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ABSTRACT In large field of view for open country, the real-time detection and identification of moving
objects with high accuracy is a very challenging work due to the excessive amount of data. This paper
proposes a novel framework that consists of a coarse-grained detection as well as a fine-grained detection.
To solve the problem of noise-induced object fracture during the coarse-grained detection process, we present
a low-complexity connected region detection algorithm to extract moving regions. Furthermore, in the fine-
grained detection, Deep Convolution Neural Networks are leveraged to detect more precise coordinates and
identify the category of objects. To the best of our knowledge, this is the first work that proposes a coarse-to-
fine grained framework to detect moving objects on high-resolution scenes. Experimental results show that
the proposed framework can robustly work on the high resolution video frames (1920*1080p) with complex
situations more fastly and accurately over existing methods.

INDEX TERMS Connected region detection, deep convolution neural networks, foreground extraction, high

resolution, moving object detection.

I. INTRODUCTION

Field unattended monitoring systems are required to possess
accurate and real-time image processing ability to detect,
identify and track moving objects. Accurate detection of
moving objects is the necessary prerequisite for a track-
ing system. While ensuring the effectiveness of monitoring,
it is challenging to achieve real-time requirements on high-
resolution scenes with a large field of view. What’s more,
in practical field scenarios, complex background, illumina-
tion changes, local motion such as waving trees, dust trailing,
camouflage objects and etc make the system suffer from poor
performance.

For moving detection, the existing state-of-the-art methods
mainly include optical flow [1], [2], background subtrac-
tion [3]-[6], frame difference [7] and deep learning methods
[8]-[11]. Regrettably, these methods can not work on high-
resolution scenarios with large noises very well and have their
own weaknesses. For example, the input of the deep learning
algorithm is usually much smaller than 1920 *« 1080. Net-
works with too large input size consume too much computing
resources and are hard to achieve the high speed. Background
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subtraction, which builds the background model and detects
foreground, is sensitive to the background modelling step.

In addition, many video surveillance systems with these
methods can only detect moving objects without obtaining
the category and precise coordinates of each moving object.
To deal with this issue, feature extraction and classification
are combined in [12]. However, a very serious drawback of
this method that can not be ignored is that the object regions
obtained by moving detection can not be classified as a group
or single object. Moreover, the precise coordinates of each
moving object are not available, which further disturbs the
classification result.

In this paper, a course-to-fine grained framework is pro-
posed for moving object detection and identification. Firstly,
moving regions are obtained by course-grained detection.
Then connected regions detection is performed. Finally, in the
fine-grained detection, coordinates of each object are cor-
rected and the category of the object is obtained.

Il. RELATED WORK

Generally, each video frame is divided into the foreground
and background to detect moving objects according to the
difference of pixel intensity or color distribution. In literature
[1]1-[7], [13], [14], researchers propose different methods
of artificial design for foreground extraction. As a most
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FIGURE 1. Framework schema.

generally applied method, frame difference [7] is based on the
gray level difference between two adjacent frames of video
to judge the motion. Without modelling background, it is
simple to implement, yet is vulnerable to noise or complex
scenes with local motion in the background. Meanwhile,
Gaussian mixture model (GMM) [13]-[15] is more robust,
but it needs multiple frames for modelling and updates the
background iteratively, which suffers from high computa-
tional complexity and is hard to handle the video frames
with illumination variation, infrequently moving object and
camouflage.

After moving detection, coordinates of regions can be
obtained by connected region labelling algorithms. By scan-
ning the input image several times, scan mask techniques
[16]-[18] attach a label to each pixel and divide the target
according to the label. To obtain faster speed, block-based
methods [19]-[21] are presented. However, these algorithms
still consume too many computing resources and can not
merge the noise-broken object.

