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ABSTRACT Our main objective is to extend the discrete mode matching (DMM) method to analyze
multilayered elliptical fibers or transmission lines with elliptical dielectric layers. We generate the
formulation for the full-wave equivalent circuit (FWEC) and derive the hybrid matrix elements for the
dielectric layers in an elliptical coordinate system and then obtain the system equation of the structure.
To demonstrate the technique, we analyze elliptical waveguides and compare the results with the data
obtained by other authors and by commercial software.

INDEX TERMS Multilayered microwave structures, anisotropic media, conformal, numerical analysis.

I. INTRODUCTION
During the past decades, a considerable amount of attention
has been paid to the analysis of optical fibers or dielectric
waveguides for fast data transmission. The fibers exhibit
ellipticity due to fabrication imperfections or purposely, due
to manufacturing convenience. Also, the elliptical fibers have
the interesting feature that their higher order modes are
azimuthally stable, in contrast to circular fibers.

Several authors have analyzed elliptical waveguides in the
literature, for example propagating modes are determined
using ellipse transformation perturbation method (ETPM) in
[1]. The cutoff wavelength is solved using the method of
fundamental solutions (MFS) along with the singular value
decomposition (SVD) technique in [2] and higher order mode
cutoff is investigated in [3]. Reference [4] explained the
analysis of elliptical fibers using the method of lines (MoL)
in elliptical coordinates but the angular Mathieu functions
are approximated with a Fourier expansion. Dyott collated
lot of information on several approaches used to analyze
elliptical fibers in his book [5]. Reference [6] also discussed
in detail the fundamental theory of wave propagation in
elliptical dielectric rods and several results in Chapter 6 of
the book. Reference [7] developed the analytical expres-
sions for reflection and transmission coefficients in ellip-
tical cylinder using transfer matrix method. Reference [8]
dealt with stripline structures mounted on elliptical cylin-
der using moment method and [9] used weakly guiding
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approach to solve propagation constants by solvingMathieu’s
equation.

The discrete mode matching method has been proven to
be an efficient spectral or spatial domain numerical method
for the full-wave analysis of multilayered microwave struc-
tures such as waveguides, striplines and microstrip antennas
[10]–[13]. References [12] and [13] take into account
anisotropic layered media in the structures. The method has
the advantage that we need to discretize the transmission line
structures only in one direction while we use the analytical
solution in the remaining directions. Thus, we save a lot of
computational time and effort compared to other numerical
schemes. The increase in the discretization lines is equivalent
to the increase in the number of modes used for the field
expansion due to the Nyquist-Shannon sampling theorem.
References [10], [11], [13] also discuss about the convergence
of the DMM computations with respect to the discretization
lines on the structure. DMM provides smooth convergence
of the results. In [13], we have dealt with elliptical struc-
tures using a cylindrical coordinate system. The goal of this
paper is to extend the DMM method to directly deal with
an elliptical coordinate system. We consider the problem of
electromagnetic wave propagation along a dielectric cylin-
der of elliptical cross-section. We use elliptic cylinder func-
tions, known as Mathieu functions to find the solution of the
Helmholtz equation. The whole analysis is done in spatial
domain.

This paper first describes the solution of the Helmholtz
equation in elliptical coordinates. Then, it explains the
derivation of the hybrid-matrix elements for elliptical
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FIGURE 1. Elliptical cylindrical coordinates with semifocal length f .

dielectric layers. We demonstrate the application by comput-
ing propagation constants for elliptical dielectric waveguides
with isotropic and uniaxial anisotropic layers. Finally, we val-
idate the computed results with the open literature and/or
results obtained from the commercial software ANSYS
HFSS.

