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ABSTRACT In the traditional assembly line balancing, all the workstations are assumed available and
hence the unavailability of any workstation brings about the stoppage of the whole line and the waste
of the production capacity in the rest workstations. Considering the planning characteristic of preventive
maintenance, this paper proposes a novel methodology of integrating the preventive maintenance scenarios
into assembly line balancing problems to bypass the unavailable workstation. A lexicographic model is
formulated to generate multiple task assignment plans that ensure primarily the high productivity under
regular operation scenario and guarantee secondarily the production continuity under preventivemaintenance
scenarios. And, an improved whale optimization algorithm (IWOA) with three modifications is proposed to
solve this problem. Specifically, a combined crossover operator enhances better combination in exploration;
three best search agents promote the exploitation; partial regeneration avoids being trapped in local optima.
More than five thousand experiments demonstrate that the joint of three modifications endows the IWOA
significant superiority over six variants and other six well-known algorithms. Moreover, integrating preven-
tive maintenance scenarios into the assembly line balancing problem increases the production efficiency by
1% at the cost of small production adjustment.

INDEX TERMS Assembly line balancing, lexicographical optimization, preventive maintenance, whale
optimization algorithm.

I. INTRODUCTION
An assembly line is a special flow-line manufacturing system
to integrate the prefabricated parts into a finished product.
It comprises of a cluster of successive workstations connected
by a material handling system. The assembly line balancing
problem (ALBP) aims to assign assembly tasks to these
workstations with the optimization of one or more objectives
and satisfaction of precedence relationship and cycle time
constraints. An effective assignment of the assembly tasks
contributes largely to the productivity and smoothness of the
line.

The associate editor coordinating the review of this manuscript and

approving it for publication was Baozhen Yao .

According to the adopted objectives, the ALBP is gener-
ally divided into four categories: type-I, type-II, type-E and
type-F [1]. The type-I minimizes the number of workstations
under a known cycle time [2], [3] and the type-II focuses on
minimizing the cycle time of predefined workstations [4], [5].
The type-E tries to maximize line efficiency and productivity
with a variable number of workstations and a variable cycle
time [6]. And, the type-F aims to find a feasible balance for a
given number of stations and a given cycle time is known [7].

However, in the above ALBPs, there is a common assump-
tion that machine breakdown never occurs in the production
process, which is obviously impractical. In practice, due to
fatigue, wear or aging et al., all the machines in the work-
stations tend to degrade and even fail to work, and all the
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machines must be maintained to guarantee the reliability and
availability of the production line. Normally, there are two
types of maintenance actions: corrective maintenance and
preventive maintenance. Corrective maintenance corrects the
defects as soon as possible once a machine is breakdown,
but it cannot be planned due to the random occurrence of
failures [8]. Preventive maintenance (PM) is a planned action
to improve the reliability of machines. It keeps all machines
in a satisfactory state and reduces the unexpected shutdowns.
It is worth noting that when onemachine in anyworkstation is
maintained, the unavailability of this workstationmight result
in the blockage in upstream workstations and starvation in
downstream workstations, and further lead to the stoppage
of the whole assembly line [9]. In this case, the production
capacity of the rest workstations without maintenance is
wasted unfortunately. If the workstations to be maintained
can be bypassed strategically, the productivity and stability of
the line may be promoted. Hence, it is necessary to consider
PM into the ALBP.

Till now, there has been no literature concerning the
issue of ALBP considering PM. In contrast, existing litera-
ture has demonstrated that integrating PM into the produc-
tion scheduling within flexible flow shops can reduce the
running cost and system unavailability time. Specifically,
Yu and Seif [10] demonstrated the integration of them
can shorten the total maintenance and tardiness costs.
Feng et al. [11] addressed a sequence-dependent group
scheduling problem within a flexible flow shop and they
claimed that implementing PM at the idle time between
groups can shorten the production cycle time and save the
manufacturing cost. Moradi et al. [12] claimed that the
joint of them could effectively reduce the makespan and
the unavailability of the production system. Since an assem-
bly line system is a special case of flow shop [13], the
joint optimization of PM and ALBP may be effective, and
thereafter ALBP considering PM is studied in this paper in
detail.

When PM is included in ALBP, besides the traditional
objectives, new objectives such as minimizing total task alter-
ation should be considered concurrently. To coordinate these
objectives, three procedures including weighted summation,
Pareto-front optimization, and lexicographic optimization are
generally adopted. Among them, the weighted summation
approach [14] endows the more important objectives with
higher weights and further combines all the objectives into
one to reduce the computational complexity. It should be
noted that it is difficult to quantify the weights of objec-
tives for the problem under consideration. The Pareto-front
optimization [15], [16] probes a set of non-dominated
solutions where no objective can be improved without sac-
rificing others. Each objective in this method has equal
importance; while the objectives in this paper show a sig-
nificant hierarchy relationship owing to their impact on
the productivity of the line. This means the Pareto-front
optimization is not fit for this paper. In contrast, the lex-
icographic optimization approach ranks the objectives by

qualitative but not quantitative importance; subsequently,
it derives the upper-level objective first and then optimizes
the lower-level one [17], [18]. Hence, lexicographic opti-
mization is utilized in this paper to handle the hierarchy
objectives.