In recent years, Deep Convolution Neural Networks
(DCNNs) for object detection have gained a lot of interest
for their powerful learning ability. By learning parameters
themselves, it can achieve a high degree of accuracy. State-
of-the-art object detection networks comprise RCNN and
its variants, SSD and its variants, YOLO and its variants,
etc. RCNN and its variants [22]-[26] are based on region
proposal, which is accurate but time-consuming. YOLO and
its variants [27]-[31] are known because of their fast speed
and high efficiency. SSD and its variants [32]-[36] blend
the advantages of these two methods. However, for moving
object detection, these deep learning architectures face sev-
eral critical issues:
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1) The size of images with 1920*1080p resolution is too
large for existing deep learning architectures. Just sam-
pling image creates detection lost of small objects.

2) The movement can not be recognized with these net-
works [22]-[36], and it is hard to remove the stationary
objects.

Consequently, in order to get a high speed and accuracy
detection on high-resolution scenes, we propose a coarse-to-
fine grained framework which combines moving detection
and identification to get the category and bounding box of
each moving object. Coarse-grained detection is performed
firstly to obtain moving regions. Due to the persence of
complex scene, local motion, illumination variation and so
on, the regions obtained may be inaccurate such as containing
none object or broken object. To merge the regions that
contain the fractured objects, we propose a low-complexity
method to extract the connected regions. Then, by the fine-
grained detection with DCNNSs, coordinates and category of
each moving object are obtained. Furthermore, in order to
get faster speed, YOLOV3 and its tiny version are modified
for the fine-grained detection. Extensive experiments show
that our framework can work well on the high-resolution
(1920 * 1080) scene in high accuracy and fast speed.

The innovation points proposed in this paper are summa-
rized in the follwing:

1) Coarse-to-fine grained moving object detection frame-
work which combines moving detection with DCNNs
is proposed.

2) An efficient algorithm is proposed to detect the con-
nected regions.

3) The structure of the tiny version of YOLOV3 is modi-
fied to make the detection faster.
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FIGURE 2. An example of connected region detection algorithm on binary image 8 x 8.

The rest of paper is organized as follows: In Section III,
we introduced our method and the various parts of our frame-
work in detail. For Section IV, we describe experiments and
analyse results. Finally, Section V concludes this paper.

lll. PROPOSED METHOD

Figure 1 shows the whole proposed framework. The system
consists of two parts: moving detection and object classi-
fication and regression. Firstly, moving detection is imple-
mented by moving detection module with filter module and
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mathematical morphology module (opening operation). Then
the connected region extraction is performed to obtain the
moving regions. According to the position information of the
moving regions, the original image is cut and the cropped
regions are fed into the neural network to get the bounding
box and category of each object. Finally, according to the
position information of the object in the moving region, coor-
dinates are mapped to the original image. The key modules
in the overall architecture include moving detection, region
extraction and object detection.
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FIGURE 3. Some typical video frames (1920*1080p) in SimitMovingDataset.

A. COARSE-GRAINED DETECTION

In the coarse-grained detection step, filtering and mathemat-
ical morphology are also performed to reduce the adverse
effect of noises. Firstly, image frames are filtered by low
pass filter to eliminate the high frequency noises. After that,
moving detection algorithm is performed to detect motion.
Finally, mathematical morphology (opening operation) is
used to further suppress ill effects of noises. In the content of
the high resolution scenes, we choose frame difference as the
moving detection algorithm, which is simple to implement
and is more responsive to almost all movements. Further-
more, as an initial trial in the coarse-grained detection, its
potential noise-contaminated results can be corrected by fine-
grained detection.

Note that other methods such as GMM can also be applied
for moving detection in the coarse-grained detection stage,
especially for the situation with a small illumination trans-
formation. According to the distribution of each pixel in the
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time domain, the distribution model is built to achieve the
purpose of background modeling. Compared the pixels of the
input image with the background model, the pixels with high
similarity to the background model are regarded as the back-
ground, and the existing model is updated, while the pixels
with low similarity to the background model are regarded
as the foreground. Therefore, it is more time-consuming.
In the situation with suddenly exceptionally large illumina-
tion changes, both GMM and frame difference fail to handle
it. However, such situation rarely happens in the wild. We will
also show in the simulation parts that frame difference is both
cost-effective and performance-efficient.