II. FORMULATION IN THE ELLIPTICAL
COORDINATE SYSTEM
Let us consider the elliptical coordinate system (ξ , η, z) as
shown in Fig. 1. In the figure, we describe the elliptical
cylinder by the coordinate ξ and the hyperbolic cylinder by
the coordinate η. We locate the two foci of the elliptical
cylinder at−f and+f on the x-axis. We can write the relation
between the Cartesian and the elliptical coordinate system as

x = f cosh ξ cos η = A cos η, (1)

y = f sinh ξ sin η = B sin η, (2)

z = z, (3)

whereA andB represent the major andminor semi-axes of the
elliptical cylinder. The range of the coordinates is specified as

ξ ≥ 0, 0 ≤ η ≤ 2π, −∞ < z <∞. (4)

A. SOLUTION OF MAXWELL’S EQUATIONS
We write Maxwell’s equations in elliptical coordinates and
for a source-free and homogeneous medium in their differen-
tial form as

∇ × EE(ξ, η, z) = −jω ¯̄µ · EH (ξ, η, z), (5a)

∇ × EH (ξ, η, z) = jω ¯̄ε · EE(ξ, η, z). (5b)

where EE and EH are electric and magnetic field vectors, ω is
the angular frequency. In elliptical coordinates, we write

EE(ξ, η, z) = Eξ (ξ, η, z)ξ̂ + Eη(ξ, η, z)η̂ + Ez(ξ, η, z)ẑ, (6)

with ξ̂ , η̂ and ẑ denoting the unit vectors along ξ , η
and z coordinates, respectively. We suppress the time
dependence exp (jωt) throughout this work. We take the

permittivity ( ¯̄ε = ε0 ¯̄εr ) and permeability ( ¯̄µ = µ0 ¯̄µr ) tensors
with optical axis in z-direction with

¯̄εr =

εt 0 0
0 εt 0
0 0 εz

 , ¯̄µr =

µt 0 0
0 µt 0
0 0 µz

 . (7)

As the optical axis is in z-direction, we assumeEz andHz as
the two independent field components. After expanding (5b)
and doing some analytical work, we can calculate the other
field components using the relations(

∂2

∂z2
+ ω2ε0µ0εtµt

)
Eξ =

1
h
∂

∂z
∂

∂ξ
Ez −

jωµ0µt

h
∂

∂η
Hz

(8a)(
∂2

∂z2
+ ω2ε0µ0εtµt

)
Hξ =

jωε0εt
h

∂

∂η
Ez +

1
h
∂

∂z
∂

∂ξ
Hz

(8b)(
∂2

∂z2
+ ω2ε0µ0εtµt

)
Eη =

1
h
∂

∂z
∂

∂η
Ez +

jωµ0µt

h
∂

∂ξ
Hz

(8c)(
∂2

∂z2
+ ω2ε0µ0εtµt

)
Hη =

−jωε0εt
h

∂

∂ξ
Ez +

1
h
∂

∂z
∂

∂η
Hz.

(8d)

Here the scale factor h = f
√
cosh2 ξ − cos2 η and f =√

(A2 − B2) represents the semifocal length of the ellipse.
We write the source free differential equation for the

electric field Ez in elliptical coordinates as(
∂2

∂ξ2
+
∂2

∂η2
+ h2

εz

εt

∂2

∂z2
+ h2ω2ε0µ0µtεz

)
Ez = 0, (9)

and for the magnetic field Hz as(
∂2

∂ξ2
+
∂2

∂η2
+ h2

µz

µt

∂2

∂z2
+ h2ω2ε0µ0εtµz

)
Hz = 0. (10)

On assuming that the propagation is in z-direction then the
equations lead to(

∂2

∂ξ2
+
∂2

∂η2
+ h2εd(e,h)

)
ψ = 0, (11)

where ψ represents each of the independent electromagnetic
field components, i.e., Ez(ξ, η) and Hz(ξ, η) and εde =

ω2ε0µ0µtεz−k2z εz/εt and εdh = ω
2ε0µ0εtµz−k2z µz/µt for

Ez and Hz, respectively. Here, kz is the propagation constant
in z-direction. Similar to the procedure explained in [6],
we apply next the rule of separation of variables on the field
components and set

ψ = R(ξ )S(η). (12)

Then we obtain two ordinary differential equations

∂2S(η)
∂η2

+ (a− 2q cos 2η)S(η) = 0, (13)

∂2R(ξ )
∂ξ2

− (a− 2q cosh 2ξ )R(ξ ) = 0. (14)
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FIGURE 2. The elliptical transmission lines with discretization scheme.

Here, a represents the separation constant and q equals
εdef 2/4 (or qe) and εdhf 2/4 (or qh) forEz andHz, respectively.
These equations are known as Mathieu differential equation
and modified Mathieu differential equation, respectively.