To solve the complex ALBP-related problem, various solu-
tion procedures are developed, which include exact algo-
rithms, heuristic, and meta-heuristic algorithms. The exact
algorithms, such as the branch-and-bound method [19]–[21],
are effective to solve small-scaled cases but can hardly
obtain the optimal solutions for large-scale cases. Heuris-
tic algorithms, which include Hoffman method [22] and
ranked positional weight method [23], [24], can obtain
an efficient solution easily and quickly, but they are
problem-dependent and easy to fall into the local optimum.
Instead, meta-heuristic algorithms show strong strengths like
flexibility, derivation-free mechanisms, and local optima
avoidance [25]. And, a group of promising meta-heuristic
algorithms is utilized to solve the ALBP-related problems,
which include grey wolf algorithm [26], discrete artifi-
cial swarm algorithm [27], multi-objective cellular genetic
algorithm [28], and hybrid particle swarm optimization
algorithm [29]. Among the emerging meta-heuristic algo-
rithms, whale optimization algorithm (WOA) shows advan-
tages such as simple concept, less adjustment parameter,
and easy implementation [30]. Meanwhile, it has been
successfully applied to other engineering optimization prob-
lems like mobile robot scheduling [31], image segmenta-
tion [32], and constrained engineering design problems [33].
Thus, the WOA algorithm is hired here to solve the ALBP
considering PM.

In summary, it is sufficient and necessary to integrate the
planned PM into the type-II assembly line balancing problem
with the predefined workstations. If so, the workstation with
maintained machines can be bypassed and other workstations
can continue to assemble products. The contributions of this
paper are as follows:

(1) The ALBP considering PM is proposed to bypass the
workstation under maintenance and guarantee the production
continuity in other workstations, and hence to improve the
productivity of the whole assembly line.

(2) A lexicographic programming model is formulated
to primarily ensure the productivity under regular opera-
tion scenario and secondarily recover the production under
PM scenarios.

(3) An improved whale optimization algorithm (IWOA)
with three modifications, which include crossover operator,
three leaders, and partial regeneration, is proposed to solve
the large-scale problems due to its strongNP-hardness nature.

The rest of this paper is structured as follows. Section II
analyzes the characteristics of ALBP considering PM sce-
narios. Section III formulates a lexicographic nonlinear
mathematical model. Section IV details an improved whale
optimization algorithm. Section V analyzes the experimental
results and Section VI presents the conclusions and future
work.
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FIGURE 1. Illustration of regular operation scenario and PM scenarios.

II. ALBP CONSIDERING PM SCENARIOS
A. PREVENTIVE MAINTENANCE SCENARIOS
Normally, the preventive maintenance of machines is planned
in advance. Take a simple assembly line with three worksta-
tions shown in Fig. 1 as an illustrative example. In general, all
three workstations are in normal production and none of them
is under maintenance. This scenario is called the regular oper-
ation scenario and marked as Scenario 1 in Fig. 1. Accord-
ing to the PM plan, some workstations will be maintained
in the following month or even week. Obviously, as long
as the maintenance capacity and personnel are competent,
more than one workstation can bemaintained simultaneously.
For simplicity, only one workstation can be maintained in
each scenario. As shown in Fig. 1, there are three scenarios
including one regular operation scenario (Scenario 1) and two
PM scenarios (Scenarios 2 and 3).

B. ASSIGNMENT PLANS AND TASK ALTERATIONS
Due to the serial feature of the assembly line system, as long
as a workstation is in PM, the upstream workstations will
be blocked while the downstream ones will be starved, and
subsequently, the whole line will stop running [34]. A chal-
lenging idea is that if the workstation under maintenance
can be bypassed, other workstations can go on working and
the production within an assembly line can continue. In this
case, the key to promote the production continuity is to
make multiple assignment plans with each plan for a scenario
specifically. As explained by Fig. 2, for the regular operation
scenario (Scenario 1), all tasks are allocated to the total of
three workstations just like the traditional ALBP. For two
other PM scenarios in which workstation 1 or 2 is under
maintenance respectively, all the tasks are reallocated into the
available workstations.

It should be mentioned that task alterations from a
PM scenario to the regular operation or vice versa are
expected to be as small as possible to promote produc-
tion stability. Specifically, in Fig. 2, if workstation 1 is
to be maintained, tasks (1, 2, 4) are reallocated into
workstations 2 and tasks (8, 10) into workstation 3. After
maintenance, all these tasks return immediately and the pro-
duction mode under PM scenario 2 is changed back to the
regular operation scenario. Obviously, before or after the
quick adjustment, all the tasks are performed by the total
available workstations, and productivity continuity is hence
assured.

Taking into account the maintenance probability of
machineswithin the assembly line, the direct adjustment from

FIGURE 2. Illustration of precedence graph, task assignment plans and
alterations.

a PM scenario to another PM one is rare. Hence, only the
direct adjustment between a PM scenario and the regular
one is considered for simplicity. Based on this, the following
section tries to formulate the problem of ALB considering
PM scenarios.

