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ABSTRACT Electromyographic (EMG) measurements of the respiratory muscles provide a convenient and
noninvasive way to assess respiratory muscle function and detect patient activity during assisted mechanical
ventilation. However, surface EMGmeasurements of the diaphragm and intercostal muscles are substantially
contaminated by cardiac activity due to the vicinity of the cardiacmuscles.Many algorithmic solutions to this
problem have been proposed, yet a conclusive performance comparison of the most promising candidates
currently is missing. The objective of this work is to provide a quantitative performance comparison of six
previously proposed cardiac artifact removal algorithms operating on single-channel EMG measurements,
and two newly proposed, improved versions of these algorithms. Algorithmic performance is evaluated
quantitatively based on four different measures of separation success, using both synthetic validation signals
and electromyographic measurements of the respiratory muscles in eight subjects. The compared algorithms
are two versions of the empirical template subtraction algorithm, two model-based Bayesian filtering
procedures, a wavelet denoising approach, an empirical mode decomposition (EMD) based approach,
and classical high-pass filtering. Different algorithms perform well with respect to different performance
measures. Template subtraction algorithms yield the best results if the characteristics of the raw signal are
of interest, while filtering algorithms like simple high-pass filtering, wavelet denoising, and EMD-based
denoising show superior performance for calculating a cleaned envelope signal. No algorithm completely
removes the cardiac interference, but the characteristic errors introduced by the considered algorithms differ.
Hence, the choice of the algorithm to use should be made depending on the target application. Finally,
we also demonstrate that our empirical SNR measure, which can be calculated without knowledge of the
true, undisturbed signals, correlates strongly with the exact reconstruction error. Thus, it represents a reliable
indicator for algorithm performance on real measurement data.

INDEX TERMS Adaptive signal processing, biomedical signal processing, electrocardiography, elec-
tromyography, electrophysiology, empirical mode decomposition, Kalman filters, signal denoising, source
separation, wavelet transforms.

I. INTRODUCTION
Monitoring the activity of the respiratorymuscles is of critical
importance in respiratory care [1]–[5], and can be achieved
continuously and noninvasively using surface electromyo-
graphy (EMG) [6]–[8]. Unfortunately, the interpretation of
EMGmeasurements of the respiratory muscles is hindered by
interference due to cardiac muscle activity. The close vicinity
of the recording electrodes to the heart and the strength of the
cardiac muscles make cardiac contaminants typically surpass
the sought muscle signals by orders of magnitude. Successful
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removal of cardiac artifacts from the measured signals hence
proves crucial for the diagnostic interpretation of respiratory
EMG measurements and has engaged researchers for many
decades [9], [10]. Note that the estimation of an ECG-derived
respiration (EDR) signal is a closely related task that has
been considered by many researchers (for a comprehensive
review refer to, e.g., Charlton et al. [11]). However, EDR
estimation is a significantly easier task than recovering the
original respiratory EMG signal, as in the EDR scenario,
the exact shape of the EMG signal is irrelevant.

In most practical applications, the ECG removal problem
is currently solved either by simple high-pass filtering [12],
employing QRS gating [13], i.e., by detecting the occurrence

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 30905

https://orcid.org/0000-0003-0097-3868
https://orcid.org/0000-0003-0562-4798
https://orcid.org/0000-0002-6528-0950
https://orcid.org/0000-0003-0326-168X


E. Petersen et al.: Removing Cardiac Artifacts From Single-Channel Respiratory Electromyograms

of R peaks and then discarding all measurements that are
presumably affected by the QRS complex, or using adaptive
filtering procedures [14]. The high-pass filtering approach
suffers from the fact that the frequency spectra of the ECG
and EMG components strongly overlap, rendering the com-
plete removal of ECG interference while maintaining valid
EMG signal characteristics impossible. QRS gating mostly
guarantees the validity of the remaining signal, but it also
requires discarding a significant fraction of the recorded sig-
nal and hence cannot be considered an entirely satisfactory
solution either. Adaptive filtering algorithms, on the other
hand, require the measurement of a reference ECG signal,
which is impractical in many applications. Algorithms that
allow for the removal of the electrocardiographic (ECG)
interference without distorting the original EMG signal and
without requiring further measurements are thus highly desir-
able. Due to the low signal-to-noise ratio (SNR) and overlap
in time and frequency domain, this problem is, however, hard
to solve. Nevertheless, many authors have proposed solutions
to this challenging problem.

The template subtraction (TS) algorithm assumes that the
measured signal constitutes an additive mixture of EMG and
ECG, with no correlation between the two signals. The algo-
rithm first constructs an ECG beat template as the average of
several previously detected consecutive ECG beats and then
subtracts this template from each newly detected ECG beat.
Such an enhancement of recurring signals through template
extraction was first applied in the context of the dual problem,
the denoising of ECG signals (see, for instance, Pahlm and
Sörnmo [15]). Various versions of template subtraction for
the removal of ECG interference from EMG measurements
have been suggested [13], [16], [17], and TS is considered
the current standard approach.

While the TS algorithm represents a purely empiri-
cal method for the removal of ECG interference, Sameni
et al. [18] proposed a completely different, model-based algo-
rithm based on a dynamical ECG model [19]. In this method,
a single ECG beat is modeled as a mixture of Gaussian
kernels that represent the different peaks of the ECG signal.
A Bayesian filtering procedure (the extended Kalman Filter)
is then employed to continuously adjust the model parame-
ters and distinguish between measurement noise and model
errors. This approach was further described and refined in
subsequent publications [20]–[23].

The wavelet denoising method represents another entirely
different approach that has been employed for the solution
of a large number of different problems [24], including
the removal of ECG interference from EMG measurements
[25]–[27]. In this method, the signal is decomposed into
several wavelet bands, and a simple threshold is applied
in the wavelet domain to detect and remove ECG interfer-
ence. Sameni et al. [21] published the as yet most extensive
examination of different wavelets and thresholding strategies
concerning the dual problem, the denoising of ECG.