Fig. 2 shows elliptical transmission lines with layered
dielectric media with same and different ellipticities.
Ellipticity of the interface can be defined by e = f /A.
We need the field components for inner layer 0 extending
from ξ = 0 to ξ0, for arbitrary layer k extending from
ξ = ξk−1 to ξk and for outer layer n extending from ξ = ξn−1
to∞ as shown in the figure. We express the solution of the
differential equation (9) as linear combination of products of
angular and radial Mathieu functions:

Ez0 =
∞∑
i=0

A0iJei(qe0,0 , ξ )Cei(qe0,0 , η)

+

∞∑
i=1

B0iJoi(qe0,0 , ξ )Soi(qe0,0 , η)

(0 ≤ ξ ≤ ξ0), (15)

Ezk =
∞∑
i=0

[Ak1iJei(qek,int , ξ )+ Ak2iNei(qek,int , ξ )]

Cei(qek,int , η)+
∞∑
i=1

[Bk1iJoi(qek,int , ξ )

+Bk2iNoi(qek,int , ξ )]Soi(qek,int , η)

(ξk−1 ≤ ξ ≤ ξk ), (16)

Ezn =
∞∑
i=0

AniHe
(2)
i (qen,n−1 , ξ )Cei(qen,n−1 , η)

+

∞∑
i=1

BniHo
(2)
i (qen,n−1 , ξ )Soi(qen,n−1 , η)

(ξn−1 ≤ ξ <∞). (17)

Similarly, we write the solution of the differential equation
(10) as

Hz0 =
∞∑
i=0

C0iJei(qh0,0 , ξ )Cei(qh0,0 , η)

+

∞∑
i=1

D0iJoi(qh0,0 , ξ )Soi(qh0,0 , η)

(0 ≤ ξ ≤ ξ0), (18)

Hzk =
∞∑
i=0

[Ck1iJei(qhk,int , ξ )+ Ck2iNei(qhk,int , ξ )]

Cei(qhk,int , η)+
∞∑
i=1

[Dk1iJoi(qhk,int , ξ )

+Dk2iNoi(qhk,int , ξ )]Soi(qhk,int , η)

(ξk−1 ≤ ξ ≤ ξk ), (19)

Hzn =
∞∑
i=0

CniHe
(2)
i (qhn,n−1 , ξ )Cei(qhn,n−1 , η)

+

∞∑
i=1

DniHo
(2)
i (qhn,n−1 , ξ )Soi(qhn,n−1 , η)

(ξn−1 ≤ ξ <∞). (20)

The even and odd angular Mathieu functions, represented
with Ce and So, respectively, are solutions of the Mathieu
differential equation (13). The functions Je, Jo and Ne, No are
radial Mathieu functions of the first and second kind which
come from the solution of the modified Mathieu differential
equation (14). They play a similar role as Bessel functions
in the circular coordinate system. Eqs. (17) and (20) contain
He(2) and Ho(2), which represent even and odd Mathieu-
Hankel functions of the second kind, respectively, which are
analogous to theHankel functions.Mathieu-Hankel functions
come from the solution of the modified Mathieu differential
equation (14) in an unbounded domain. The angular Mathieu
functions are expressed with Fourier series and the radial
Mathieu functions as series of Bessel functions. Here the
terms qek,int and qhk,int are dependent on medium parameters
with k denoting the dielectric layers and int denoting the
interfaces between the layers. For example, layer 0 has only
top interface 0 with ξ = ξ0, layer k has both bottom and
top interfaces represented by k − 1 with ξ = ξk−1 and k
with ξ = ξk , respectively, and layer n has bottom interface
n − 1 with ξ = ξn−1. Therefore, the Mathieu functions are
not only functions of η or ξ coordinates, but also depend
on the medium parameters, i.e., ¯̄ε, ¯̄µ. The definitions of
these Mathieu functions are given in [14]. The comparison
between the notations are given in Table 1. The coefficients
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TABLE 1. Comparative notations of the Mathieu functions.

are represented by Ak1i , Ak2i , A0i , Ani , Bk1i , Bk2i , B0i , Bni ,
Ck1i , Ck2i , C0i , Cni , Dk1i , Dk2i , D0i and Dni for mode i.