III. PROBLEM DESCRIPTION
As mentioned above, the ALBP considering PM scenarios
is to generate multiple task assignment plans for the regular
operation and PM scenarios to ensure the efficiency and
stability of production. In each task assignment plan, all the
tasks are allocated to the available workstations under the
constraint of precedence relations. Obviously, the resulted
cycle time for each task assignment plan is unique and it
is expected to minimize the task alterations between plans.
Hence, a multi-objective model for the type-II assembly
line balancing problem considering PM scenarios is estab-
lished first and is further reformulated into a lexicographi-
cal optimization model to handle the hierarchic objectives.
The assumptions considered in the model are provided as
follows:
(1) Each workstation can perform all the tasks.
(2) Only one product is assembled in this line.
(3) The processing times of tasks are deterministic.
(4) The precedence relationships among the tasks are

known.
(5) Each task cannot be further subdivided and must

be allocated to exactly one workstation in each task
assignment plan.

(6) The walking time in each workstation is negligible.
(7) In each PM scenario, exactly one workstation can be

maintained and is predefined.
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A. NOTATIONS
1) INDICES AND SETS

k, s, i Indices of tasks, {k, s, i = 1, . . . ,N }.
J Index of workstations,{j = 1, . . . ,M}.
sc Index of scenarios,{sc = 1, . . .Q}.sc = 1 presents

the regular operation scenario and the others are
PM scenarios.

W Set of precedence relationships. If k is an immedi-
ate predecessor of s, (k, s) ∈ W .

Jsc Set of workstations to bemaintained in scenario sc.

2) PARAMETERS

N The number of tasks.
M The number of workstations on the line.
Q The number of scenarios, which equals the number of

PM scenarios plus one.
ti Processing time of task i.

3) VARIABLES

Xij,sc Binary variable. It equals 1 if task i is assigned to
workstation j in scenario sc; otherwise, 0.

TA Integer variable, total task alteration.
CT sc Integer variable, the cycle time under scenario s c.

B. MATHEMATICAL MODEL
Similar to the traditional type-II ALBP proposed by
Çil et al. [5], a mathematical model is proposed as below
to generate multiple task assignment plans for the regular
operation and PM scenarios.

f1 = min CT 1 = minmaxj
∑N

i=1

(
ti·X ij,1

)
(1)

f2 = min
(
(
∑Q

sc=2
CT sc)

/
CT ∗max + TA

/
TAmax

)
(2)

Subject to:∑N

i=1
Xij,sc = 0, ∀j ∈ Jsc, sc ∈ {2, . . . ,Q} (3)∑J−Jsc

j=1
Xij,sc = 1, ∀i ∈ {1, . . . ,N }, sc ∈ {1, . . . ,Q}

(4)∑N

i=1
Xij,sc ≥ 1, ∀j ∈ (J − Jsc) ,

∀sc ∈ {1, . . . ,Q} (5)∑N

i=1
ti · X ij,sc ≤ CT sc, ∀j ∈ (J − Jsc) ,

∀sc ∈ {1, . . . ,Q} (6)∑J−Jsc

j=1
j ·
(
Xkj,sc − Xsj,sc

)
≤ 0,

∀ (k, s) ∈ W , sc ∈ {1, . . . ,Q} (7)

TA =
∑Q

sc=2

∑N

i=1

∣∣∣∣∑J−Jsc

j=1
(j · X ij,1 − j · X ij,sc)

∣∣∣∣ (8)

In this model, Equation (1) shows that for the regular
operation scenario, the resulted cycle time should ensure all
assembly tasks to be allocated evenly and efficiently in all
workstations. On the other hand, since the minimum cycle

time under different PM scenarios may be different, the sum-
mation of all cycle time under PM scenarios is minimized.
Meanwhile, the total task alteration is calculated to reduce
the adjustment from one PM scenario to the regular operation
scenario. It is worth noting that as shown in Equation (2),
the total cycle time and total task alteration are both normal-
ized by dividing their respective maximums and are endowed
with the same importance for simplicity.

With respect to constraints, Equation (3) emphasizes that
the workstation under maintenance is not allowed to under-
take any task; while Equation (4) guarantees each task to be
allocated into exactly one available workstation under any
scenario. Obviously, all the workstations except the one in
maintenance will undertake at least one task as illustrated in
Equation (5) for fairness. Equation (6) restricts the total pro-
cessing time in each workstation to be less than the respective
cycle time under any scenario. Equation (7) insists to satisfy
the precedence relationship between any two tasks. Equation
(8) calculates the total task alteration that is represented by
the index difference of allocated workstation between regular
operation scenario and PM scenario.

With Equations (1-8), the type-II assembly line balancing
problem considering PM scenarios is formulated as a multi-
objective non-linear programming model.

C. LEXICOGRAPHICAL OPTIMIZATION
To our best knowledge, the assembly line is mostly work-
ing under the regular operation scenario in daily produc-
tion, and thus the first objective, minimizing the cycle time
under the regular operation scenario, is far more impor-
tant than that under PM scenarios. Hence, the lexicograph-
ical optimization is introduced to reformulate the above
model.

For the upper-level model, Equation (1) is regarded as the
objective to ensure productivity under the regular operation
scenario. In addition, the constraints involve Equations (4-7)
in which only the regular operation scenario is involved. The
resulted linear mathematical model for the regular operation
scenario is similar to the traditional type-II ALBP proposed
by Çil, et al. [5]. After solving this upper-level model, a mini-
mum cycle time ,CTmin

1 , is obtained for the regular operation
scenario.