B. CONNECTED REGION DETECTION

Due to the complex background, occlusion, etc, the same
object may be segmented. To deal with this issue, we pro-
pose an efficient region extraction algorithm as shown in
Algorithm 1.
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FIGURE 4. Visual results of each step in coarse-grained detection. (a) input video frames. (b) corresponding gray images. (c) results of gray images
after filtering processing. (d) results of frame difference. (e) final results after filtering and mathematical morphology operation.

In order to show this algorithm more clearly, we give an
example shown in Figure 2. Resolution of the binary image
is 8 x 8. The column is marked as column i (0 <=1i <= 7)
and the row is marked as row j (0 <= j <= 7). The
threshold is set as zero. In step 1, values of each column are
summed as a[i]. The value of a[1] - a[3] and a[5] - a[6] is
non-zero. In step 2, pixel values of each row from column
1 to column 3 are summed as b1[j]. Values of b1[2] - b1[3]
and b1[5] - b1[5] are non-zero. In parallel, pixel values of
each row from column 5 to column 6 are summed as b2[k].
Value of b2[0] - b2[0] is non-zero. In step 3, sum pixel values
of each column for every region as shown in the step 3 of
Figure 2 to refine the result according to columns which are
non-zero. Therefore, the upper-left coordinate of regionl is
(2, 1) and lower-right coordinate is (3, 2). We represent coor-
dinates of regionl as [(2, 1), (3, 2)]. Similarly, coordinates of
region2 and region3 are [(0, 5), (0, 6)], [(5, 2), (5, 3)].

In Algorithm 1, there are only some addition and judgment
operations. Therefore, compared with existing connected
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region detection algorithms, the computational complexity of
Algorithm 1 is much lower.

C. FINE-GRAINED DETECTION
After coarse-grained detection and region extraction, it is
much easier to detect objects. However, multiple objects such
as human beings and vehicles may appear in the moving
region at the same time. To merge the segmented object,
multiple objects may be detected as one moving region in
some cases. In addition, owing to illumination changes, com-
plex background, local motion, etc, some problems about
obtained moving regions still exist such as incomplete edge
or segmented object. The influence of dust and shadow also
leads to the oversized obtained moving region. Therefore,
fine-grained detection of particular importance is introduced
to deal with these issues.

In fine-grained detection, objects occupy a large area
of the region which is beneficial for object detection
with DCNNSs. Therefore, without a very complex network,
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FIGURE 5. Visual results of different moving detection algorithms. (a) input video frames. (b) results of frame difference. (c) results of GMM. (d) results of
KNN.

it can also get a satisfying detection result. Compared with object detection architectures with high speed, which uses
the accuracy, the speed of the network is a more con- darknet-53 as the base network for feature extraction, and
cerned issue. YOLOV3 [31] stands out among several typical uses three feature maps for prediction.
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FIGURE 6. The effects of filtering and mathematical morphology. (a) without filtering and morphology processing. (b) only with the operation of
mathematical morphology. (c) only with filtering. (d) both filtering and mathematical morphology.

In the context of the fine-grained detection, we encounter
an issue: moving objects obtained by coarse-grained detec-
tion is likely incomplete caused by noises. Therefore,
as shown in Figure 1, before detected by the network,
we extend the regions obtained in the coarse-grained detec-
tion to ensure the integrity of the objects. A method is pro-
posed to extend the region according to the prior knowledge
of the anchors in modified YOLOV3 which is shown below.
We choose the anchor that yields the largest IoU [37] value
with the region and expand the region based on the aspect
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ratio of the anchor especially.

. w Aw
ratio = — = —, (1)
h Ah
Aw = Ah X ratio. 2)

The ratio is defined in Eq. (1), where w and & denote the
width and height of the chosen anchor, and the Aw and Ah
are the size of extent. Therefore, the extending method is
Aw = Ah x rartio in Eq. (2).
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FIGURE 7. Results obtained by skimage (top row). Results of our proposed method (bottom row). The top row and bottom row are corresponding to

the same images.

