of Computer Science
and Information Engineering, National Chung
Cheng University (CCU), in 1993, where he is
currently a Distinguished Professor. He has pub-
lished more than 200 international journals and
conference papers. He has served as the Dean for
the College of Engineering, from 2014 to 2017.
He has received the IEEE Outstanding Paper Award from the IEEE UIC
2012, and the IEEE Best Paper Award from the IEEE IUCC 2014, the IEEE
SC2 2017, and the IEEE Ubi-Media 2018. His current research interests
include the Internet of Things, network security, cloud/edge/fog computing,
and software-defined networks.

MIN-CHUN PENG is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Information Engineering, National
Chung Cheng University, Chiayi, Taiwan. His
research interests include information security and
deep learning, deep learning, cloud computing,
the Internet of Things, and information security.

VOLUME 8, 2020

CHIEN-WEI HUANG is currently pursuing the
master’s degree with the Department of Computer
Science and Information Engineering, National
Chung Cheng University, Chiayi, Taiwan. He is
working on L2, L3 network protocol. His research
interests include information security and deep
learning.

PO-CHING LIN received the Ph.D. degree in
computer science from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, in 2008. He joined the
Department of Computer Science and Information
Engineering, National Chung Cheng University
(CCU), in August 2009, as a Faculty Member,
where he is currently an Associate Professor. His
research interests include network security, net-
work traffic analysis, and performance evaluation
of network systems.

VAN-LINH NGUYEN (Member, IEEE) received
the Ph.D. degree in computer science and infor-
mation engineering from National Chung Cheng
University (CCU), Taiwan, in 2019. He is cur-
rently an Assistant Professor with the Depart-
ment of Information Technology, TNU-University
of Information and Communication Technology,
Vietnam. His research interests include network
security, vehicular security, the Internet of Things,
deep learning, and edge computing.

30399