For the lower-level model, the objective in Equation (2) is
considered to reduce the production adjustment for PM.With
regard to constraints in this case, Equations (3-8) are utilized
as constraints. Besides, the optimal result of the upper level,
CTmin

1 , is hired as an upper bound as shown in Equation (9).
Due to this, for the regular operation scenario, the resulted
productivity is still high, but the task reallocation under the
regular operation scenario reduces the task alterations among
task assignment plans. As a result, the obtained task assign-
ment plans for regular operation and PM scenarios guarantee
the productivity and stability simultaneously.

∑N

i=1

(
ti·X ij,sc

)
≤CTmin

1 , sc = 1 (9)
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D. MODEL LINEARIZATION
Due to the non-differentiation caused by the absolute value in
Equation (8), the lower-level model cannot be solved directly
by a mixed integer linear programming method and hence it
needs to be linearized. In this situation, a positive variable
,Numic, is introduced to record the value of the task assign-
ment alteration as defined in Equation (10).

Numic =

∣∣∣∣∑J−Jsc

j=1

(
j · X ij,1 − j · X ij,sc

)∣∣∣∣ (10)

Equation (10) is transformed into Equations (11-12) to
eliminate the non-differentiation caused by the absolute
value. Sequentially, Equation (8) is finally changed into
Equation (13).

Numic ≥
∑J−Jsc

j=1

(
j · X ij,1

)
−

∑J−Jsc

j=1

(
j · X ij,sc

)
,

∀i ∈ {1, . . . ,N }, sc ∈ {1, . . . ,Q} (11)

Numic ≥
∑J−Jsc

j=1

(
j · X ijsc

)
−

∑J−Jsc

j=1

(
j · X ij,1

)
,

∀i ∈ {1, . . . ,N }, sc ∈ {1, . . . ,Q} (12)

minTA =
∑Q

sc=2

∑N

i=1
Numic (13)

Hence, the lower-level optimization model contains
Equations (2-7, 10-13). It should be mentioned that the total
cycle time and total task alteration are both normalized by
dividing TAmax and CT ∗max respectively. For TAmax, it is
assumed that all tasks should be adjusted from the first work-
station to the last, and the alteration of each task is equal
to M − 1. Hence the TAmax under all PM scenarios can be
expressed by Equation (14).

TAmax =
∑Q

sc=2

∑N

i=1
(M − 1) (14)

For CT ∗max, suppose that under every PM scenario, each
available workstation except the last one holds only one task
with the smallest processing time and the remaining tasks are
put into the last workstation. The total processing time in the
last available workstation is set as the maximum cycle time
under the current scenario. Hence CT ∗max is the sum of the
maximum cycle time of all PM scenarios.

IV. AN IMPROVED WHALE OPTIMIZATION ALGORITHM
Enlightened by the bubble-net hunting strategy of hump-
back whales, the whale optimization algorithm (WOA) [30]
is presented as a novel nature-inspired meta-heuristic opti-
mization algorithm. Due to its advantages of simple con-
cept, less adjustment parameter, and easy implementation,
it is employed in this paper to solve the ALBP considering
PM scenarios.

A. BASIC WOA
The hunting process of humpback whales contains two
stages: exploration and exploitation. In the exploration stage,
whales probe the ocean and search for prey. If the prey is
found, the exploitation stage starts to hunt it. At this stage,

humpback whales first dive into the ocean and then swim
upward at a shrinking circle and along a spiral-shaped path
around the prey simultaneously. In the meantime, they eject
bubbles continuously as a net to trap the prey. This unique
mechanism is called bubble-net feeding method. Mimick-
ing the unique feeding behavior of humpback whales, the
WOA algorithm comprises of three procedures: search for
prey, shrinking encircling prey, and spiral updating position.
These procedures are selected automatically according to a
random number p in [0, 1] and a positive variable |A|.

• Search for prey (p < 0.5and |A| ≥ 1)

Whales (search agents) search for prey globally under
the guidance of randomly selected agent according
to Equations (15-18).

ED =
∣∣∣ EC · −−→Xrand (t)− EX (t)

∣∣∣ (15)

EX (t + 1) =
−−→
Xrand (t)− EA · ED (16)

EA = 2Ea · Er − Ea (17)
EC = 2 · Er (18)

where, t represents the current iteration. EX and
−−→
Xrand are the

location of the current agent and the randomly chosen search
agent. Er is a random vector with uniform distribution in [0, 1].
The parameter Ea linearly decreases from two to zero over
the course of iterations. And, the location of a search agent
at the next iteration is determined by the current location
of this agent and a randomly chosen one. Owning to ran-
domly chosen search agents, global search is enabled for the
WOA algorithm.

Obviously, EA is in [−a, a] and there is a 50% probability
that

∣∣∣EA∣∣∣ ≥ 1 or
∣∣∣EA∣∣∣ < 1 at the beginning of iterations. When

the parameter Ea arrives at one, the probability that
∣∣∣EA∣∣∣ ≥ 1 is

zero and the process of searching for prey is terminated.