B. MODE CLASSIFICATION
We know that the coexistence of TE and TM modes happens
when the fields are dependent on the angular coordinate. They
give rise to the hybrid modes which are also the case in the
cylindrical coordinate system. The modes are known as HE if
the cross-sectional field pattern is similar to the TEmode or H
mode, and EH if the cross-sectional field pattern is similar to
the TMmode or Emode. However, there exists an asymmetry
in the elliptical cylinder, which generates two types of field
configurations. Thus, we have even or odd types of hybrid
modes which are denoted with prescript e or o, i.e., e,oHE or
e,oEH. The characteristic equations for odd and even hybrid
modes for isotropic material are also derived in [15].

1) EVEN MODES
The expressions for the independent electric and magnetic
field components for even modes eHE or eEH are

Ez0 =
∞∑
i=1

B0iJoi(qe0,0 , ξ )Soi(qe0,0 , η) (0 ≤ ξ ≤ ξ0),

(21)

Ezk =
∞∑
i=1

[Bk1iJoi(qek,int , ξ )+ Bk2iNoi(qek,int , ξ )]

Soi(qek,int , η) (ξk−1 ≤ ξ ≤ ξk ), (22)

Ezn =
∞∑
i=1

BniHo
(2)
i (qen,n−1 , ξ )Soi(qen,n−1 , η)

(ξn−1 ≤ ξ <∞), (23)

Hz0 =
∞∑
i=0

C0iJei(qh0,0 , ξ )Cei(qh0,0 , η) (0 ≤ ξ ≤ ξ0),

(24)

Hzk =
∞∑
i=0

[Ck1iJei(qhk,int , ξ )+ Ck2iNei(qhk,int , ξ )]

Cei(qhk,int , η) (ξk−1 ≤ ξ ≤ ξk ), (25)

Hzn =
∞∑
i=0

CniHe
(2)
i (qhn,n−1 , ξ )Cei(qhn,n−1 , η)

(ξn−1 ≤ ξ <∞). (26)

2) ODD MODES
Similarly, the expressions for the independent electric and
magnetic field components for odd modes oHE or oEH are

Ez0 =
∞∑
i=0

A0iJei(qe0,0 , ξ )Cei(qe0,0 , η) (0 ≤ ξ ≤ ξ0),

(27)

Ezk =
∞∑
i=0

[Ak1iJei(qek,int , ξ )+ Ak2iNei(qek,int , ξ )]

Cei(qek,int , η) (ξk−1 ≤ ξ ≤ ξk ), (28)

Ezn =
∞∑
i=0

AniHe
(2)
i (qen,n−1 , ξ )Cei(qen,n−1 , η)

(ξn−1 ≤ ξ <∞), (29)

Hz0 =
∞∑
i=1

D0iJoi(qh0,0 , ξ )Soi(qh0,0 , η) (0 ≤ ξ ≤ ξ0),

(30)

Hzk =
∞∑
i=1

[Dk1iJoi(qhk,int , ξ )+ Dk2iNoi(qhk,int , ξ )]

Soi(qhk,int , η) (ξk−1 ≤ ξ ≤ ξk ), (31)

Hzn =
∞∑
i=1

DniHo
(2)
i (qhn,n−1 , ξ )Soi(qhn,n−1 , η)

(ξn−1 ≤ ξ <∞). (32)

C. THE DISCRETE MODE MATCHING METHOD
We assume that the structure is infinite in the propagation
direction, i.e., in z-direction. From (21)-(26) and
(27)-(32), it is clear that the wave solution for every elliptical
cylinder ξ is dependent on each and every point on the
η-axis. Therefore we do 1D discretization in the η-direction
(see Fig. 2). For every value of q, there exists an infinite
sequence of eigenvalues a and for each value of a exists
a corresponding infinite sequence of eigenvectors (expan-
sion coefficients). The important step in the algorithm is to
compute the eigenvalues and the corresponding eigenvectors.
Here, we consider a number of 25 expansion coefficients
by default for all categories of Mathieu functions. In our
code, we calculate exact expansion coefficients without any
approximations.