Finally, we have recently proposed the use of the empirical
mode decomposition (EMD) method for this problem [28].

The proposed approach is to only compute the first intrinsic
mode function (IMF) of the contaminated signal and to use
this first IMF as an estimate of the raw EMG signal.

All four algorithmic families – TS, model-based, wavelet-
based, and EMD-based algorithms – have been shown to
perform well in comparison to other approaches for the
removal of cardiac artifacts [21], [25], [28], [29]. In par-
ticular, note that single-channel adaptations of the popular
adaptive filtering approach [14], on the one hand, have been
clearly shown to perform inferior compared to the model-
based approaches [21], and on the other hand represent close
but less adaptive relatives of the TS algorithm [30].

Previously presented comparisons and validations are
based only on numerical simulations [31], a single sub-
ject [29], [32], [33], or synthetically generated signals, com-
posed by combining clean EMG measurements with clean
ECG measurements [21], [26], [32], [33]. To the author’s
knowledge, only Slim and Raoof [25] have analyzed real
respiratory EMG measurements from multiple subjects, and
they only analyzed a single measure of separation success
(which is not sufficient, as will be discussed in section V)
and only short segments of measurements. No previous study
has directly compared the above four families of algorithms
to the author’s knowledge, although they appear to be the
most promising candidates. To conclude, it currently remains
unclear which of the algorithms would show superior perfor-
mance on real measurements obtained from the respiratory
muscles.

In this article, we provide a quantitative performance com-
parison of the template subtraction algorithm, the Bayesian
filtering procedure proposed by Sameni et al. [21], wavelet
denoising, EMD-based denoising, and simple high-pass
filtering on single-channel measurements. We focus specif-
ically on strongly interfered EMG measurements with
signal-to-noise ratios (far) below 0 dB. To this end, EMG
measurements of the respiratory muscles were obtained from
eight healthy subjects of varying age, sex, and weight,
with each of the measurements lasting about 15 minutes.
The performance criteria employed on these real measure-
ment signals are validated using synthetic EMG measure-
ments, obtained from a superposition of non-thoracic EMG
measurements and ECG signals. Moreover, we propose a
slightly improved version of the template subtraction algo-
rithm and demonstrate its superior performance. We discuss
the advantages and disadvantages of each algorithm and
attempt to provide a guideline for practical use. Preliminary
results of this analysis have been the subject of a workshop
publication [28].

II. ALGORITHMS
The following paragraphs briefly present the algorithms
under analysis. Figure 1 shows a classification of these
fundamentally differing algorithms into frequency filtering
methods, peak suppression methods, methods exploiting the
quasi-periodicity of the ECG signal, and purely data-driven
methods.
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FIGURE 1. Classification of different algorithms for removing ECG
interference from single-channel surface EMG measurements.

A. BASIC TEMPLATE SUBTRACTION
The herein used variant of the template subtraction (TS)
method can be summarized as follows: First, the locations of
the ECG beat peaks in themeasurement signal are determined
using the algorithm of Pan and Tompkins [34]. For some
subjects, due to changing morphologies, different parts of
the QRS complex were detected as the maximum peak at
different points in time, leading to misaligned beats. For this
reason, in a second step, the peak positions are updated by
calculating an average beat over the complete data set and
re-aligning each detected peak by maximizing correlation
with this average beat. The average beat was calculated for
this purpose by considering a ±200ms window around each
detected peak and averaging over all beats. The window size
of ±200ms was chosen because it contains the most promi-
nent waves (mostly Q, R, S) of a heartbeat, which are relevant
for the re-alignment step. The mid-points between two adja-
cent R peaks determine the boundaries of a single ECG beat;
the length of beat i in samples shall be denoted by `i.
Next, the ECG subtraction template for beat i is constructed

by averaging over 40 ECG beats centered around and includ-
ing the current beat, where for each beat, the samples in a
window of length `i centered around the R peak are consid-
ered, similar to the approach of Abbaspour and Fallah [35].
This subtraction template is then aligned with the current
ECG beat by maximizing the cross-correlation between the
two signals, and the amplitude and offset of the artifact are
adjusted by linear regression, i.e., minimizing the squared
differences between the current beat and the template. Finally,
the resulting template is subtracted from the raw signal,
yielding the cleaned EMG measurement. These steps are
repeated iteratively for each detected ECG beat.

B. ADAPTIVE TEMPLATE SUBTRACTION
The classical template subtraction method described above
usually does not succeed in completely removing the ECG
interference from the signal. There are two main rea-
sons for this: Firstly, the amplitude of the ECG inter-
ference – particularly during the QRS complex – is so
much higher than the amplitude of the EMG signal that
even slight deviations of the current beat from the aver-
age beat lead to substantial distortions of the cleaned EMG
signals. Secondly, the relative positions, amplitudes, and
widths of the different ECG peaks vary over time [36],
which cannot be compensated for in the classical algorithm
since the subtraction template is fit to the current beat as
a whole.

To remedy these problems, we propose a slightly improved
version of the TS algorithm that still maintains the purely
empirical nature of the original algorithm (as opposed to the
following, model-based approaches). We propose to modify
the original TS algorithm twofold: Firstly, each ECG beat
is split into three segments, supposedly representing the P,
QRS, and T segments of the beat, and the amplitudes of these
three segments are adjusted separately. This segmentation is
similar to the adjustments that Akhbari et al. et al. [23] made
to their original (model-based) algorithm. Secondly, we scale
the QRS segment in time in order to fit the QRS complex of
the current beat as well as possible, considering that this is
the most influential contributor to distortions in the cleaned
signal.