• Shrinking encircling prey (p < 0.5 and |A| < 1)

Since the best search agent is the nearest to the prey, other
search agents may reposition themselves according to the
distance to the best as represented by Equations (19-20).

EX (t + 1) =
−→
X∗ (t)− EA · ED (19)

ED =
∣∣∣ EC · −→X∗ (t)− EX (t)∣∣∣ (20)

where, EX∗ is the position of the best whale. Clearly, as the
parameter Ea decreases from one to zero,

∣∣∣EA∣∣∣ goes down to
zero in trend, and thus other search agents become closer to
the best one at the next iteration.

• Spiral updating position (p ≥ 0.5)

Meanwhile, other search agents approach the current best
one by following the spiral-shaped trajectory as illustrated by
Equations (21-22).

EX (t + 1) = ED′ · ebl · cos (2π l)+
−→
X ∗(t) (21)

ED′ =
∣∣∣−→X∗ (t)− EX (t)∣∣∣ (22)
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TABLE 1. Generating the processing sequence of tasks for PM scenario1.

where, b is a constant for defining the shape of the logarithmic
spiral. l is a random number in [−1, 1]. ED′ is the distance
vector between the current best one and each of other search
agents. Through the location updating, other search agents in
the next iteration will move toward the current best along a
spiral-shaped trajectory.

B. SCENARIO-ORIENTED ENCODING AND DECODING
Due to the discrete nature of the problem under consideration,
the original WOA algorithm cannot be applied directly and
thus the random key method [26] is introduced for encod-
ing and decoding. For each search agent, the number of
segments equals to that of scenarios, and the sequence of
these segments represents sequentially the regular operation
scenario, PM scenario 1, PM scenario 2, etc. In each segment,
the number of elements is equivalent to the number of tasks.
The value of each element, randomly generated in [0, 1],
represents the priority of the corresponding task. Taking a
small case with three PM scenarios and eleven tasks as an
example, it has four segments with eleven elements for each
as illustrated in Fig. 3.

For each scenario, the decoding process involves two parts:
generating the processing sequence of tasks and assigning the
sequenced tasks into available workstations. The processing
sequence should be generated according to the task priorities
and precedence relations. Hence, a task, whose immediate
predecessors have all been completed, can be put into the
assignable task set. Only the task with the largest priority
value in this set is selected and added into the processing
sequence. Then, the assignable task set is updated; once it
is empty, all the tasks are ordered in a processing sequence.
Based on the code provided in Fig 3 and the precedence
relations among tasks in Fig 2(a), the process to generate
the processing sequence for PM scenario 1 is illustrated
in Table 1.

Since all the tasks are sequenced in order, the sequenced
tasks are to be assigned to the available workstations.

FIGURE 3. The scenario-oriented encoding method.

FIGURE 4. Scenario-oriented decoding mechanism.

In this process, the initial cycle time CT sc is set through
the division of the total processing time of tasks by the
number of all available workstations as formulated in(
CT sc =

I∑
i=1

ti

/
|J − Jsc|

)
. Then, supposing that the cur-

rent cycle time constraint is satisfied, sequentially allocate as
many tasks as possible according to the processing sequence
into all the available workstations except the last one. Finally,
put all the remaining tasks into the last available workstation.
As long as the total processing time in the last workstation is
larger than the current cycle time, set the current cycle time
plus a constant and repeat the allocating process; otherwise,
terminate this process, and report the minimum cycle time
and task assignment plan for the given scenario.

As the above mentioned, a unique task assignment plan
is obtained for each scenario, and hence, the task alteration
from regular operation scenario to each PM scenario can be
calculated. The task alteration of one PM scenario is the
absolute difference of workstation index of each task. The
total task alteration is the summation of task alterations of
all PM scenarios. To sum up, the pseudo code of scenario-
oriented decoding is shown in Fig 4.
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C. EXPLOITATION WITH THREE LEADERS
In the basic WOA algorithm, only the current best search
agent leads the evolution of the whole population in the
exploitation stage. If the current best search agent locates
at a local optimum, the population has a great possibility
of being trapped into it, especially in the later stage of
iterations. To accelerate convergence speed but overcome
premature convergence, the concept of more leaders is intro-
duced. According to grey wolf optimization proposed by
Mirjalili et al. [35], three best search agents so far are selected
simultaneously for the exploitation stage. Hence, the shrink-
ing encircling prey mechanism is changed as illustrated in
Equations (23-25).

−→
D1 =

∣∣∣ EC · −→X∗1 (t)− EX (t)∣∣∣ ;
−→
D2 =

∣∣∣ EC · −→X∗2 (t)− EX (t)∣∣∣ ;
−→
D3 =

∣∣∣ EC · −→X∗3 (t)− EX (t)∣∣∣ (23)

−→
X1 =

−→
X∗1 (t)− EA ·

−→
D1;

−→
X2 =

−→
X∗2 (t)− EA ·

−→
D2;

−→
X3 =

−→
X∗3 (t)− EA ·

−→
D3 (24)

EX (t + 1) =
(
−→
X1 +

−→
X2 +

−→
X3
)/

3 (25)

where,
−→
X∗1 ,
−→
X∗2 , and

−→
X∗3 are the three best search agents

obtained so far.
−→
X1 ,
−→
X2 , and

−→
X3 represent the possible position

of the current search agent
−→
X (t) according to the three best

ones respectively.
−→
X (t + 1) is the updated position of the

search agent for the next iteration.
Similarly, the spiral updating position mechanism is also

changed as illustrated in Equations (26-28).