Algorithm 1 Connected Region Extraction Algorithm
Input:
The result of moving detection on the image;

Output:

The coordinates of bounding boxes of moving objects;
1: Sum the pixel values of each column;

: Divide the image vertically corresponding to non-zero
columns. Set the threshold to determine how many pixels
apart segmented object can be merged. If the number of
all-zero columns is less than the threshold, the columns
are considered to be connected to the adjacent non-zero
columns. Obtain the list of index of columns with objects;

N

: Sum the pixel values of each row in every continuous
non-zero columns;

: Divide the region horizontally using the same method in
step 2;

: Sum the pixel values of each column for every region
obtained in step 4. Refine the horizontal coordinates of
regions using the method in step 2;

: return coordinates of bounding box of each connected
region;

After extension, the regions will be further detected.
Anchors are significantly important for modern object detec-
tion pipelines. Considering the fact that the moving region
obtained by coarse-grained detection need to be extended
and resized to the input size of network, the approach to
obtain anchor boxes in YOLOV3 is modified to improve the
detection performance. Instead of using dimension clusters,
anchor boxes are obtained by clustering with the dimen-
sion ratio of the object to the image (relative dimension
clusters).
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Assuming that the upper-left coordinate of the obtained
region in coarse-grained detection is (xg, yo). In the fine-
grained detection stage, more accurate detection is com-
pleted. The coordinates are represented as [(x1, y1), (x2, y2)]-
Finally, the coordinates are mapped to the original

image as [(Xmin, Ymin)> (Xmax,> Ymax)] Which is defined
in Eq. (3).

Xmin = X1 + X0, Ymin = Y1 + Y0,

Xmax = X2 + X0, Ymax = Y2 + Yo- 3)

Detecting every moving region sequentially is relatively
time-consuming. In order to improve the computational effi-
ciency, for fine-grained detection, the region including all
moving regions is detected by once if the number of objects
is greater than the threshold (TO). Setting different thresholds
can achieve a trade-off between the detection accuracy and
computational efficiency. However, It is still hard to achieve
a sufficiently high speed.

Therefore, we refine tiny version of YOLOV3 for fine-
grained detection to get faster speed. The main structure of
our modified Tiny YOLOV3 (MTiny YOLOV3) are essen-
tially the same as that of Tiny YOLOV3. Therefore, MTiny
YOLOV3 inherits from Tiny YOLOV3 those attributes desir-
able for object detection. However, the main difference is that,
in MTiny YOLOV3, the input size is 96 % 96 and the number
of anchors per grid is 2. By slightly sacrificing some accu-
racy, we get faster speed and less consumption of computing
resources.

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate the proposed coarse-to-fine
grained framework detailly. Detection accuracy is measured
in terms of mean Average Precision (mAP). The execution
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FIGURE 8. Training and validation loss of YOLOV3 (top row) and our framework (bottom row).

time is measured on a standard GPU (NVIDIA GeForce GTX
1080TTI), if not otherwise specified.

A. DATASET

We perform experiments on SimitMovingDataset for moving
object detection. SimitMovingDataset! is collected and anno-
tated by our laboratory members. SimitMovingDataset con-
tains various changing scenarios, such as multi-scale objects,
camouflage, occlusion, illumination changes, dust trailing,
complex background and local motion (e.g. waving trees
and drifting clouds). From Figure 3, some of the complexi-
ties of the dataset can be glimpsed, the resolution of which
is 1920 x 1080.

B. COARSE-GRAINED DETECTION
To examine the computational efficiency of coarse-grained
detection, we tested frame difference with low pass filtering

ISince we intend to detect bounding boxes and categories of
moving objects, Pascal VOC Annotation Rules are used to annotate
SimitMovingDataset.
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and mathematical morphology in terms of runtime, as shown
in Table 1.

In order to further investigate the effect of each step in
coarse-grained detection, Figure 4 shows visual results of
each step including low pass filtering, frame difference and
mathematical morphology. It is observed that each compo-
nent in coarse-grained detection plays its own role.