In the improved version of the algorithm, which we will
call adaptive template subtraction (ATS), we first construct
a subtraction template from 40 beats centered around and
including the current beat, as described above. We then split
this template into three separate segments by assigning a
window of 55ms left and right of the R peak to the middle
(QRS) segment of the beat, and the left and right remain-
ders to the other two segments (P and T). Next, differently
time-scaled versions of the middle segment of the template
are constructed by successively increasing or decreasing the
length of the segment towards both sides by up to ±10
samples, yielding 21 different stretched or shrunk versions
of the middle (QRS) segment. To obtain these time-scaled
segment versions, we interpolate the original signal val-
ues of this segment at the new desired sampling points.
A complete subtraction template is then created by con-
catenating one stretched or shrunk version of the middle
segment, and the unmodified left and right template seg-
ments, which are cut off or zero-padded to fit the desired
beat length `i. Each of these 21 subtraction templates is
aligned separately to the current ECG beat by correla-
tion as in the classical algorithm, and then the three seg-
ments of each subtraction template are offset- and gain-
adjusted separately by linear regression, as above. Finally,
the subtraction template with the lowest sum of squared
differences to the current beat is selected and subtracted
from the measurement signal to obtain the cleaned EMG
measurement.
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C. MODEL-BASED FILTERING
A simple yet flexible model for generating synthetic ECG
signals has been proposed by McSharry et al. [19]. In this
model, the ECG waveform is represented by a mixture of
Gaussian curves, and the quasi-periodicity of the signal is
obtained by orbiting around the unit cycle over time. Each
characteristic ECG peak (including but not limited to the
standard P, Q, R, S, and T peaks) is modeled to occur in
the vicinity of a particular angle of the unit cycle, with one
complete orbit corresponding to a whole beat. In the time-
discrete polar coordinate formulation of Sameni et al. [21],
the model reads

θk+1 = f1 (θk , ωk) = (θk +1t ωk ) mod 2π (1)

zk+1 = f2(θk , zk , a,b,1θ, ωk , η)

= zk −1t
m∑
j=1

ajωk
b2j

1θj exp

(
−
1θ2j

2b2j

)
+ ηk , (2)

where zk denotes the generated ECG signal, θk the angle of
rotation around the unit cycle,1θj the location of ECG peak j
(with 1 ≤ j ≤ m) on the unit cycle,1t the sampling time, ωk
the heart rate and a = [a1 . . . am]T and b = [b1 . . . bm]T

the (amplitude and width) parameters of the Gaussian waves
representing the different ECG peaks. The process noise ηk
is assumed to follow a Gaussian distribution.

Sameni et al. [21] have proposed the use of the above
model for denoising ECG signals and filtering of cardiac
contaminants from biomedical signals [22], the latter by
subtracting the denoised ECG signal from the measurement
signal. To this end, they used an extended Kalman filter
(EKF) and extended Kalman smoother (EKS) to estimate
the two states θk and zk of the system, while considering
all other signals and parameters – 1θj, ωk , aj, bj and ηk
– as Gaussian i.i.d. process noise. The procedure takes two
measurement signals, one being the actual measurement, and
the second being an artificial phase observation signal that
is constructed from the locations of R peaks detected in
the signal by the Pan-Tompkins algorithm. They called this
filtering method the EKF2/EKS2, with ‘‘2’’ referring to the
number of estimated states. Note that while the original pub-
lication [21] described the use of just five Gaussian kernels
(one for each of the P, Q, R, S, T components of an ECG
beat, respectively), later, the number and position of kernels
was chosen adaptively [37]. In our implementation, this is
performed automatically and up to a number of 13 kernels.
For the filtering, we used the implementation provided in
the OSET toolbox [37], which employs the innovation signal
monitoring proposed by Sameni, Shamsollahi, Jutten, et al.
[21] for automatically updating the observation noise covari-
ance online.

Later, Akhbari et al. [23] proposed a different Kalman fil-
tering solution using the same dynamical model. Their solu-
tion incorporates three separate EKFs for the P, QRS, and T
segments of each beat, allowing for different signal dynamics
in these three segments. They employ seven Gaussian kernels
in total: two for the P and T segments, respectively, and

three for the QRS segment. Moreover, they consider all the
parameters aj, bj and 1θj of the Gaussian waves as states
of the dynamical system, estimating their values over time
as part of the filtering procedure. They call this method the
EKF25/EKS25 because the total number of estimated states
is 25. To avoid unnecessary matrix inversions, we imple-
mented a sequential version of the extended Kalman filtering
procedure [38]. Moreover, we employed the Joseph stabilized
version of the covariance measurement update [38] to guar-
antee that covariance matrices are always symmetric and pos-
itive definite. To prevent the bj estimates from becoming very
small, which leads to a very large derivative df2

dbj
and thus filter

divergence, we also implemented state constraints using the
estimate projection described by Simon [39]. This improve-
ment upon the algorithm described by Akhbari et al. [23]
leads to a strongly reduced occurrence of outliers on our data
set. Finally, for the backward pass, we employed a classical
Rauch-Tung-Striebel smoother [38], [40], [41].

D. WAVELET DENOISING
Donoho [42] first suggested the wavelet denoising technique,
which is a versatile tool for the denoising of noise and
signal mixtures. There is a variety of different denoising
strategies, which are characterized by several free design
parameters including, for instance, the choice of the decom-
position depth, the wavelet family, and the thresholding tech-
nique [21]. We found the 4-tap Daubechies wavelet (db2)
with three or more levels of decomposition to be a useful
choice for ECG-EMG mixtures. As a thresholding strategy,
a level-dependent fixed threshold of 4.5σk is used, with σ 2

k
being the estimate for the EMG variance at the k th level of
the decomposition.