We take Ez and Hz to be the two independent field
components. We assume that Ez is sampled on e-lines and
Hz on h-lines. We discretize the structure with N e

η e-lines and
N h
η h-lines in the η-direction and include the same number of

modes in the field expansion. Therefore, we write (21)-(26)
in discretized form as

Ez0 (ξ, η
e
j ) =

N e
η∑

i=1

B0iJoi(qe0,0 , ξ )Soi(qe0,0 , η
e
j )

(0 ≤ ξ ≤ ξ0), (33)

Ezk (ξ, η
e
j ) =

N e
η∑

i=1

[Bk1iJoi(qek,int , ξ )+ Bk2iNoi(qek,int , ξ )]

Soi(qek,int , η
e
j ) (ξk−1 ≤ ξ ≤ ξk ), (34)

Ezn (ξ, η
e
j ) =

N e
η∑

i=1

BniHo
(2)
i (qen,n−1 , ξ )Soi(qen,n−1 , η

e
j )

(ξn−1 ≤ ξ <∞), (35)

Hz0 (ξ, η
h
j ) =

N h
η∑

i=0

C0iJei(qh0,0 , ξ )Cei(qh0,0 , η
h
j )

(0 ≤ ξ ≤ ξ0), (36)
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Hzk (ξ, η
h
j ) =

N h
η∑

i=0

[Ck1iJei(qhk,int , ξ )+ Ck2iNei(qhk,int , ξ )]

Cei(qhk,int , η
h
j ) (ξk−1 ≤ ξ ≤ ξk ), (37)

Hzn (ξ, η
h
j ) =

N h
η∑

i=0

CniHe
(2)
i (qhn,n−1 , ξ )Cei(qhn,n−1 , η

h
j )

(ξn−1 ≤ ξ <∞). (38)

Similarly we can also write (27)-(32) in discretized form.
From (8), we can identify the location of the other field

components. Therefore, we say that for 1D discretization Ez,
Eξ and Hη (or Hz, Hξ and Eη) components are sampled at the
same locations. Using (34), (37) and the field relations from
Maxwell’s equations, we write the discretized tangential field
components for even modes in layer k in matrix form as

Eηk

Hηk

Ezk

Hzk

 =

QB1ηk QB2ηk QC1

ηk
QC2
ηk

GB1ηk GB2ηk GC1
ηk

GC2
ηk

QB1zk QB2zk 0 0

0 0 GC1
zk GC2

zk




Bk1

Bk2

Ck1

Ck2

 . (39)

Similarly, for odd modes
Eηk

Hηk

Ezk

Hzk

 =

QA1ηk QA2ηk QD1

ηk
QD2
ηk

GA1ηk GA2ηk GD1
ηk

GD2
ηk

QA1zk QA2zk 0 0

0 0 GD1
zk GD2

zk




Ak1

Ak2

Dk1

Dk2

 . (40)

Therefore, we write the relations for layer k in the form[
Ek−1
Hk−1

]
= Mk−1F,

[
Ek
Hk

]
= MkF, (41)

where

Mk =


QB1ηk QB2ηk QC1

ηk
QC2
ηk

QB1zk QB2zk 0 0
0 0 GC1

zk GC2
zk

GB1ηk GB2ηk GC1
ηk

GC2
ηk

 (42)

for even modes and

Mk =


QA1ηk QA2ηk QD1

ηk
QD2
ηk

QA1zk QA2zk 0 0
0 0 GD1

zk GD2
zk

GA1ηk GA2ηk GD1
ηk

GD2
ηk

 (43)

for odd modes. We take the notations of the fields and
coefficients in the matrix form as

Ek =
[
Eηk
Ezk

]
, Hk =

[
Hzk
Hηk

]
, (44)

F =


Bk1
Bk2
Ck1
Ck2

 or


Ak1
Ak2
Dk1
Dk2

 . (45)

FIGURE 3. Schematic of elliptical waveguide cross-section.