« Ablation Study

1) moving detection algorithm

We compare the moving detection algorithms including
frame difference, GMM and KNN in coarse-grained detec-
tion. The computational time comparison is shown in Table 1.
From Table 1, it is observed that frame difference runs faster
than the other two methods. Figure 5 illustrates the visual
analysis of these methods. From the results in Figure 5,
we observe that: (1) With filtering and mathematical mor-
phology operations, coarse-grained detection with frame dif-
ference are not inferior to GMM and KNN unless in some
complex situations such as large local motion. (2) Frame dif-
ference is more responsive to motion which is more suitable
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FIGURE 9. Visual results of proposed framework.

TABLE 1. Results of different moving detection algorithms. Average time
consumed of processing a batch of image frames is obtained on Intel
core i7-6700.

Method GMM KNN
time(s) 0.028 0.123 0.100

frame difference

TABLE 2. Results of our framework with different moving detection
algorithms.

Method MAP(%) Time(s)
framework with frame different 88.59 0.112
framework with GMM 78.28 0.229

for the later fine-grained detection. (3) In the situations with
large illumination changes, the performance of all the meth-
ods are very poor, but frame difference method has a fast
adaptability to illumination changes ((e),(f)). From Table 1
and Figure 5, it is shown that results of GMM and KNN are
similar. Therefore, KNN is not discussed later.

To further investigate the detection accuracy and execution
time of frame difference, experiments are performed on the
comparison between our framework with frame difference
and that with GMM. As shown in Table 2, the results show
great advantages of frame difference over GMM. We suppose
that the improvement not only comes from the efficiency of
frame difference, but also results from the responsiveness of
frame difference.

2) Filtering and mathematical morphology

We omit different components in coarse-grained detection
to study the effectiveness of each component, including low
pass filtering and mathematical morphology. Visual results
are shown in Figure 6. We observe that: (1) Without fil-
tering and morphology operation, the results are seriously
disturbed by noise. (2) Low pass filtering module eliminates
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TABLE 3. Results of our method and the method from the package
skimage based on a standard CPU (Intel core i7-6700).

method Average time of one thousand times(s)
our method 0.001
another method 0.021

the influence of high frequency noise. (3) Opening operation
of mathematical morphology removes isolated small noisy
regions to further suppress the adverse impact of noises. The
necessity of filtering and mathematical morphology opera-
tions is reflected in their effectiveness of suppress the influ-
ence of noises.

C. CONNECTED REGION DETECTION

To study the computational efficiency of our proposed con-
nected region detection algorithm, experiments are per-
formed on the comparison between our algorithm and
the connected region labeling method from the pack-
age skimage which is based on 4-connected method or
8-connected method. Results in Table 3 illustrate that our
proposed method performed approximately 21 times faster
than the method from the package skimage. Visual results’
are shown in Figure 7 which illustrates that using our pro-
posed method can merge the segmented object while the other
method can not.

D. FINE-GRAINED DETECTION
1) FRAMEWORK WITH YOLOV3 IN FINE-GRAINED
DETECTION

In this experiment, the proposed framework is evaluated with
YOLOV3 in fine-grained detection in terms of mAP and

2To suppress the ill effect of noises, regions are discarded if its area
< 50 and compactness (number of target pixels / number of all pixels in the
region) < 0.2.
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FIGURE 10. Visual results of the framework with MTiny YOLOV3.

TABLE 4. Results on SimitMovingDataset in terms of mAP and runtime.

Network mAP(%) time(s)
YOLOV3 81.73 0.165
our framework with YOLOV3 88.59 0.112

runtime. The results in Table 4 illustrate that our framework
outperforms YOLOV3 by a large proportion in terms of
detection accuracy and execution time. In addition, YOLOV3
[31] can not detect motion, which need to be further detected.
From Figure 8, we observed that the proposed framework
took fewer iterations to stabilized, which make it possible to
perform more efficient training.