We suggest three modifications to previous wavelet-based
ECG removal approaches [25]–[27]: 1) In contrast to [25] we
recommend to use the undecimated, shift-invariant form of
the wavelet transform, also called stationary wavelet trans-
form (SWT). The SWT can be interpreted as averaging all
possible shifts of the classical wavelet transform and was
shown to generally provide higher noise reduction capabil-
ities [43]. 2) As opposed to the dual ECG denoising prob-
lem, where usually soft thresholding is applied, we found
that the hard thresholding technique gives superior results
for the removal of ECG. This is in accordance with the
findings of Slim and Raoof [25] and is due to the fact that
soft thresholding fails to fully reproduce the amplitude of R
peaks. 3) In many wavelet-based denoising applications by
default, the median value of decomposition levels is used to
estimate the noise variance σ 2

k . We suggest using a moving
median filter instead, to compensate for possible changes in
the basic EMG noise level within one recording. To further
stabilize the noise estimation, the R peaks can be disregarded
in the median filter, which minimizes the influence of ECG
coefficients on the EMG noise estimation. The described
wavelet-based approach yields a denoised version of the ECG
component, which is then subtracted from the raw signal to
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recover the EMG component. 4) As opposed to Abbaspour
and Fallah [26] and Abbaspour et al. [27], who used an
adaptive filtering method as an additional preprocessing step,
we applied our wavelet denoising method to the raw EMG
signal.

E. EMPIRICAL MODE DECOMPOSITION
The EMD algorithm [44] constitutes a signal decomposition
in the time domain using a purely data-driven approach. Sev-
eral EMD-based denoising schemes have been proposed in
the literature in the context of denoising single-channel phys-
iological measurements, involving adaptive filtering [45],
independent component analysis [46], canonical correlation
analysis [47] and shrinkage techniques similar to wavelet
denoising [48]. For the case of strong ECG interference,
we have found empirically [28] that the EMG signal is often
entirely contained in the first IMF, while the ECG component
is present in higher IMFs. Using this assumption, our ECG
removal approach based on the algorithm provided by Rato
et al. [49] is particularly efficient because the decomposition
procedure can be stopped after the calculation of the first IMF
and directly yields the denoised EMG [28].

F. HIGH-PASS FILTERING
Following Redfern et al. [12], many authors have considered
simple high-pass filtering with a cutoff frequency of 30Hz
as an ECG removal algorithm. Empirically, we did not find
this to yield acceptable results on our data, likely due to the
very low SNR caused by recording close to the heart. In our
subsequent performance analysis, we included a fourth-order
Butterworth high-pass filter with a cutoff frequency of 200Hz
(HP200), which we found to perform reasonably well, as well
as a concatenation of the adaptive TS (ATS) algorithm and the
HP200.

Although we did not find high-pass filters with a low cutoff
frequency to remove cardiac activity sufficiently well on their
own, we did find them to significantly simplify the ECG
removal task for most other subsequent algorithms, and hence
we used them as a preprocessing step in most cases. For
most algorithms, we used a 6th order Butterworth filter with
a cutoff frequency of 20Hz. The two Kalman filter-based
algorithms are specifically designed to work well for the stan-
dard characteristic shape of the ECG signal and hence did not
work well for higher cutoff frequencies without significant
modifications. For these two algorithms only, we, therefore,
used a second-order Butterworth filter with a cutoff frequency
of 10Hz. Finally, we found the wavelet denoising algorithm
to perform best when applied to the raw signal, without any
additional high-pass filtering. This observation appears to be
a result of the algorithm generally working best when dealing
with signals of very low SNR.

All linear filters described in this article have been
implemented as zero-phase Butterworth high-pass filters
in second-order sections form for improved numerical
stability.

III. VALIDATION
The fundamental challenge for the validation of cardiac arti-
fact removal algorithms lies in the fact that no ground truth
is available: Either an EMG signal is undisturbed by cardiac
interference, then there is no problem to be solved, or it
is disturbed by it, then there is no way of knowing what
the uncontaminated signal would have been. Validation can
hence only be indirect and rely on heuristics. To increase
the reliability of our analysis, we employ two very different
validation methods and draw inferences about algorithm per-
formance taking both their results into account.

First, the algorithms were applied to artificially created,
synthetic signals, similar to the approaches of Sameni et al.
[21], [22], Drake et al. [32] and Willigenburg et al. [33],
among others. These signals are generated by super-posing
EMG signals free of cardiac contamination with ECG signals
free of EMG contamination. The former is achieved by using
EMG signals from a muscle remote from the heart (in our
case, the musculus gastrocnemius) and performing differen-
tial measurements to further minimize cardiac artifacts. For
the ECG component, we use standard ECG leads from the
PTB diagnostic database [50]. As these are not free of EMG
contamination a priori, we only used those signals with a
noise level below a certain threshold for our validation. For
the synthetic signals resulting from the superposition of these
two components, the ground truth for ECG removal is known:
it is precisely the original, uncontaminated EMG signal. We
hence calculated the absolute error attained by each algorithm
with respect to the original EMG signal.

Secondly, in order to quantify their performance on
real-world signals, the algorithms were applied to real
respiratory EMG measurement signals from eight healthy
individuals. Separation success was evaluated using two
empirical measures: improvement in (estimated) signal-to-
noise ratio (SNR) and the amount of ECG-synchronous peri-
odicity remaining in the denoised signal. Note, again, that
an exact SNR cannot be calculated in this case, as both the
uncontaminated ECG component as well as the uncontami-
nated EMG component are unknown.

In the following, we describe all steps of the validation
procedure in detail.

A. SYNTHETIC TEST SIGNALS
Synthetic ECG-contaminated EMG signals are formed by the
superposition of EMG signals measured during contractions
of the musculus gastrocnemius and ECG signals from the
Physionet PTB diagnostic database [50]. Two EMG signals
have been measured on a single subject (female, age 21)
during both periodic and irregular contractions to enable
testing of different scenarios. To simulate differently shaped
cardiac artifacts, measurement signals of 15 ECG leads on
two healthy subjects have been taken from the Physionet
database (Goldberger et al. [50], patient ID 131, male, age 26,
and patient ID 185, female, age 22). After discarding all ECG
signals with a noise level above −30 dB, 22 ECG signals
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with noise levels from −47.85 dB to −30.36 dB remained.
The noise level was quantified by first pre-filtering the signal
by a 20Hz high-pass filter as discussed above, and then
dividing the power of those signal parts outside of a [−70ms,
+450ms] window around each detected R peak by the power
of those parts within those windows. The window is the same
as used in our empirical SNR estimation, and motivated in
section III-D.