After eliminating the unknown coefficient column matrix F,
it results in [

Ek−1
Hk−1

]
= Kk

[
Ek
Hk

]
. (46)

Therefore, we represent the hybrid matrix Kk for layer k as

Kk = Mk−1M−1k . (47)

Next on using (33), (36), (35) and (38), we write the
discretized tangential field components present in the inner
layer extending from ξ = 0 to ξ = ξ0 or outer unbounded
layer for even modes as[

Eηχ
Ezχ

]
=

[
QBηχ QCηχ
QBzχ 0

][
Bχ
Cχ

]
, (48)

[
Hzχ
Hηχ

]
=

[
0 GCzχ
GBηχ GCηχ

][
Bχ
Cχ

]
. (49)

For odd modes, we write[
Eηχ
Ezχ

]
=

[
QAηχ QDηχ
QAzχ 0

][
Aχ
Dχ

]
, (50)

[
Hzχ
Hηχ

]
=

[
0 GDzχ
GAηχ GDηχ

][
Aχ
Dχ

]
, (51)

where χ = 0 for inner layer and χ = n for the outer
unbounded medium. We calculate the admittance by

Yχ = MHχM
−1
Eχ , (52)

where

MEχ =

[
QBηχ QCηχ
QBzχ 0

]
and MHχ =

[
0 GCzχ
GBηχ GCηχ

]
(53)

for even modes and

MEχ =

[
QAηχ QDηχ
QAzχ 0

]
and MHχ =

[
0 GDzχ
GAηχ GDηχ

]
(54)

for odd modes.
Let us consider a two-layer dielectric waveguide as shown

in Fig. 3. We need to analyze only half of the structure
due to symmetry. We get even modes by placing electric
walls (E-wall) on the bounding domain while we get odd
modes by placing magnetic walls (H-wall) on the boundary,
as represented in Fig. 4. We can also analyze only a quarter
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FIGURE 4. Half of the elliptical waveguide cross-section.

FIGURE 5. One quarter of the elliptical waveguide cross-section (i as odd
index).

of the structure to get odd or even modes with odd subscript,
e.g., eHEil with i as odd index. Fig 5 gives the position of
E- and H-walls to get suitable modes. Here the coordinate
η discretization starts from the horizontal line, as given
in Fig. 2. Table 2 defines the suitable values for mode i in
the modal expansion for various boundary conditions.

After calculating the hybrid or admittance matrices for
each dielectric layer, we calculate the system equation using
a full-wave equivalent circuit [16] in the form

GJ = E. (55)

Here the square matrix G represents the Green’s function
and the column matrices J and E represent surface current
density and electric field in the interfaces, respectively. For
waveguides J = 0, therefore system equation reduces to

LE = 0, (56)

TABLE 2. Value of modes for different boundary combinations.

FIGURE 6. Dispersion curve of elliptical waveguide with isotropic
material. (DMMcyl: [13], MoLcyl: [17], MoL+Fourier: [4], Dyott,
Measurements: [5]).

where L = G−1. Then, we find the propagation constant by
solving the indirect eigenvalue problem (56). It can be done
by varying the eigenvalue (propagation constant) until the
determinant of the system matrix vanishes, i.e.,

detL = 0. (57)

III. NUMERICAL RESULTS
A. ELLIPTICAL WAVEGUIDE
To validate the DMM formulations in elliptical coordinates,
we have analyzed an elliptical dielectric waveguide. The
waveguide comprises two layers, one is the elliptical core
and the other is air surrounding the core as given in Fig. 3.
The analysis is performed with an axial ratio B/A = 0.5,
where B is the minor axis and A is the major axis. The
material of the elliptical core is taken as εr,core = (1.539)2

for the isotropic and ¯̄εr,core = ((1.539)2, (1.539)2, (1.25)2)
for the anisotropic case. The dispersion curves, as shown
in Fig. 6 and 7, are plotted against the normalized frequency
VB = Bk0

√
εr,core − εr,air. Here VB is calculated using

isotropic values for both the isotropic and the anisotropic
case. The computed propagation constants are normalized
with the free-space wave number k0. Fig. 8 gives the numeri-
cal solution of the determinantal equation (57) atVB = 1.5 for
anisotropic case. We get two separate curves when only half
of the waveguide is analyzed with even or odd case separately
as specified in the theory section.
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FIGURE 7. Dispersion curve of elliptical waveguide with anisotropic
material.

FIGURE 8. Numerical solution of the determinantal equation.