The effectiveness of the proposed framework is further
illustrated by the visual results in Figure 9. Based on the
qualitative results, it is evident that the detection results are
encouraging even on some complex scenarios such as cam-
ouflage, multi-scale objects, local motion, etc.

« Ablation Study
1) Clustering methods

To reveal the performance of the approach to obtain anchor
boxes, in terms of detection accuracy and execution time,
experiments are performed on dimension clustering and rela-
tive dimension clustering. From Table 5, the relative dimen-
sion clustering outperforms the other method in terms of
accuracy, which brings a gain of 5.1%. The importance of
relative dimension clustering is reflected in its usefulness of
obtaining more adaptable anchor boxes leading to a signifi-
cant improvement in accuracy.

2) Speed up
In order to reflect the influence of TO (defined in

Section III-C) on efficiency and accuracy, we perform
experiments on differnet thresholds which yeild different
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TABLE 5. Results of two clustering methods in fine-grained detection
step.

Clustering approach mAP(%) time(s)
Dimension clusters 84.30 0.122
Relative dimension clusters 88.59 0.112
TABLE 6. Results of different threshold To.
TO mAP(%) time(s)
50 88.59 0.112
10 84.24 0.105
8 81.71 0.103
6 73.34 0.093
4 66.13 0.081
0 48.24 0.059

maximum number of regions detected sequentially on one
video frame. From Table 6, it is observed that setting the
threshold brings some improvement in terms of computa-
tional efficiency by sacrificing some accuracy.

2) FRAMEWORK WITH MTINY YOLOV3 IN

FINE-GRAINED DETECTION

In order to further study the computational efficiency
of our method, we evaluate the framework with MTiny
YOLOV3 instead of YOLOV3 in fine-grained detection.
We present the comparison in Table 7 in terms of com-
putational efficiency and detection accuracy. Table 7 illus-
trates great advantages of our framework with MTiny
YOLOV3 over that with YOLOV3 in terms of computational
efficiency. Simplified network leads to a lower accuracy, but
will improve the performance in terms of efficiency by a large
proportion. It can be noted that the framework with MTiny
YOLOV3 performed 2.6 times faster than the framework
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TABLE 7. Results of the framework with MTiny YOLOV3 and YOLOV3.

Network time(s) mAP(%) input size
our framework with YOLOV3 88.59 416*416
our framework with MTiny YOLOV3 80.77 96%96

TABLE 8. Results of different extending methods.

extending methods mAP(%) time(s)
random extending 78.72 0.049
extending according to the anchor boxes 80.77 0.043

with YOLOV3, with a satisfying accuracy. The significant
improvement on computational efficiency offers a possibility
to achieve realtime field unattended monitoring systems. Our
results are supported by visual results in Figure 10.

« Extending methods

To examine the advantage of the proposed extending
method according to the anchor boxes, experiments com-
pared with random extending are performed in terms of detec-
tion accuracy and execution time. From the results in Table 8,
we observed the following points:

1) The proposed method improves the detection accuracy

significantly.

2) The importance of proposed extending method is fur-

ther reflected in its computational efficiency.

We also try to introduce it into the framework with
YOLOV3, but performance of the two methods are similar.
YOLOV3 has a stronger learning ability. We do not need to
design it artificially.

V. CONCLUSION

This paper addresses the problems associated with moving
object detection on high resolution scenarios for open coun-
try, with different kinds of challenging scenes such as local
motion, camouflage, complex background, dust trailing, illu-
mination variation and so on.

We have presented a coarse-to-fine grained framework
and evaluated its effectiveness with extensive experiments.
Considering the segmented object, the use of an efficient
connected region detection algorithm we proposed gives
it a significant advantage to merge segmented regions.
To further improve the performance in terms of computa-
tional efficiency, we replace YOLOV3 to MTiny YOLOV3,
which achieve 2.6 times faster speed with slightly sacrify-
ing the accuracy. Specifically, our framework with MTiny
YOLOV3 and YOLOV3 is able to achieve approximately 23
FPS (Frames Per Second) with 80.77% accuracy and 9 FPS
with 88.95% accuracy, respectively.
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