All combinations of EMG and ECG signals have been
superposed at five different signal-to-noise ratios by scaling
the ECG component linearly, i.e.,

EMGsyn = EMGraw + k · ECGraw. (3)

The SNR range of the resulting synthetic measurements (as
defined by eq. (8) below), again pre-filtered by a 20Hz high-
pass filter as discussed above, is −42.64 dB to −9.68 dB
with a median of −29.44 dB, which is very close to the
range of SNRs found in the real measurement signals
described in the following section. In total, the above proce-
dure yielded 220 synthetic test signals, each with a duration
of 115 seconds. Note that variability in the ECG component
was considered the most relevant factor for our analysis as
the ECG wave shape mostly determines the success of the
removal procedure. We thus used as much as 22 different
ECG signals mixed with two characteristic EMG signals for
the validation of the algorithms.

B. STUDY DATA
Respiratory EMG measurements were obtained in a trial
admitted by the ethics committee of the Universität zu
Lübeck (case number 26-165). Four male and four female
test subjects aged 21 to 50 (median 22) with no known
cardiorespiratory diseases were selected for participation.
Care was taken to achieve a high inter-subject variability in
physical fitness and body fat percentage; body-mass-index
(BMI) range was 17 to 35 with a median of 24.5. For the
study, subjects lay in the supine position and breathed through
an external inspiratory airway resistance (PowerBreathe
Medic, POWERbreathe International Ltd.) to ensure suffi-
ciently strong respiratory muscle activity. Each trial session
lasted approximately 15 minutes, with surface EMG mea-
surements of the intercostal muscles and the diaphragm and
the airway pressure being recorded simultaneously. Two pairs
of pre-gelled, disposable electrodeswere placed bilaterally on
the costo-abdominal margin and above the second intercostal
space with a common ground electrode placed directly above
the sternum. EMG signals were measured using the Shim-
mer3 EMG amplifier (Realtime Technologies Ltd.) with a
sampling rate of 1024Hz, and airway pressure was measured
using a differential pressure sensor (MP3V5050, Freescale
Semiconductors, Inc.) placed between the inspiratory airway
resistance and the mouthpiece. For two subjects, we had to
discard one measurement channel due to strong non-cardiac
artifacts, leaving 14 EMG measurements in total. All signals
were assessed by an expert clinician with respect to cardiac

anomalies. Nonewere found, except for (possibly respiration-
related) sinus arrythmia in one subject.

For all algorithms except for wavelet denoising, the EMG
signals were preprocessed to remove baseline wander and
motion artifacts in the low-frequency region, as well as to
simplify the following ECG removal task, by applying a
high-pass filter with a cutoff frequency of 10Hz or 20Hz,
as described in detail in section II-F. Power line interference
was suppressed using a second-order Butterworth band-stop
filter with a stop frequency of 50Hz. The min-max range of
the SNR of the 20Hz-filtered signals as defined by eq. (8)
below across all data sets is −39.94 dB to −6.44 dB, with
a median of −28.67 dB. Thus, all signals were strongly dis-
turbed by cardiac artifacts.

C. REMOVAL ERROR
For the synthetic signals, the error introduced by the different
ECG removal algorithms in recovering the original, rawEMG
signal EMGraw can be quantified exactly. We consider the
normalized raw error norm

eraw =
‖EMGraw − EMGcleaned‖2

‖EMGraw‖2
(4)

of the absolute error signal e between the reference EMG sig-
nal EMGraw and the denoised signal EMGcleaned, normalized
by the raw EMG signal power. As we are mainly interested in
the average performance of the algorithms, extreme outliers
are discarded by rejecting samples for which

|EMGcleaned| > |max{ECGraw}| (5)

is true. In addition to the errors introduced in recovering the
raw EMG activity, we are also interested in the effect that
these errors have on an envelope signal calculated using the
cleaned EMG signal. As mainly the shape of the envelope
is of interest, and not so much the absolute amplitude or the
offset, we consider the linear regression

β∗1 , β
∗

0 = argmin
β1,β2

‖EMGraw − β1EMGcleaned − β0‖2 (6)

to calculate the normalized envelope error norm

eenv =
‖EMGraw − β

∗

1EMGcleaned − β
∗

0‖2

‖EMGraw‖2
(7)

where EMG denotes the centralized mean absolute value
(MAV) envelope signal, calculated with a window length of
128 samples.

D. SNR ANALYSIS
The EMG to ECG signal-to-noise ratio (SNR) of measured
data can only be assessed heuristically, as the two signals
are not separately available. To estimate the SNR empirically,
we require a procedure to automatically detect measurement
phases with strong EMG activity and low ECG interference,
and, conversely, phases with strong ECG interference and
low EMG activity. For the calculation of the EMG signal
power, sections during inspiration (as detected by automatic
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inspection of the airway pressure signal) in between the QRS
complexes have been used, similar to the procedure proposed
by Bartolo et al. [13]. To minimize cardiac activity in the
phases used for estimating EMG signal power, values in a
window around each detected R peak have been discarded.
The window was designed to comprise both the QRS peak as
well as the T wave, which were found to contain most of the
cardiac signal power. To this end, we chose a window width
of 70ms to the left of the detected R peak and 450ms to the
right of the peak.