−→
D′1 =

∣∣∣−→X∗1 (t)− EX (t)∣∣∣ ;
−→
D′2 =

∣∣∣−→X∗2 (t)− EX (t)∣∣∣ ;
−→
D′3 =

∣∣∣−→X∗3 (t)− EX (t)∣∣∣ (26)

−→
X1 =

−→
D′1 · e

bl
· cos (2π l)+

−→
X∗1 (t) ;

−→
X2 =

−→
D′2 · e

bl
· cos (2π l)+

−→
X∗2 (t) ; (27)

−→
X3 =

−→
D′3 · ye

bl
· cos (2π l)+

−→
X∗3 (t)

EX (t + 1) =
(
−→
X1 +

−→
X2 +

−→
X3
)/

3 (28)

where,
−→
D′1,
−→
D′2, and

−→
D′3 are the distance vector from the current

search agent to the best three search agents obtained so far.
Obviously, the updated agent EX (t + 1) guided by three

best leaders is of more robustness than that by a single leader.

D. ENHANCED EXPLORATION VIA CROSSOVER
In the exploration stage of the basic WOA, each search agent
updates its position by a randomly-chosen one, and causes
the loss of efficient partial information. Hence, this paper

employs a crossover operator to exchange the gene segments
between two parent chromosomes and further explore a better
combination of efficient partial information. Specifically, for
each search agent, another search agent is selected randomly
from individuals with better performance. Subsequently for
each scenario, two intersections are randomly generated and
the segment between them is exchanged with that of another
agent.

E. PARTIAL REGENERATION
If the best agent remains unchanged for a number of succes-
sive iterations, it is probable that the current best agent is a
local optimum. To avoid being trapped in a local optimum,
as long as the number of this kind of iterations reaches a
predefined threshold Tr , partial regeneration of search agents
is executed. Specifically, a certain number of agents except
the best one in the current population are replaced by the
newly generated. Note that, the percentage of newly gen-
erated search agents, which is set as Sr , is expected to be
relatively small so as to keep the stability of the population.

F. IWOA FRAMEWORK
Three above-mentioned improvements are hereafter inte-
grated into the basic WOA to improve the performance of the
algorithm. First, the exploration stage is enhanced by using
two-point crossover operator, which aims to explore better
combinations of efficient partial information. Second, the top
three rather than the best one of the search agents are selected
to overcome premature convergence in the exploitation stage.
Third, to avoid being trapped in a local optimum, partial
regeneration is introduced to refresh search agents in the
population. The flowchart of the proposed IWOA is depicted
in Fig. 5.
It is worth noting that two objectives need to be lexico-

graphically optimized in this paper. When comparing the
performance of two search agents, the one is better if:
(1) It has a smaller upper-level objective, the cycle time

under the regular operation scenario;
(2) Otherwise, it has a smaller lower-level objective.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS
In this section, four types of experiments are designed to ver-
ify the effectiveness of the proposed mathematical model and
the improved IWOA algorithm. Specifically, the necessity of
ALBP considering PM scenarios is first analyzed graphically
and numerically. Then the validity of the mathematical model
is confirmed on small-scaled benchmark cases. After calibrat-
ing the parameters of each algorithm, the performance of the
proposed algorithm is compared with its variants and other
six algorithms.

It should be mentioned that the mathematical model is pro-
grammed with GAMS/Cplex 24.8.5, and all the algorithms
are coded withMATLABR2016a and run on a computer with
Intel(R) Core(TM) i5 CPU, 2.80 GHz, and 4.00GB RAM.
The termination criterion for each run is the elapsed CPU
time set as N ∗ N ∗ 10 milliseconds, where N is the number
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FIGURE 5. The general framework of IWOA.

of tasks. Meanwhile, to evaluate the result of each exper-
iment, the relative percentage deviation (RPD) similar to
Zhang et al. [36] is introduced. It can be calculated
by Equation (29).

RPD =
([f1]+ f2)sol − ([f1]+ f2)best

([f1]+ f2)best
× 100% (29)

where (·)sol and (·)best show the solution obtained by an
algorithm and the best solution among all the algorithms.
f1 and f2 are objective values of the upper- and lower-level
optimization problems, respectively. It is known that the value
of the upper-level objective is much greater than one while
that of the lower-level is less than one. Taking into account
that the upper-level objective is much more important than
the lower-level one, when evaluating the performance of each
solution, the former is rounded and placed in the integer while
the latter is placed in the decimal place, which is shown by
([f1]+ f2) for simplicity.
Since PM scenarios are not included in traditional bench-

mark cases as observed in the literature, a set of bench-
marks is established on the ground of the well-known
ALBPs. The number of tasks and stations, processing
times and precedence relationships are from the web-
site <https://assembly-line-balancing.de/>. It should be
mentioned that workstations to be maintained are randomly
selected. Specific information about these benchmark cases is
listed in TABLE 2. The first two columns represent the index

FIGURE 6. Processing times and precedence relations of the aircraft part
assembly.

and name of cases respectively and the third column shows
the number of tasks. The fourth and fifth column informs the
number of workstations and the set of respective workstations
to be maintained. In total, more than 5000 experiments are
conducted based on these benchmark cases.