The computed results agree very well with the open
literature [4], [5], [17] and predicted results from ANSYS
HFSS. We have used port mode calculation in HFSS and
the computation time varied between 10 s to 38 s for VB
between 1.5 to 3. The results from [17] (MoLcyl) are based
on a cylindrical coordinate system while the results from
[4] (MoL+Fourier) are calculated in an elliptical coordinate
system but with Fourier approximation. We have also com-
pared the results with those using a cylindrical coordinate
system [13].

The programming of the codes has been done in MATLAB
with Intel i7-6600U CPU @2.6 GHz processor. Fig. 9 shows
the time required to compute even mode normalized propa-
gation constant for isotropic case at VB = 1.5. Only quarter
of the structure has been analyzed for this computation. The
computed propagation constants for all number of expansion
coefficients are the same up to 8 decimals. For the cylindrical
coordinate system, the computation time increases with the
number of lines used for discretization. The time was from
0.6 s to 4.5 s for 7 to 25 e-lines on quarter of the structure.

FIGURE 9. Time elapsed with varying expansion coefficients.

FIGURE 10. Higher order even modes of a dielectric rod.

B. INVESTIGATION OF HIGHER ORDER MODES
Further to investigate higher order modes, we have analyzed
a polythene rod as elliptical core with εr = 2.26 and sur-
rounded by air. We have done the computation with an axial
ratio B/A = 0.9. Fig. 10 and 11 show the results for the
even and odd fundamental modes, respectively, and the first
nine higher ordermodes.We have again plotted the dispersion
curves against the normalized frequency VB. They show very
good agreement with the results computed from ANSYS
HFSS. They are also in order with the results shown in [5].

C. MULTILAYERED ELLIPTICAL WAVEGUIDE
We have then investigated a 4 layered elliptical waveguide
consisting of 3 elliptical cylinders with same and different
ellipticities as shown in Fig. 12. Outer layer of the structure
is left open. The structure has been analyzed for both isotropic
and anisotropic materials. The major axis of the inner layer
of structure is with A0 = 4 mm and minor axis is with
B0 = 2 mm. The width of the first layer in major
axis direction is 0.5 mm and second layer is 0.6 mm.
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FIGURE 11. Higher order odd modes of a dielectric rod.

FIGURE 12. Analyzed multilayered waveguide cross-section.

The structure consisting of dielectric layers with same
ellipticities (Fig. 12a) has axial ratio of 0.5, therefore,
A1 = 4.5 mm, B1 = 0.5A1, A2 = 5.1 mm and B2 =
0.5A2. For the structure with different ellipticities (Fig. 12b),
we have taken thickness of the layers 1 and 2, i.e., t1 and t2,
constant throughout η coordinate, therefore, A1 = 4.5 mm,
B1 = 2.5 mm, A2 = 5.1 mm and B2 = 3.1 mm. The
ξ -coordinate of the different layers can be calculated using
A = f cosh ξ or B = f sinh ξ . The material properties of
the structure with isotropic dielectric layers are εr0 = 6,
εr1 = 3.5, εr2 = 2, εr3 = 1 and µr0 = µr1 =

µr2 = µr3 = 1. Whereas, the material properties of

FIGURE 13. Dispersion curve of multilayered elliptical waveguide (same
ellipticities) with isotropic material.

FIGURE 14. Dispersion curve of multilayered elliptical waveguide (same
ellipticities) with anisotropic material.

FIGURE 15. Dispersion curve of multilayered elliptical waveguide
(different ellipticities) with isotropic material.

the structure with anisotropic dielectric layers are ¯̄εr0 =
(6, 6, 7), ¯̄εr1 = (3.5, 3.5, 4), ¯̄εr2 = (2, 2, 3), εr3 = 1 and
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FIGURE 16. Dispersion curve of multilayered elliptical waveguide
(different ellipticities) with anisotropic material.

µr0 = µr1 = µr2 = µr3 = 1. The dispersion curves of
the both structures with isotropic and anisotropic materials
are shown in Figs. 13-16. Both DMM and HFSS results are
calculated for 2 top modes.

IV. CONCLUSION
Motivated with the conformal structures, we have discussed
the DMM method with the elliptical coordinate system. The
derivation of the hybrid matrix elements for anisotropic ellip-
tical dielectric layers has been done. The formulation has
been validated well with the quasi-cylindrical approach. The
elliptical fibers have been analyzedwith good agreement with
the commercial software and open literature.
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