For the estimation of the ECG signal power, we performed
the inverse of the procedure described above: signals were
only considered during expiration (which was assumed to be
passive), and only in the [−70ms,+450ms] window around
each detected R peak. Finally,

SNR{EMGmeas}

= 20 · log10
P{HBL(EMGmeas(insp ∧ ¬beat))}

P{EMGmeas(¬insp ∧ beat)}
, (8)

where P{X} = E
{
X2
}
denotes the power of signal X ,

is used to assess the signal (EMG) to noise (ECG) ratio in a
given measured or somehow processed signal EMGmeas, in
decibels. Here, HBL(·) denotes a baseline filter which is
required to remove any P wave activity from the supposed
muscular activity. For this, we used a 6th order zero-phase
Butterworth high-pass filter with a cutoff frequency of 25Hz.
To quantify algorithm performance, the SNR improvement

1SNR{EMGcleaned}=SNR{EMGcleaned}−SNR{EMG20Hz}

(9)

was considered for each data set and each algorithm, where
EMG20Hz denotes the measured EMG signal, preprocessed
by the 20Hz high-pass filter described in section II-F.

For the synthetic signals, both signal components (EMG
and ECG) are available individually, and hence, more direct
ways of calculating an SNR are available. To achieve con-
sistency of analyses and results between synthetic and real
measurement signals, however, we define the SNR in this
case using eq. (8) as well. Note that for the synthetic signals,
no pressure signal is available. Hence, we selected sections
of muscular activity in the EMG signal by applying a fixed
threshold: if the absolute of at least one-fifth of the samples
contained in a 100-sample window centered around the cur-
rent sample is greater than 15mV, the sample is assumed to
contain muscular activity.

E. PERIODICITY MEASURE
As a third measure of algorithm performance, we employed
the periodicity measure (PM) proposed by Sameni et al.
[22], which quantifies the amount of signal periodicity syn-
chronous with the cardiac pace. Their measure correlates
samples in one ECG beat to samples at a similar phase in the
successive beat. For each sample, the time distance τk to its
sibling sample in the next beat is defined by

τk = min{τ | 8k+τ = 8k , τ > 0}, (10)

where 8k is a linear phase signal obtained by interpolating
from 0 to 2π between two neighboring R peaks. The PM
of a signal x is then defined as the Pearson coefficient of
correlation [22]

PM =
|E
{
xkxk+τk

}
|

|E
{
x2k
}
E
{
x2k+τk

}
|
1
2

. (11)

A signal fully periodic with the heartbeat is indicated by
PM = 1; a signal with no periodic component at the heart rate
is indicated by PM = 0. Note that while macroscopic mea-
sures of respiratory activity are correlated with cardiac activ-
ity due to, e.g., sinus arrhythmia, this is not to be expected
for the raw EMG signal. In analogy to the SNR improvement,
we considered the logarithmic PM improvement

1PM{EMGcleaned} = 20 · log10
PM{EMG20Hz}

PM{EMGcleaned}
(12)

as an indicator of algorithmic performance for each data set
and each algorithm.

IV. RESULTS
A. SYNTHETIC TEST SIGNALS
Figure 2A shows the median of eraw as defined by eq. (4)
over all synthetic signals for each removal algorithm, as a
function of the SNR of the 20Hz pre-filtered signal. TS,
ATS, and the model-based filtering algorithms perform better
for higher SNR than in the low-SNR setting, while all other
algorithms show very consistent performance across input
SNRs. In general, and especially at relatively high SNRs,
the two template subtraction algorithms and the EKS2 yield
the best results with respect to the raw EMG signal. All other
algorithms attain relative errors close to 1, indicating that their
results should not be interpreted as the true, underlying EMG
signal.

Results for the envelope error (see fig. 2B) are similar in
that the performance of the TS and model-based algorithms
depends on the input SNR, while all other algorithms show
relatively consistent performance across SNRs. An interest-
ing and significant difference to the raw error results is that
the TS algorithms perform significantly worse than all the
other algorithms except for the EKS25, which performs very
poorly in general (we will discuss possible reasons for this in
the discussion section). This result is exactly opposite to the
behavior observedwhen considering the raw error. In general,
the relative envelope error is also much smaller than the
relative raw error. The combination of ATS and HP200 shows
the best performance, closely followed by the HP200 alone.

One important limitation of this validation technique
results from the presence of measurement noise in the ECG
components of the synthetic signals (see section III-A). Since
part of this noise has the same characteristics as the added
EMG component – it may well be EMG activity – any ECG
removal algorithm can only recover the sum of the EMG
component and the ECG measurement noise. This is not
an issue as long as the power of the EMG component is
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FIGURE 2. (A) Relative pointwise error (see eq. (4)), (B) relative error of
the EMG envelope (see eq. (7)), (C) SNR improvement (see eq. (9)) and (D)
PM improvement (see eq. (12)) achieved by the different algorithms on
synthetic signals. The x axis represents the input SNRs of the synthetic
signals as defined by eq. (8), calculated on the 20 Hz pre-filtered signals.
The y axis represents the median of the respective performance measure
over all 44 synthetic datasets at that particular SNR. The different lines
show the results obtained by the TS ( ), ATS ( ), ATS+HP200 ( ), EKS2
( ), EKS25 ( ), HP200 ( ), SWT ( ), and EMD ( ) algorithms. The TS
curve is hidden by the ATS curve in many regions, because these two
algorithms perform very similarly.

significantly greater than the power of the ECGmeasurement
noise. For input SNR values below −30 dB, however, this is
no longer the case, and hence both error measures essentially
become invalid. This can be observed in fig. 2: For input SNR
values below −30 dB, both error measures increase sharply
for all algorithms.

We also assessed the utility of the two empirical perfor-
mancemeasures introduced in section III-D and section III-E.

FIGURE 3. Relation of the four discussed performance measures. Each of
the 1760 data points in each graph represents one synthetic data set (of
which there are 220) processed by one of the eight algorithms under
consideration.