A. NECESSITY OF CONSIDERING PM SCENARIOS
INTO ALBP
To illustrate the significance of the ALBP considering
PM scenarios, a real aircraft part assembly line with 6 work-
stations and 44 tasks is taken as an example. Among these
workstations, the workstations 1 and 4 are maintained respec-
tively. The processing time and precedence relations of tasks
are described in Fig 6. In the figure, the number in the circle
represents the index of tasks, the arrows between circles
represent precedence relations, and the number over the circle
represents the processing time (h) of the corresponding task.

According to the need of the work field, the following
assumptions are given.

(1) The assembly line works two shifts with eight hours for
each and thirty days a month.

(2) Limited by technological and personnel requirements,
each PM lasts 4 hours.

(3) The production adjustment between the regular opera-
tion scenario and any PM scenario takes 30 minutes.

Fig. 7 reports the final task assignment plans. In this figure,
each box shows a task and the number in the box represents
the index of tasks. The yellow boxes illustrate that a task
will be allocated to a different workstation under the given
PM scenario compared with that under the regular operation
scenario. Fig. 7 (a) depicts the optimal result of the upper level
problem in which PM scenarios are not considered. Obvi-
ously, the obtained cycle time is 30h and the total processing
time in each workstation is relatively balanced.

Fig. 7(b-d) reports the task assignment plans under reg-
ular operation and PM scenarios when PM is executed
on workstations 1 and 4 respectively and tasks are not
allowed to assign to it. For the regular operation scenario,
the resulted cycle time reported in Fig. 7(b) is the same as
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TABLE 2. Benchmark cases information.

TABLE 3. Computational results by GAMS/Cplex and IWOA.

that in Fig. 7(a), but their task assignment plans are different.
This observation means that there is no loss in production
productivity under regular operation conditions. Moreover,
the task assignment plan in Fig. 7(b) is more convenient
for production adjustment. The cycle times under PM sce-
narios are 38h, which is significantly larger than that under
regular operation scenario. Even if workstation 1 or 4 is
in maintenance, the whole line can be still in production.

This results in (4− 0.5× 2)× 2
/
38 ≈ 0.158 more aircraft

parts to be produced in a month. Compared with the total
monthly production without PM scenarios that equals to
(16× 30− 4× 2)/30 ≈ 15.73, the proposed methodology
of integrating PM scenarios into the ALBP achieves obvi-
ously 1% higher production efficiency, which is of large
economic value given the total production quantity in the
plant.
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FIGURE 7. Tasks assignment plan of ALBP with or without PM scenarios.

It can be concluded that it is necessary to consider PM
scenarios into assembly line balancing, and this integration
can improve production efficiency largely.

B. VERIFICATION OF MATHEMATICAL MODEL
To test the validity of the proposed lexicographical opti-
mization model, the small-scaled benchmarks illustrated in
TABLE 2 are utilized. For each case, the lexicographical
optimization model is first solved to optimality, and then,
the obtained upper- and lower-level objective values are set

TABLE 4. Orthogonal array through the taguchi experiment for IWOA.

FIGURE 8. Signal-to-noise ratio main effect map.

as termination criteria of IWOA. The computational results
are shown in TABLE 3. It should be mentioned that the first
five columns introduce the basic information of cases sequen-
tially, including the case index, the case name, the number of
workstations, the number of PM scenarios and the maintained
workstation for each PM scenario. Columns 6-7 introduce
CT ∗max and TAmax for each case. Columns 8-10 report the
resulted cycle time CT 1 for regular operation scenario, the
corresponding cycle time CT ∗ for each PM scenario, and
the total task alteration TA for all PM scenarios respectively.
Columns 11-12 represent CPU time (s) and the obtained
relative gap. Columns 13-16 report the results calculated by
the IWOA.

Obviously, both GAMS/Cplex and IWOA obtain the opti-
mal solution for each case, but the computational time spent
by GAMS/Cplex is far more than that by the IWOA. This
demonstrates that the proposed IWOA algorithm can achieve
optimal results with smaller computational efforts.

C. PARAMETER CALIBRATION
Since the controlled parameters have a significant influence
on the stability and efficiency of algorithms, calibration
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TABLE 5. Best parameter combination calibrated for each algorithm.

experiments are performed for determining the best combi-
nation of parameters of each algorithm. For the proposed
IWOA, the tested parameters are the population size (PS),
iteration threshold (Tr ), regeneration percentage (Sr ). The
levels of these parameters are: PS {30, 50, 70}, Tr{10, 20,
30}, and Sr{10%, 20%, 30%}. To obtain the correspond-
ing response value, the orthogonal array is employed for
the experiments as shown in Table 4. Considering that the
parameters for the large-scaled problems are also effective for
the middle-scaled and small-scaled ones, the largest case of
P297 with 50 workstations is utilized. And the experiment of
each parameter combination runs 10 times.

The calibration results are presented in Table 4. The
two rightmost columns in Table 4 report the average value
of 10 times under each parameter combination. Among them,
the penultimate column reports the average cycle time (f 1)
of the upper-level objective for regular operation scenario,

FIGURE 9. 95% Confidence interval for the average RPD of WOA, six
variants, IWOA.

FIGURE 10. 95% Confidence interval for the minimum RPD of WOA, six
variants, IWOA.

FIGURE 11. 95% Confidence interval for the average RPD of six existing
algorithms, IWOA.

and the last one (f 2) is the average value of lower-level
objective, CT ∗

/
CT ∗max + TA/TAmax . As shown in Fig. 8,

the best parameter combination of the proposed IWOA is
{PS= 70, Tr = 20, Sr = 30%}.

Besides, the parameters of six variants of IWOA algo-
rithm and other compared algorithms are also calibrated.
Half of six variants comprise of single modification
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TABLE 6. Comparisons of WOA, six variants, IWOA algorithm.

respectively and hence are named as WOA_LD, WOA_CR,
and WOA_PR respectively; while each of another half
includes two modifications simultaneously as denoted by
WOA_LD_CR, WOA_LD_PR, and WOA_CR_PR. Mean-
while, six existing algorithms including grey wolf optimizer
(GWO) [35], genetic algorithm (GA) [37], particle swarm
optimization algorithm (PSO) [3], whale swarm algorithm
(WSA) [38], moth flame optimization (MFO), harris hawks
optimization (HHO) are introduced for comparison. The
best parameter combinations of these algorithms are shown
in TABLE 5.

D. PERFORMANCE ANALYSIS OF IWOA ALGORITHM
To test the effectiveness of three modifications and the
resulted IWOA algorithm, comparison experiments are

conducted with six variant algorithms and other six
well-known algorithms.

1) EFFECTIVENESS OF THREE MODIFICATIONS
To verify the effectiveness of modifications in the proposed
IWOA, the original WOA, and six variant algorithms are
hired with each of them tested on 32 benchmark cases. For
each case, each algorithm runs 10 times within the same CPU
time limit of N ∗ N∗10 ms for fairness. The comparative
results are reported in TABLE 6 and Figs (9-10) in which
the least significant difference interval is the 95% confidence
level. It can be observed that the value of RPD obtained
by WOA_LD, WOA_CR, and WOA_PR are smaller than
that by the original WOA in most cases, which demonstrates
that each of three modifications is an effective improvement.
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TABLE 7. Comparison result of GWO, GA, PSO, WSA, MFO, HHO, IWOA.

Meanwhile, when two modifications are combined,
WOA_LD_CR,WOA_LD_PR, andWOA_CR_PR obtain an
even lower RPD compared with the single modification. And
the proposed IWOA combining three modifications has the
best performance, which indicates the effectiveness of the
proposed improvements.

2) COMPARISON WITH EXISTING ALGORITHMS
To further test the performance of the algorithms, the IWOA
is compared with six existing algorithms including GWO,
GA, PSO, WSA, MFO, HHO on 32 benchmark cases.
The average and minimum RPD of these algorithms
under the CPU time limit are reported in TABLE 7 and

Figs (11-12). It can be observed that the proposed IWOA
algorithm outperforms other six well-known algorithms.
Specifically, when compared with WSA, IWOA obtains
30 better results in terms of average RPD and 26 better ones
in terms of minimum RPD, implying that IWOA is superior
to WSA in almost all cases. When compared with GWO,
GA, PSO, MFO, HHO, the proposed IWOA yields a total
of 40, 41, and 38, 47, 55 better results respectively, demon-
strating the significant superiority of IWOA. The above con-
clusions can also be proved by Figs (11-12) from a statistical
viewpoint.

It can be concluded that with three effective modifications,
the proposed IWOA achieves the optimal solutions for all
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FIGURE 12. 95% Confidence interval for the minimum RPD of six existing
algorithms, IWOA.

small-scaled cases within shorter computational time. More
importantly, it outperforms the original WOA, six variant
algorithms, and six well-known algorithms.

VI. CONCLUSION AND FUTURE RESEARCH
Since the planned preventive maintenance in workstations
can be known, considering PM scenarios into the assembly
line balancing problem is sufficient and necessary for fully
exploiting the production capacity of all available worksta-
tions. Hence, this paper first proposes a model for the type-II
assembly line balancing problem considering PM scenarios,
and then reformulates it as a lexicographical optimization
problem to highlight the importance of regular operation sce-
nario and reveal the associated relationships between PM sce-
narios and regular operation scenario. Further, an improved
whale optimization algorithm with three modifications is
proposed to tackle this problem, which includes exploitation
via three search agents, enhanced exploration via crossover
operator and partial regeneration. More than 5000 experi-
ments lead to the following conclusions:

(1) The two-level lexicographical optimization approach
guarantees productivity under regular operation scenario.
More importantly, small task alterations help to bypass the
workstation under maintenance and increase production effi-
ciency by 1%.

(2) The joint of three modifications endows IWOA signif-
icant superiority over six variants and other six well-known
algorithms.

In the future, the integration of mixed-model assembly
line balancing and preventive maintenance will be studied
for practical purposes. And, further research will be extended
to the integration of assembly scheduling with period-based
or condition-based preventive maintenance and even with
corrective maintenance.
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