Figure 3 depicts the relationship between the two exact per-
formance measures eraw and eenv, and the empirical measures
SNR and PM in the same subject. A clear, if noisy, correlation
can be observed. We calculated Spearman’s rank correlation
coefficient for all four diagrams. To prevent confounding,
we controlled for eenv when calculating the correlation of
SNR and PM with eraw, and vice versa. Considering only
those validation signals with input SNR greater than −30 dB
– for the reasons discussed above –, the resulting partial
correlation coefficients are−0.72 (eraw and SNR), 0.02 (eraw
and PM), -0.69 (eenv and SNR) and 0.60 (eenv and PM).
Figure 2C and D show the performance of the examined
algorithms in terms of SNR and PM on the synthetic signals.

Finally, we also considered the spectral filtering properties
of the different algorithms: Figure 4 shows the power spec-
tral density (PSD) of an exemplary synthetic measurement,
the corresponding raw EMG signal, and the same signal
cleaned by the different algorithms. The PSD of the signals
cleaned by the two template subtraction algorithms is closest
to the PSD of the original signal. The EKS2-cleaned signal
is also relatively close, while all other algorithms induce
significant changes in the spectral content of the signal.

B. STUDY DATA
Figure 5 shows an exemplary subset of the measurements
taken from one subject, and the resulting cleaned signals.
Figure 6 shows several different envelope signals calculated
from the same subset.

Figure 7 (top) shows the calculated SNR improvements
achieved by the different algorithms on the measurement
signals. All algorithms significantly improve SNR in all
recordings, except for the EKS2 which fails completely
on one data set. Generally, algorithm performance varies
strongly between data sets for all algorithms, with the HP200-
algorithms showing the most consistent behavior. Regarding
this measure, best median performance is demonstrated by
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FIGURE 4. Power spectral density (PSD) of an exemplary synthetic
measurement ( ), the corresponding raw EMG signal ( ), and the
same signal cleaned by TS ( ), ATS ( ), HP200 ( ), and
ATS+HP200 ( ) are shown in panel A, and cleaned by EKS2 ( ),
EKS25 ( ), SWT ( ), and EMD ( ) in panel B. Results are shown
for the second-highest of the five SNR levels considered
(SNR=−26.95 dB), and PSDs have been computed using Thomson’s
multitaper method [51].

SWT denoising, closely followed by EKS25 and then the two
HP200 algorithms. Note that the EKS25 performance regard-
ing this measure was strongly improved by the introduction
of the state projection as described in section II-C (results
without state projection not shown here).

Figure 7 (bottom) shows the relative improvements in peri-
odicity measure (PM) achieved by all algorithms. All algo-
rithms reduce the periodicity measure in all recordings; the
amount of reduction, however, varies strongly between algo-
rithms and recordings. The periodicity measure is reduced
most by the two algorithms involving the HP200, followed
by the EMD and the SWT. With the TS and the model-based
algorithms, markedly more periodicity remains in the cleaned
signal than with the filtering algorithms.

V. DISCUSSION
Evaluating the performance of ECG removal algorithms is
a difficult endeavor. Exact performance measures can only
be calculated using synthetic data sets, which may, however,
not have the same characteristics as real respiratory EMG
measurements. Moreover, different performance measures
may be of interest, depending on the target application. If, for
instance, the exact characteristics of the raw EMG signal are
of interest to analyze fatigue measures or muscle onset and
offset times [52], other algorithms may be preferable than
if a smooth, undisturbed envelope signal is the main target.
To address these varying requirements, we considered four
different performance measures: the error in reconstructing

FIGURE 5. Exemplary subset of the measurements taken from subject 7,
raw (plotted with a scaling factor of 1

10 ) and processed by the various
ECG removal algorithms described in the text. All signals are zero-mean,
with offsets added for easier comparison.

the raw EMG signal, the error in reconstructing the envelope,
the improvement in SNR and the improvement in PM. The
first two of these measures were calculated on synthetic
signals, the latter two on 14 actual respiratory measurements.

A comparison of these measures on the synthetic signals
demonstrates a high degree of correlation (as indicated by
Spearman’s partial rank correlation coefficient, cf. section IV-
A) between both SNR and the two exact error measures eenv
and eraw, as well as a strong correlation between PM and eenv,
while PM and eraw are uncorrelated. The latter result is not
surprising: PM does not penalize errors in EMGwaveform in
any way. Hence, while the raw synthetic signal reconstruction
error eraw is the only exact measure that quantifies changes to
the raw EMG waveform, we have demonstrated that SNR is
a reliable indicator as well. Note that considering only one of
the two empirical measures in isolation ‘‘fails’’ completely
in two extreme cases: The SNR improvement is maximized
by performing classical gating (which is not what we desire),
and simply setting the whole signal to a constant value will
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FIGURE 6. Different envelope signals calculated from the signal shown
in fig. 5: Root mean square (RMS) envelopes (top), mean absolute value
(MAV) envelopes (middle), and median envelopes (bottom). Offsets have
been added for easier comparison.

yield PM = 1. The two measures complement each other
in the sense that if one of them fails, the other still yields
a reasonable result. It is worth keeping these limitations in
mind while interpreting the results.

Our results generally indicate that for recovering the raw
EMG signal without distorting its features, the TS algorithms
seem to work best. This result is not very surprising, as these
are the only ones of the considered algorithms that perform
no filtering of any kind. They cannot introduce any distortion
of the EMG signal other than leaving cardiac components
present in the signal (unless the true EMG signal is correlated
with the heartbeat, which is unexpected for a raw EMG sig-
nal). The obvious drawback is that these algorithms typically
are unable to remove all cardiac components, leaving enough
distortion in the signal to significantly hinder the calculation
of envelope signals. As soon as a heartbeat deviates in any
way from the average heartbeat, e.g., because of a time-
varying heart rate, an artifact remains. Hence, if the raw signal
characteristics are of interest, the most suitable solution may
be the application of a TS algorithm combined with a residual
detection mechanism (which has not been discussed in this
article) that detects and removes samples where significant

FIGURE 7. Standard box plots (median and inner quartiles; whiskers
show the min-max range) for SNR improvement (top) and periodicity
measure (PM) improvement (bottom) achieved by all algorithms under
consideration, both in dB. In both diagrams, higher values indicate better
performance.

cardiac components remain present. The improved TS algo-
rithm proposed in this paper (ATS) performs slightly better
than classical TS on all performance measures with only
marginally increased computational effort and hence appears
preferable in all cases where a TS algorithm is to be applied.

If, on the other hand, one ismainly interested in the calcula-
tion of a clean envelope signal, one of the filtering algorithms
(HP200, SWT, EMD) is recommended based on our findings.
Based on the results presented here, it is not possible to give a
clear recommendation for one of these algorithms as they all
perform similarly, and each of them performs best on one of
the considered performance measures. It is interesting to note
that combining the HP200 with a previous template subtrac-
tion procedure improves the results in all cases. In terms of
computational efficiency, this is the most efficient solution,
followed by the wavelet denoising method, which can be
implemented very efficiently using filter banks, and finally,
the EMD-based method, which was computationally most
demanding. It should also be noted that the computation of
a reasonably well-denoised envelope signal does not require
highly sophisticated algorithms: using a simple high-pass
filter and RMS envelope calculation works quite well (fig. 6,
top row). The choice of the envelope calculation method
has an impact as well, with the RMS method appearing to
yield better results than an MAV envelope, and the median
envelope yielding the best results.
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The model-based algorithms EKS2 and EKS25 appear to
perform poorly in this analysis in comparison to the other
algorithms (although EKS25 was already markedly improved
by introducing state constraints, as noted above), a result
which prompts several remarks. The main problem with
these algorithms is, as in most applications of Kalman filter
algorithms, the choice of the tuning parameters (the noise
covariance matrices): while both algorithms can be tuned to
perform exceptionally well on single recordings, we were
unable to find rules for the automatic choice of hyperpa-
rameters based on data set characteristics that performed
equally well on all subjects. Possibly, these algorithms would
performmuch better if an automatic tuningmethodwas found
that efficiently adjusts the noise covariances automatically to
each new data set. In parts, this was already implemented
in the case of the EKS2, using the automatic adaption of
the observation noise covariance based on the innovation
process proposed by Sameni et al. [21]. However, it is unclear
how the remaining parameters – the process noise covariance
and the time scale of the observation covariance adapta-
tion – can be automatically and optimally chosen for each
new data set. One drawback of the EKS2, as opposed to
the EKS25, is that the noise covariance cannot be adapted
to the different phases of the ECG beat. For the EKS25,
on the other hand, the increased dimension of the noise
vectors further aggravates the tuning problem. Aside from
this main obstacle of choosing the tuning parameters, some
improvements can likely be achieved using better smoothing
algorithms: Sameni et al. [21] reported slightly improved
estimation performance using an unscented Kalman filter
(UKF) instead of an EKF, and even better performance could
be expected using advanced iterative sigma point filtering and
smoothing schemes [53], [54]. We also tested the nonlinear
phase observation proposed by Akhbari et al. [23] but did not
find the results to improve over the linear phase observation
(results not shown).

There is another large family of algorithms that we did
not consider here, and these are algorithms based on the
combination of signal decomposition and source separation
techniques, e.g., wavelet-ICA and EMD-ICA [55]–[57]. We
do not consider these algorithms here because the selection of
the identified components to be suppressed by the algorithm
usually requires manual intervention by the user [56], and we
wanted to consider fully automaticmethods only for this com-
parison. Still, these algorithms have shown promising results
in several studies [33], [56], [58], and automatic component
selection methods like the one proposed by Abbaspour et al.
[57] would be interesting to evaluate on a more extensive data
set in the future.

VI. CONCLUSION
Removing cardiac interference from single-channel surface
EMG measurements of the respiratory muscles is a chal-
lenging task for which many different algorithms have been
proposed. In this article, we examined the performance of
eight different algorithms from four fundamentally different

methodological classes for the automated removal of strong
cardiac interference from respiratory EMG measurements.
Six of the algorithms have been proposed previously in the
literature, and two of them (adaptive template subtraction
and wavelet denoising) are optimized versions of previously
proposed algorithms. We considered four different perfor-
mance criteria for evaluating separation success, using both
real respiratory measurements from eight subjects and syn-
thetic signals resulting from the superposition of lower limb
muscle surface EMG measurements and ECG signals. By
comparison of these measures on synthetic signals, we could
demonstrate that our empirical SNR measure, which can be
calculated without knowledge of the true, undisturbed sig-
nals, strongly correlates with the exact signal reconstruction
error. It can hence be considered a reliable indicator of algo-
rithm performance on real measurement data.

Our results indicate, in agreement with previous research,
that the choice of the algorithm to use should be made
depending on the characteristics of the target application.
None of the examined algorithms was able to completely
suppress the cardiac component from the strongly interfered
signals we considered; however, the characteristics of the
remaining distortion differ between algorithms. If the raw
EMG signal characteristics are of interest, for example, for
fatigue analysis [52], algorithms based on the template sub-
traction method should be preferred because they minimize
distortions to the EMG waveform and are simple and easy
to implement. If, however, more qualitative features of the
EMG signal are of interest, for example, for general quan-
tification of muscular activity through envelope calculation,
filtering algorithms are preferable. In particular, we found the
wavelet denoising method, our EMD-based filtering method,
and simple high-pass filtering (possibly enhanced by previ-
ous application of template subtraction) to perform best for
this purpose. We also evaluated two model-based filtering
methods, which showed great potential considering individ-
ual data sets but proved difficult to adjust to different data
sets automatically, currently limiting their fully automated
application.

CODE AVAILABILITY
The implementation of all algorithms used during the prepa-
ration of this article and data from two of our study subjects
are available on the Code Ocean platform for computational
reproducibility: https://doi.org/10.24433/CO.0394646.v1.
There, the complete data analysis including all necessary
steps can also be executed online.
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